Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(61): 7886-7889, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38982900

RESUMO

The approach of employing multivariate MOFs was used to fine-tune the mechanical properties of the flexible framework DUT-49. In situ XRD, NMR and physisorption studies showed that the partial incorporation of a more rigid linker into the DUT-49 framework enables stabilization of the metastable open pore phase, which led to a two-fold amplification of the expelled gas amount upon the "negative gas adsorption" transition.

2.
Nat Commun ; 14(1): 3223, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270577

RESUMO

A unique feature of metal-organic frameworks (MOFs) in contrast to rigid nanoporous materials is their structural switchabilty offering a wide range of functionality for sustainable energy storage, separation and sensing applications. This has initiated a series of experimental and theoretical studies predominantly aiming at understanding the thermodynamic conditions to transform and release gas, but the nature of sorption-induced switching transitions remains poorly understood. Here we report experimental evidence for fluid metastability and history-dependent states during sorption triggering the structural change of the framework and leading to the counterintuitive phenomenon of negative gas adsorption (NGA) in flexible MOFs. Preparation of two isoreticular MOFs differing by structural flexibility and performing direct in situ diffusion studies aided by in situ X-ray diffraction, scanning electron microscopy and computational modelling, allowed assessment of n-butane molecular dynamics, phase state, and the framework response to obtain a microscopic picture for each step of the sorption process.

3.
Nat Commun ; 13(1): 1951, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414051

RESUMO

Although light is a prominent stimulus for smart materials, the application of photoswitches as light-responsive triggers for phase transitions of porous materials remains poorly explored. Here we incorporate an azobenzene photoswitch in the backbone of a metal-organic framework producing light-induced structural contraction of the porous network in parallel to gas adsorption. Light-stimulation enables non-invasive spatiotemporal control over the mechanical properties of the framework, which ultimately leads to pore contraction and subsequent guest release via negative gas adsorption. The complex mechanism of light-gated breathing is established by a series of in situ diffraction and spectroscopic experiments, supported by quantum mechanical and molecular dynamic simulations. Unexpectedly, this study identifies a novel light-induced deformation mechanism of constrained azobenzene photoswitches relevant to the future design of light-responsive materials.

4.
Chem Mater ; 33(20): 7964-7971, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35600608

RESUMO

The flexibility of soft porous crystals, i.e., their ability to respond to external stimuli with structural changes, is one of the most fascinating features of metal-organic frameworks (MOFs). In addition to breathing and swelling phenomena of flexible MOFs, negative gas adsorption (NGA) and pressure amplification (PA) are the more recent discoveries in this field initially observed in the cubic DUT-49 framework. In recent years, the structural contraction was monitored by physisorption, X-ray diffraction, nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) techniques, providing only limited information about the electronic structure of the ligand. In this work, we designed a new ligand with a fluorescent core in the linker backbone and synthesized three new MOFs, isoreticular to DUT-49, denoted as DUT-140(M) (M-Cu, Co, Zn), crystallizing in the space group Fm3̅m. DUT-140(Cu) can be desolvated and is highly porous with an accessible apparent surface area of 4870 m2 g-1 and a pore volume of 2.59 cm3 g-1. Furthermore, it shows flexibility and NGA upon adsorption of subcritical gases. DUT-140(Zn), synthesized using postsynthetic metal exchange, could only be studied with guests in the pores. In addition to the investigation of the adsorption behavior of DUT-140(Cu), spectroscopic and computational methods were used to study the light absorption properties.

5.
J Phys Chem Lett ; 11(22): 9696-9701, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33136403

RESUMO

In situ 1H pulsed field gradient (PFG) NMR was used to investigate the molecular diffusion of n-butane in the pores of the flexible metal-organic framework DUT-49(Cu) at 298 K at different pore loadings, including pressure ranges below and above the negative gas adsorption (NGA) transition caused by structural contraction of the material. Supported by molecular dynamics simulations, the investigation provided crucial insight into confined diffusion within a highly flexible pore environment. The self-diffusion coefficients were derived from the experiment and compared with simulations, capturing the diffusion during n-butane adsorption and desorption. This complementary approach has yielded experimental characterization of molecular diffusion mechanisms during the unique process of NGA. This includes the observation of a 4-fold decrease of diffusivity within a less than 2 kPa gas pressure variation, corresponding to the NGA transition point.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA