RESUMO
Magnetic fields switching at kilohertz frequencies induce electric fields in the body that can cause peripheral nerve stimulation (PNS). Magnetically induced PNS, i.e. magnetostimulation, has been extensively studied below 10 kHz. It is widely characterized using a hyperbolic strength-duration curve (SDC), where the PNS thresholds monotonically decrease with frequency. The very few studies performed at higher frequencies found significant deviations from the hyperbolic SDC above ~ 25 kHz, however, those measurements are sparse and show large variability. We fill the gap in the data by measuring PNS in the head of 8 volunteers using a solenoidal coil at 16 frequencies between 200 Hz and 88.1 kHz. Contrary to the hyperbolic SDC, PNS thresholds did not decrease monotonically with frequency, but reached a minimum ~ 25 kHz. The thresholds then increased by 39% from 25 kHz to 88.1 kHz on average across subjects. Our measurements can be used for guidance and validation of neurodynamic models and to inform PNS limits of magnetic resonance imaging (MRI) gradient coils and magnetic particle imaging (MPI) systems. The observed deviation of the experimentally measured thresholds from the hyperbolic SDC calls for further study of the underlying biological mechanisms of magnetostimulation beyond 25 kHz.
RESUMO
PURPOSE: To develop a single-shot SNR-efficient distortion-free multi-echo imaging technique for dynamic imaging applications. METHODS: Echo planar time-resolved imaging (EPTI) was first introduced as a multi-shot technique for distortion-free multi-echo imaging. This work aims to develop single-shot EPTI (ss-EPTI) to achieve improved robustness to motion/physiological noise, increased temporal resolution, and higher SNR efficiency. A new spatiotemporal encoding that enables reduced phase-encoding blips and minimized echo spacing under the single-shot regime was developed, which improves sampling efficiency and enhances spatiotemporal correlation in the k-TE space for improved reconstruction. A continuous readout with minimized deadtime was employed to optimize SNR efficiency. Moreover, k-TE partial Fourier and simultaneous multi-slice acquisition were integrated for further acceleration. RESULTS: ss-EPTI provided distortion-free imaging with densely sampled multi-echo images at standard resolutions (e.g., Ë1.25 to 3 mm) in a single-shot. Improved SNR efficiency was observed in ss-EPTI due to improved motion/physiological-noise robustness and efficient continuous readout. Its ability to eliminate dynamic distortions-geometric changes across dynamics due to field changes induced by physiological variations or eddy currents-further improved the data's temporal stability. For multi-echo fMRI, ss-EPTI's multi-echo images recovered signal dropout in short- T 2 * $$ {\mathrm{T}}_2^{\ast } $$ regions and provided TE-dependent functional information to distinguish non-BOLD noise for further tSNR improvement. For diffusion MRI, it achieved shortened TEs for improved SNR and provided images free from both B0-induced and diffusion-encoding-dependent eddy-current-induced distortions with multi-TE diffusion metrics. CONCLUSION: ss-EPTI provides SNR-efficient distortion-free multi-echo imaging with comparable temporal resolutions to ss-EPI, offering a new acquisition tool for dynamic imaging.
RESUMO
Advances in the spatiotemporal resolution and field-of-view of neuroimaging tools are driving mesoscale studies for translational neuroscience. On October 10, 2023, the Center for Mesoscale Mapping (CMM) at the Massachusetts General Hospital (MGH) Athinoula A. Martinos Center for Biomedical Imaging and the Massachusetts Institute of Technology (MIT) Health Sciences Technology based Neuroimaging Training Program (NTP) hosted a symposium exploring the state-of-the-art in this rapidly growing area of research. "Mesoscale Brain Mapping: Bridging Scales and Modalities in Neuroimaging" brought together researchers who use a broad range of imaging techniques to study brain structure and function at the convergence of the microscopic and macroscopic scales. The day-long event centered on areas in which the CMM has established expertise, including the development of emerging technologies and their application to clinical translational needs and basic neuroscience questions. The in-person symposium welcomed more than 150 attendees, including 57 faculty members, 61 postdoctoral fellows, 35 students, and four industry professionals, who represented institutions at the local, regional, and international levels. The symposium also served the training goals of both the CMM and the NTP. The event content, organization, and format were planned collaboratively by the faculty and trainees. Many CMM faculty presented or participated in a panel discussion, thus contributing to the dissemination of both the technologies they have developed under the auspices of the CMM and the findings they have obtained using those technologies. NTP trainees who benefited from the symposium included those who helped to organize the symposium and/or presented posters and gave "flash" oral presentations. In addition to gaining experience from presenting their work, they had opportunities throughout the day to engage in one-on-one discussions with visiting scientists and other faculty, potentially opening the door to future collaborations. The symposium presentations provided a deep exploration of the many technological advances enabling progress in structural and functional mesoscale brain imaging. Finally, students worked closely with the presenting faculty to develop this report summarizing the content of the symposium and putting it in the broader context of the current state of the field to share with the scientific community. We note that the references cited here include conference abstracts corresponding to the symposium poster presentations.
RESUMO
PURPOSE: Echo planar time-resolved imaging (EPTI) is a new imaging approach that addresses the limitations of EPI by providing high-resolution, distortion- and T2/ T 2 * $$ {\mathrm{T}}_2^{\ast } $$ blurring-free imaging for functional MRI (fMRI). However, as in all multishot sequences, intershot phase variations induced by physiological processes can introduce temporal instabilities to the reconstructed time-series data. This study aims to reduce these instabilities in multishot EPTI. THEORY AND METHODS: In conventional multishot EPTI, the time intervals between the shots comprising each slice can introduce intershot phase variations. Here, the fast low-angle excitation echo-planar technique (FLEET), in which all shots of each slice are acquired consecutively with minimal time delays, was combined with a variable flip angle (VFA) technique to improve intershot consistency and maximize signal. A recursive Shinnar-Le Roux RF pulse design algorithm was used to generate pulses for different shots to produce consistent slice profiles and signal intensities across shots. Blipped controlled aliasing in parallel imaging simultaneous multislice was also combined with the proposed VFA-FLEET EPTI to improve temporal resolution and increase spatial coverage. RESULTS: The temporal stability of VFA-FLEET EPTI was compared with conventional EPTI at 7 T. The results demonstrated that VFA-FLEET can provide spatial-specific increase of temporal stability. We performed high-resolution task-fMRI experiments at 7 T using VFA-FLEET EPTI, and reliable BOLD responses to a visual stimulus were detected. CONCLUSION: The intershot phase variations induced by physiological processes in multishot EPTI can manifest as specific spatial patterns of physiological noise enhancement and lead to reduced temporal stability. The VFA-FLEET technique can substantially reduce these physiology-induced instabilities in multishot EPTI acquisitions. The proposed method provides sufficient stability and sensitivity for high-resolution fMRI studies.
RESUMO
PURPOSE: We propose and evaluate multiphoton parallel transmission (MP-pTx) to mitigate flip angle inhomogeneities in high-field MRI. MP-pTx is an excitation method that utilizes a single, conventional birdcage coil supplemented with low-frequency (kHz) irradiation from a multichannel shim array and/or gradient channels. SAR analysis is simplified to that of a conventional birdcage coil, because only the radiofrequency (RF) field from the birdcage coil produces significant SAR. METHODS: MP-pTx employs an off-resonance RF pulse from a conventional birdcage coil supplemented with oscillating z $$ z $$ -directed fields from a multichannel shim array and/or the gradient coils. We simulate the ability of MP-pTx to create uniform nonselective brain excitations at 7 T using realistic B 1 + $$ {\mathrm{B}}_1^{+} $$ and Δ B 0 $$ \Delta {\mathrm{B}}_0 $$ field maps. The RF, shim array, and gradient waveform's amplitudes and phases are optimized using a genetic algorithm followed by sequential quadratic programming. RESULTS: A 1 ms MP-pTx excitation using a 32-channel shim array with current constrained to less than 50 Amp-turns reduced the transverse magnetization's normalized root-mean-squared error from 29% for a conventional birdcage excitation to 6.6% and was nearly 40% better than a 1 ms birdcage coil 5 kT-point excitation with optimized kT-point locations and comparable pulse power. CONCLUSION: The MP-pTx method resembles conventional pTx in its goals and approach but replaces the parallel RF channels with cheaper, low-frequency shim channels. The method mitigates high-field flip angle inhomogeneities to a level better than 3 T CP-mode and comparable to 7 T pTx while retaining the straightforward SAR characteristics of conventional birdcage excitations, as low-frequency shim array fields produce negligible SAR.
Assuntos
Algoritmos , Encéfalo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Humanos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Imagens de Fantasmas , Simulação por Computador , Fótons , Aumento da Imagem/métodos , Processamento de Sinais Assistido por Computador , Interpretação de Imagem Assistida por Computador/métodosRESUMO
Objective.Rapid switching of magnetic resonance imaging (MRI) gradient fields induces electric fields that can cause peripheral nerve stimulation (PNS) and so accurate characterization of PNS is required to maintain patient safety and comfort while maximizing MRI performance. The minimum magnetic gradient amplitude that causes stimulation, the PNS threshold, depends on intrinsic axon properties and the spatial and temporal properties of the induced electric field. The PNS strength-duration curve is widely used to characterize simulation thresholds for periodic waveforms and is parameterized by the chronaxie and rheobase. Safety limits to avoid unwanted PNS in MRI rely on a single chronaxie value to characterize the response of all nerves. However, experimental magnetostimulation peripheral nerve chronaxie values vary by an order of magnitude. Given the diverse range of chronaxies observed and the importance of this number in MRI safety models, we seek a deeper understanding of the mechanisms contributing to chronaxie variability.Approach.We use a coupled electromagnetic-neurodynamic PNS model to assess geometric sources of chronaxie variability. We study the impact of the position of the stimulating magnetic field coil relative to the body, along with the effect of local anatomical features and nerve trajectories on the driving function and the resulting chronaxie.Main results.We find realistic variation of local axon and tissue geometry can modulate a given axon's chronaxie by up to two-fold. Our results identify the temporal rate of charge redistribution as the underlying determinant of the chronaxie.Significance.This charge distribution is a function of both intrinsic axon properties and the spatial stimulus along the nerve; thus, examination of the local tissue topology, which shapes the electric fields, as well as the nerve trajectory, are critical for better understanding chronaxie variations and defining more biologically informed MRI safety guidelines.
Assuntos
Axônios , Imageamento por Ressonância Magnética , Nervos Periféricos , Axônios/fisiologia , Humanos , Nervos Periféricos/fisiologia , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Estimulação Elétrica/métodos , Campos Magnéticos , Simulação por ComputadorRESUMO
PURPOSE: Peripheral nerve stimulation (PNS) limits the usability of state-of-the-art whole-body and head-only MRI gradient coils. We used detailed electromagnetic and neurodynamic modeling to set an explicit PNS constraint during the design of a whole-body gradient coil and constructed it to compare the predicted and experimentally measured PNS thresholds to those of a matched design without PNS constraints. METHODS: We designed, constructed, and tested two actively shielded whole-body Y-axis gradient coil winding patterns: YG1 is a conventional symmetric design without PNS-optimization, whereas YG2's design used an additional constraint on the allowable PNS threshold in the head-imaging landmark, yielding an asymmetric winding pattern. We measured PNS thresholds in 18 healthy subjects at five landmark positions (head, cardiac, abdominal, pelvic, and knee). RESULTS: The PNS-optimized design YG2 achieved 46% higher average experimental thresholds for a head-imaging landmark than YG1 while incurring a 15% inductance penalty. For cardiac, pelvic, and knee imaging landmarks, the PNS thresholds increased between +22% and +35%. For abdominal imaging, PNS thresholds did not change significantly between YG1 and YG2 (-3.6%). The agreement between predicted and experimental PNS thresholds was within 11.4% normalized root mean square error for both coils and all landmarks. The PNS model also produced plausible predictions of the stimulation sites when compared to the sites of perception reported by the subjects. CONCLUSION: The PNS-optimization improved the PNS thresholds for the target scan landmark as well as most other studied landmarks, potentially yielding a significant improvement in image encoding performance that can be safely used in humans.
Assuntos
Imageamento por Ressonância Magnética , Imagem Corporal Total , Humanos , Masculino , Adulto , Imagem Corporal Total/instrumentação , Feminino , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/fisiologia , Desenho de Equipamento , Reprodutibilidade dos Testes , Estimulação Elétrica , Voluntários Saudáveis , Adulto Jovem , Cabeça/diagnóstico por imagemRESUMO
Purpose: To develop EPTI, a multi-shot distortion-free multi-echo imaging technique, into a single-shot acquisition to achieve improved robustness to motion and physiological noise, increased temporal resolution, and high SNR efficiency for dynamic imaging applications. Methods: A new spatiotemporal encoding was developed to achieve single-shot EPTI by enhancing spatiotemporal correlation in k-t space. The proposed single-shot encoding improves reconstruction conditioning and sampling efficiency, with additional optimization under various accelerations to achieve optimized performance. To achieve high SNR efficiency, continuous readout with minimized deadtime was employed that begins immediately after excitation and extends for an SNR-optimized length. Moreover, k-t partial Fourier and simultaneous multi-slice acquisition were integrated to further accelerate the acquisition and achieve high spatial and temporal resolution. Results: We demonstrated that ss-EPTI achieves higher tSNR efficiency than multi-shot EPTI, and provides distortion-free imaging with densely-sampled multi-echo images at resolutions ~1.25-3 mm at 3T and 7T-with high SNR efficiency and with comparable temporal resolutions to ss-EPI. The ability of ss-EPTI to eliminate dynamic distortions common in EPI also further improves temporal stability. For fMRI, ss-EPTI also provides early-TE images (e.g., 2.9ms) to recover signal-intensity and functional-sensitivity dropout in challenging regions. The multi-echo images provide TE-dependent information about functional fluctuations, successfully distinguishing noise-components from BOLD signals and further improving tSNR. For diffusion MRI, ss-EPTI provides high-quality distortion-free diffusion images and multi-echo diffusion metrics. Conclusion: ss-EPTI provides distortion-free imaging with high image quality, rich multi-echo information, and enhanced efficiency within comparable temporal resolution to ss-EPI, offering a robust and efficient acquisition for dynamic imaging.
RESUMO
Purpose: To overcome the major challenges in dMRI acquisition, including low SNR, distortion/blurring, and motion vulnerability. Methods: A novel Romer-EPTI technique is developed to provide distortion-free dMRI with significant SNR gain, high motion-robustness, sharp spatial resolution, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free EPTI encoding. Romer enhances SNR by a simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness through a motion-aware super-resolution reconstruction, which also incorporates slice-profile and real-value diffusion, to resolve high-isotropic-resolution volumes. The in-plane encoding is performed using distortion/blurring-free EPTI, which further improves effective spatial resolution and motion robustness by preventing not only T2/T2*-blurring but also additional blurring resulting from combining encoded volumes with inconsistent geometries caused by dynamic distortions. Self-navigation was incorporated to enable efficient phase correction. Additional developments include strategies to address slab-boundary artifacts, achieve minimal TE for SNR gain at 7T, and achieve high robustness to strong phase variations at high b-values. Results: Using Romer-EPTI, we demonstrate distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-µm-iso) and 7T (485-µm-iso) for the first time, with high SNR efficiency (e.g., 25×), and high image quality free from distortion and slab-boundary artifacts with minimal blurring. Motion experiments demonstrate Romer-EPTI's high motion-robustness and ability to recover sharp images in the presence of motion. Romer-EPTI also demonstrates significant SNR gain and robustness in high b-value (b=5000s/mm2) and time-dependent dMRI. Conclusion: Romer-EPTI significantly improves SNR, motion-robustness, and image quality, providing a highly efficient acquisition for high-resolution dMRI and microstructure imaging.
RESUMO
PURPOSE: We model the performance of parallel transmission (pTx) arrays with 8, 16, 24, and 32 channels and varying loop sizes built on a close-fitting helmet for brain imaging at 7 T and compare their local specific absorption rate (SAR) and flip-angle performances to that of birdcage coil (used as a baseline) and cylindrical 8-channel and 16-channel pTx coils (single-row and dual-row). METHODS: We use the co-simulation approach along with MATLAB scripting for batch-mode simulation of the coils. For each coil, we extracted B1 + maps and SAR matrices, which we compressed using the virtual observation points algorithm, and designed slice-selective RF shimming pTx pulses with multiple local SAR and peak power constraints to generate L-curves in the transverse, coronal, and sagittal orientations. RESULTS: Helmet designs outperformed cylindrical pTx arrays at a constant number of channels in the flip-angle uniformity at a constant local SAR metric: up to 29% for 8-channel arrays, and up to 34% for 16-channel arrays, depending on the slice orientation. For all helmet arrays, increasing the loop diameter led to better local SAR versus flip-angle uniformity tradeoffs, although this effect was more pronounced for the 8-channel and 16-channel systems than the 24-channel and 32-channel systems, as the former have more limited degrees of freedom and therefore benefit more from loop-size optimization. CONCLUSION: Helmet pTx arrays significantly outperformed cylindrical arrays with the same number of channels in local SAR and flip-angle uniformity metrics. This improvement was especially pronounced for non-transverse slice excitations. Loop diameter optimization for helmets appears to favor large loops, compatible with nearest-neighbor decoupling by overlap.
Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Encéfalo/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Imagens de FantasmasRESUMO
To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m-1, 900 T m-1s-1) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35-0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging.
Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Cabeça , Neuroimagem , Razão Sinal-RuídoRESUMO
PURPOSE: A 128-channel receive-only array for brain imaging at 7 T was simulated, designed, constructed, and tested within a high-performance head gradient designed for high-resolution functional imaging. METHODS: The coil used a tight-fitting helmet geometry populated with 128 loop elements and preamplifiers to fit into a 39 cm diameter space inside a built-in gradient. The signal-to-noise ratio (SNR) and parallel imaging performance (1/g) were measured in vivo and simulated using electromagnetic modeling. The histogram of 1/g factors was analyzed to assess the range of performance. The array's performance was compared to the industry-standard 32-channel receive array and a 64-channel research array. RESULTS: It was possible to construct the 128-channel array with body noise-dominated loops producing an average noise correlation of 5.4%. Measurements showed increased sensitivity compared with the 32-channel and 64-channel array through a combination of higher intrinsic SNR and g-factor improvements. For unaccelerated imaging, the 128-channel array showed SNR gains of 17.6% and 9.3% compared to the 32-channel and 64-channel array, respectively, at the center of the brain and 42% and 18% higher SNR in the peripheral brain regions including the cortex. For R = 5 accelerated imaging, these gains were 44.2% and 24.3% at the brain center and 86.7% and 48.7% in the cortex. The 1/g-factor histograms show both an improved mean and a tighter distribution by increasing the channel count, with both effects becoming more pronounced at higher accelerations. CONCLUSION: The experimental results confirm that increasing the channel count to 128 channels is beneficial for 7T brain imaging, both for increasing SNR in peripheral brain regions and for accelerated imaging.
Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Imagens de Fantasmas , Neuroimagem/métodos , Desenho de EquipamentoRESUMO
Objective.Non-invasive functional brain imaging modalities are limited in number, each with its own complex trade-offs between sensitivity, spatial and temporal resolution, and the directness with which the measured signals reflect neuronal activation. Magnetic particle imaging (MPI) directly maps the cerebral blood volume (CBV), and its high sensitivity derives from the nonlinear magnetization of the superparamagnetic iron oxide nanoparticle (SPION) tracer confined to the blood pool. Our work evaluates functional MPI (fMPI) as a new hemodynamic functional imaging modality by mapping the CBV response in a rodent model where CBV is modulated by hypercapnic breathing manipulation.Approach.The rodent fMPI time-series data were acquired with a mechanically rotating field-free line MPI scanner capable of 5 s temporal resolution and 3 mm spatial resolution. The rat's CBV was modulated for 30 min with alternating 5 min hyper-/hypocapnic states, and processed using conventional fMRI tools. We compare our results to fMRI responses undergoing similar hypercapnia protocols found in the literature, and reinforce this comparison in a study of one rat with 9.4T BOLD fMRI using the identical protocol.Main results.The initial image in the time-series showed mean resting brain voxel SNR values, averaged across rats, of 99.9 following the first 10 mg kg-1SPION injection and 134 following the second. The time-series fit a conventional General Linear Model with a 15%-40% CBV change and a peak pixel CNR between 12 and 29, 2-6× higher than found in fMRI.Significance.This work introduces a functional modality with high sensitivity, although currently limited spatial and temporal resolution. With future clinical-scale development, a large increase in sensitivity could supplement other modalities and help transition functional brain imaging from a neuroscience tool focusing on population averages to a clinically relevant modality capable of detecting differences in individual patients.
Assuntos
Circulação Cerebrovascular , Hipercapnia , Ratos , Animais , Hipercapnia/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Encéfalo/irrigação sanguínea , Imageamento por Ressonância Magnética/métodos , Fenômenos Magnéticos , Mapeamento EncefálicoRESUMO
The brain continuously anticipates the energetic needs of the body and prepares to meet those needs before they arise, a process called allostasis. In support of allostasis, the brain continually models the internal state of the body, a process called interoception. Using published tract-tracing studies in non-human animals as a guide, we previously identified a large-scale system supporting allostasis and interoception in the human brain with functional magnetic resonance imaging (fMRI) at 3 Tesla. In the present study, we replicated and extended this system in humans using 7 Tesla fMRI (N = 91), improving the precision of subgenual and pregenual anterior cingulate topography as well as brainstem nuclei mapping. We verified over 90% of the anatomical connections in the hypothesized allostatic-interoceptive system observed in non-human animal research. We also identified functional connectivity hubs verified in tract-tracing studies but not previously detected using 3 Tesla fMRI. Finally, we demonstrated that individuals with stronger fMRI connectivity between system hubs self-reported greater interoceptive awareness, building on construct validity evidence from our earlier paper. Taken together, these results strengthen evidence for the existence of a whole-brain system supporting interoception in the service of allostasis and we consider the implications for mental and physical health.
RESUMO
The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency (RF) coil solutions for ultrahigh field imaging; however, very few commercial and research 7-T RF coils currently exist for the spinal cord, and in particular, those with parallel transmission (pTx) capabilities. This work presents the design, testing, and validation of a pTx/Rx coil for the human neck and cervical/upper thoracic spinal cord. The pTx portion is composed of eight dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made up of twenty semiadaptable overlapping loops to produce high signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while also being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B1 + uniformity, power efficiency, and/or specific absorption rate efficiency. B1 + homogeneity, SNR, and g-factor were evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord.
Assuntos
Medula Cervical , Adulto , Humanos , Medula Cervical/diagnóstico por imagem , Imagens de Fantasmas , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Razão Sinal-RuídoRESUMO
PURPOSE: Modern high-amplitude gradient systems can be limited by the International Electrotechnical Commission 60601-2-33 cardiac stimulation (CS) limit, which was set in a conservative manner based on electrode experiments and E-field simulations in uniform ellipsoidal body models. Here, we show that coupled electromagnetic-electrophysiological modeling in detailed body and heart models can predict CS thresholds, suggesting that such modeling might lead to more detailed threshold estimates in humans. Specifically, we compare measured and predicted CS thresholds in eight pigs. METHODS: We created individualized porcine body models using MRI (Dixon for the whole body, CINE for the heart) that replicate the anatomy and posture of the animals used in our previous experimental CS study. We model the electric fields induced along cardiac Purkinje and ventricular muscle fibers and predict the electrophysiological response of these fibers, yielding CS threshold predictions in absolute units for each animal. Additionally, we assess the total modeling uncertainty through a variability analysis of the 25 main model parameters. RESULTS: Predicted and experimental CS thresholds agree within 19% on average (normalized RMS error), which is smaller than the 27% modeling uncertainty. No significant difference was found between the modeling predictions and experiments (p < 0.05, paired t-test). CONCLUSION: Predicted thresholds matched the experimental data within the modeling uncertainty, supporting the model validity. We believe that our modeling approach can be applied to study CS thresholds in humans for various gradient coils, body shapes/postures, and waveforms, which is difficult to do experimentally.
Assuntos
Fenômenos Eletromagnéticos , Coração , Humanos , Suínos , Animais , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ventrículos do Coração , EletricidadeRESUMO
PURPOSE: Multichannel Transcranial Magnetic Stimulation (mTMS) [1] is a novel non-invasive brain stimulation technique allowing multiple sites to be stimulated simultaneously or sequentially under electronic control without movement of the coils. To enable simultaneous mTMS and MR imaging, we have designed and constructed a whole-head 28-channel receive-only RF coil at 3T. METHODS: A helmet-shaped structure was designed considering a specific layout for a mTMS system with holes for positioning the TMS units next to the scalp. Diameter of the TMS units defined the diameter of RF loops. The placement of the preamplifiers was designed to minimize possible interactions and to allow straightforward positioning of the mTMS units around the RF coil. Interactions between TMS-MRI were analyzed for the whole-head system extending the results presented in previous publications [2]. Both SNR- and g-factors maps were obtained to compare the imaging performance of the coil with commercial head coils. RESULTS: Sensitivity losses for the RF elements containing TMS units show a well-defined spatial pattern. Simulations indicate that the losses are predominantly caused by eddy currents on the coil wire windings. The average SNR performance of the TMSMR 28-channel coil is about 66% and 86% of the SNR of the 32/20-channel head coil respectively. The g-factor values of the TMSMR 28-channel coil are similar to the 32-channel coil and significantly better than the 20-channel coil. CONCLUSION: We present the TMSMR 28-channel coil, a head RF coil array to be integrated with a multichannel 3-axisTMS coil system, a novel tool that will enable causal mapping of human brain function.
Assuntos
Encéfalo , Estimulação Magnética Transcraniana , Humanos , Encéfalo/diagnóstico por imagem , Estimulação Magnética Transcraniana/métodos , Imageamento por Ressonância Magnética/métodos , Técnicas Estereotáxicas , Couro Cabeludo , Imagens de Fantasmas , Desenho de EquipamentoRESUMO
PURPOSE: Peripheral nerve stimulation (PNS) limits the image encoding performance of both body gradient coils and the latest generation of head gradients. We analyze a variety of head gradient design aspects using a detailed PNS model to guide the design process of a new high-performance asymmetric head gradient to raise PNS thresholds and maximize the usable image-encoding performance. METHODS: A novel three-layer coil design underwent PNS optimization involving PNS predictions of a series of candidate designs. The PNS-informed design process sought to maximize the usable parameter space of a coil with <10% nonlinearity in a 22 cm region of linearity, a relatively large inner diameter (44 cm), maximum gradient amplitude of 200 mT/m, and a high slew rate of 900 T/m/s. PNS modeling allowed identification and iterative adjustment of coil features with beneficial impact on PNS such as the number of winding layers, shoulder accommodation strategy, and level of asymmetry. PNS predictions for the final design were compared to measured thresholds in a constructed prototype. RESULTS: The final head gradient achieved up to 2-fold higher PNS thresholds than the initial design without PNS optimization and compared to existing head gradients with similar design characteristics. The inclusion of a third intermediate winding layer provided the additional degrees of freedom necessary to improve PNS thresholds without significant sacrifices to the other design metrics. CONCLUSION: Augmenting the design phase of a new high-performance head gradient coil by PNS modeling dramatically improved the usable image-encoding performance by raising PNS thresholds.
Assuntos
Imageamento por Ressonância Magnética , Nervos Periféricos , Imageamento por Ressonância Magnética/métodos , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/fisiologia , Desenho de EquipamentoRESUMO
PURPOSE: To develop a robust retrospective motion-correction technique based on repeating k-space guidance lines for improving motion correction in Cartesian 2D and 3D brain MRI. METHODS: The motion guidance lines are inserted into the standard sequence orderings for 2D turbo spin echo and 3D MPRAGE to inform a data consistency-based motion estimation and reconstruction, which can be guided by a low-resolution scout. The extremely limited number of required guidance lines are repeated during each echo train and discarded in the final image reconstruction. Thus, integration within a standard k-space acquisition ordering ensures the expected image quality/contrast and motion sensitivity of that sequence. RESULTS: Through simulation and in vivo 2D multislice and 3D motion experiments, we demonstrate that respectively 2 or 4 optimized motion guidance lines per shot enables accurate motion estimation and correction. Clinically acceptable reconstruction times are achieved through fully separable on-the-fly motion optimizations (Ë1 s/shot) using standard scanner GPU hardware. CONCLUSION: The addition of guidance lines to scout accelerated motion estimation facilitates robust retrospective motion correction that can be effectively introduced without perturbing standard clinical protocols and workflows.
Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Simulação por Computador , Imageamento Tridimensional/métodos , Processamento de Imagem Assistida por Computador/métodosRESUMO
The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency coil solutions for ultra-high field imaging; however, very few commercial and research 7 Tesla radiofrequency coils currently exist for the spinal cord, and in particular those with parallel transmit capabilities. This work presents the design, testing and validation of a pTx/Rx coil for the human neck and cervical/upper-thoracic spinal cord. The pTx portion is composed of 8 dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made of 20 semi-adaptable overlapping loops to produce high Signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B 1 + uniformity, power efficiency and/or specific absorption rate (SAR) efficiency. B 1 + homogeneity, SNR and g-factor was evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper-thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord.