Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Age Ageing ; 53(Suppl 2): ii80-ii89, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38748910

RESUMO

BACKGROUND: Increasing fruit and vegetable (FV) consumption is associated with reduced cardiovascular disease risk in observational studies but with little evidence from randomised controlled trials (RCTs). The impact of concurrent pharmacological therapy is unknown. OBJECTIVE: To pool data from six RCTs to examine the effect of increasing FV intake on blood pressure (BP) and lipid profile, also exploring whether effects differed by medication use. DESIGN: Across trials, dietary intake was assessed by diet diaries or histories, lipids by routine biochemical methods and BP by automated monitors. Linear regression provided an estimate of the change in lipid profile or BP associated with a one portion increase in self-reported daily FV intake, with interaction terms fitted for medication use. RESULTS: The pooled sample included a total of 554 participants (308 males and 246 females). Meta-analysis of regression coefficients revealed no significant change in either systolic or diastolic BP per portion FV increase, although there was significant heterogeneity across trials for systolic BP (I2 = 73%). Neither adjusting for change in body mass index, nor analysis according to use of anti-hypertensive medication altered the relationship. There was no significant change in lipid profile per portion FV increase, although there was a significant reduction in total cholesterol among those not on lipid-lowering therapy (P < 0.05 after Bonferroni correction). CONCLUSION: Pooled analysis of six individual FV trials showed no impact of increasing intake on BP or lipids, but there was a total cholesterol-lowering effect in those not on lipid-lowering therapy.


Assuntos
Pressão Sanguínea , Frutas , Lipídeos , Ensaios Clínicos Controlados Aleatórios como Assunto , Verduras , Humanos , Pressão Sanguínea/efeitos dos fármacos , Masculino , Feminino , Pessoa de Meia-Idade , Lipídeos/sangue , Idoso , Dieta Saudável , Anti-Hipertensivos/uso terapêutico , Biomarcadores/sangue
2.
Glycobiology ; 34(6)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38690785

RESUMO

Cellulose is an abundant component of plant cell wall matrices, and this para-crystalline polysaccharide is synthesized at the plasma membrane by motile Cellulose Synthase Complexes (CSCs). However, the factors that control CSC activity and motility are not fully resolved. In a targeted chemical screen, we identified the alkylated nojirimycin analog N-Dodecyl Deoxynojirimycin (ND-DNJ) as a small molecule that severely impacts Arabidopsis seedling growth. Previous work suggests that ND-DNJ-related compounds inhibit the biosynthesis of glucosylceramides (GlcCers), a class of glycosphingolipid associated with plant membranes. Our work uncovered major changes in the sphingolipidome of plants treated with ND-DNJ, including reductions in GlcCer abundance and altered acyl chain length distributions. Crystalline cellulose content was also reduced in ND-DNJ-treated plants as well as plants treated with the known GlcCer biosynthesis inhibitor N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenyl ethyl]-decanamide (PDMP) or plants containing a genetic disruption in GLUCOSYLCERAMIDE SYNTHASE (GCS), the enzyme responsible for sphingolipid glucosylation that results in GlcCer synthesis. Live-cell imaging revealed that CSC speed distributions were reduced upon treatment with ND-DNJ or PDMP, further suggesting an important relationship between glycosylated sphingolipid composition and CSC motility across the plasma membrane. These results indicate that multiple interventions compromising GlcCer biosynthesis disrupt cellulose deposition and CSC motility, suggesting that GlcCers regulate cellulose biosynthesis in plants.


Assuntos
Arabidopsis , Celulose , Glucosilceramidas , Glucosiltransferases , Arabidopsis/metabolismo , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Celulose/metabolismo , Celulose/biossíntese , Glucosilceramidas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/análogos & derivados , Parede Celular/metabolismo
3.
Arch Toxicol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806719

RESUMO

The development of inhaled drugs for respiratory diseases is frequently impacted by lung pathology in non-clinical safety studies. To enable design of novel candidate drugs with the right safety profile, predictive in vitro lung toxicity assays are required that can be applied during drug discovery for early hazard identification and mitigation. Here, we describe a novel high-content imaging-based screening assay that allows for quantification of the tight junction protein occludin in A549 cells, as a model for lung epithelial barrier integrity. We assessed a set of compounds with a known lung safety profile, defined by clinical safety or non-clinical in vivo toxicology data, and were able to correctly identify 9 of 10 compounds with a respiratory safety risk and 9 of 9 compounds without a respiratory safety risk (90% sensitivity, 100% specificity). The assay was sensitive at relevant compound concentrations to influence medicinal chemistry optimization programs and, with an accessible cell model in a 96-well plate format, short protocol and application of automated imaging analysis algorithms, this assay can be readily integrated in routine discovery safety screening to identify and mitigate respiratory toxicity early during drug discovery. Interestingly, when we applied physiologically-based pharmacokinetic (PBPK) modelling to predict epithelial lining fluid exposures of the respiratory tract after inhalation, we found a robust correlation between in vitro occludin assay data and lung pathology in vivo, suggesting the assay can inform translational risk assessment for inhaled small molecules.

4.
bioRxiv ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38464008

RESUMO

Rhamnose is an essential component of the plant cell wall and is synthesized from uridine diphosphate (UDP)-glucose by the RHAMNOSE1 (RHM1) enzyme. RHM1 localizes to biomolecular condensates in plants, but their identity, formation, and function remain elusive. Combining live imaging, genetics, and biochemical approaches in Arabidopsis and heterologous systems, we show that RHM1 alone is sufficient to form enzymatically active condensates, which we name rhamnosomes. Rhamnosome formation is required for UDP-rhamnose synthesis and organ development. Overall, our study demonstrates a novel role for biomolecular condensation in metabolism and organismal development, and provides further support for how organisms have harnessed this biophysical process to regulate small molecule metabolism.

5.
Am J Biol Anthropol ; 184(3): e24922, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38409941

RESUMO

OBJECTIVES: Comparisons between Indigenous peoples over time and within a particular geographic region can shed light on the impact of environmental transitions on the skeleton, including relative bone strength, sexual dimorphism, and age-related changes. Here we compare long bone structural properties of the inhabitants of the late prehistoric-early historic Pecos Pueblo with those of present-day Indigenous individuals from New Mexico. MATERIALS AND METHODS: Femora and tibiae of 126 adults from Pecos Pueblo and 226 present-day adults were included in the study. Cross-sectional diaphyseal properties-areas and second moments of area-were obtained from past studies of the Pecos Pueblo skeletal sample, and from computed tomography scans of recently deceased individuals in the present-day sample. RESULTS: Femora and tibiae from Pecos individuals are stronger relative to body size than those of present-day Indigenous individuals. Present-day individuals are taller but not wider, and this body shape difference affects cross-sectional shape, more strongly proximally. The tibia shows anteroposterior strengthening among Pecos individuals, especially among males. Sexual dimorphism in midshaft bone shape is stronger within the Pecos Pueblo sample. With aging, Pecos individuals show more medullary expansion but also more subperiosteal expansion than present-day individuals, maintaining bone strength despite cortical thinning. DISCUSSION: Higher activity levels, carried out over rough terrain and throughout adult life, likely explain the relatively stronger lower limb bones of the Pecos individuals, as well as their greater subperiosteal expansion with aging. Greater sexual dimorphism in bone structure among Pecos individuals potentially reflects greater gender-based differences in behavioral patterns.


Assuntos
Fêmur , Tíbia , Humanos , Masculino , Feminino , Adulto , New Mexico , Fêmur/anatomia & histologia , Fêmur/diagnóstico por imagem , Tíbia/anatomia & histologia , Tíbia/diagnóstico por imagem , Pessoa de Meia-Idade , Adulto Jovem , Antropologia Física , Idoso , Povos Indígenas/história , História Antiga , Desenvolvimento Industrial/história , Indígenas Norte-Americanos/história
6.
Am J Biol Anthropol ; 183(4): e24899, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38269496

RESUMO

OBJECTIVES: To document frontal sinus volume (FSV) in a sample of sub-Saharan Africans with a view to evaluating claims that such populations exhibit comparatively small sinuses. This study also addresses questions related to sexual dimorphism, incidence of sinus aplasia, and the possibility that FSV continues to increase through adulthood. MATERIALS AND METHODS: FSV was measured from CT scans of adult crania from the Dart Collection. Sex and age were known for each individual. Linear cranial dimensions were used to compute a geometric mean from which a scaled FSV was computed for each cranium. RESULTS: FSV does not differ significantly between sexes, but females exhibit a higher incidence of aplasia. There is considerable variation in FSV in this sample, with the average ranking among the higher means reported for other population samples. The incidence of FS aplasia falls within the range of values recorded for other population samples. Although our study is cross-sectional rather than longitudinal, there is strong evidence that FSV continues to increase with age throughout adulthood. DISCUSSION: The FSV mean of our sample contradicts the notion that sub-Saharan Africans possess small sinuses. In a global context, geography (climate and altitude) does not appear to be related to FSV. The absence of sexual dimorphism in our sample is unexpected, as significant dimorphism has been reported for most other population samples. Our results support other indications that the frontal sinus continues to expand throughout adulthood, especially in females, and that it is likely due to bone resorption.


Assuntos
Seio Frontal , Caracteres Sexuais , Adulto , Feminino , Humanos , Seio Frontal/diagnóstico por imagem , África do Sul , Estudos Transversais , Crânio
7.
PLoS Biol ; 21(9): e3002311, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37695771

RESUMO

Noncommunicable diseases (NCDs) are on the rise worldwide. Obesity, cardiovascular disease, and type 2 diabetes are among a long list of "lifestyle" diseases that were rare throughout human history but are now common. The evolutionary mismatch hypothesis posits that humans evolved in environments that radically differ from those we currently experience; consequently, traits that were once advantageous may now be "mismatched" and disease causing. At the genetic level, this hypothesis predicts that loci with a history of selection will exhibit "genotype by environment" (GxE) interactions, with different health effects in "ancestral" versus "modern" environments. To identify such loci, we advocate for combining genomic tools in partnership with subsistence-level groups experiencing rapid lifestyle change. In these populations, comparisons of individuals falling on opposite extremes of the "matched" to "mismatched" spectrum are uniquely possible. More broadly, the work we propose will inform our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and cultures.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Suscetibilidade a Doenças , Diabetes Mellitus Tipo 2/genética , Evolução Biológica , Genômica
8.
Wellcome Open Res ; 8: 64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736014

RESUMO

We present a genome assembly from an individual Limnephilus marmoratus (a caddisfly; Arthropoda; Insecta; Trichoptera; Limnephilidae). The genome sequence is 1,630 megabases in span. Most of the assembly (99.93%) is scaffolded into 30 chromosomal pseudomolecules, including the assembled Z sex chromosome. The mitochondrial genome has also been assembled and is 15.4 kilobases in length.

9.
Sci Rep ; 13(1): 15204, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709850

RESUMO

Chronic positive energy balance has surged among societies worldwide due to increasing dietary energy intake and decreasing physical activity, a phenomenon called the energy balance transition. Here, we investigate the effects of this transition on bone mass and strength. We focus on the Indigenous peoples of New Mexico in the United States, a rare case of a group for which data can be compared between individuals living before and after the start of the transition. We show that since the transition began, bone strength in the leg has markedly decreased, even though bone mass has apparently increased. Decreased bone strength, coupled with a high prevalence of obesity, has resulted in many people today having weaker bones that must sustain excessively heavy loads, potentially heightening their risk of a bone fracture. These findings may provide insight into more widespread upward trends in bone fragility and fracture risk among societies undergoing the energy balance transition.


Assuntos
Fraturas Ósseas , Humanos , Densidade Óssea , Ingestão de Energia , Exercício Físico , Fraturas Ósseas/epidemiologia
10.
New Phytol ; 239(6): 2212-2224, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37431066

RESUMO

Cellulose is an essential component of plant cell walls and an economically important source of food, paper, textiles, and biofuel. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellulose synthases (CESAs) were shown to impact the direction and velocity of cellulose synthase complexes (CSCs). However, the protein kinases that phosphorylate CESAs are largely unknown. We conducted research in Arabidopsis thaliana to reveal protein kinases that phosphorylate CESAs. In this study, we used yeast two-hybrid, protein biochemistry, genetics, and live-cell imaging to reveal the role of calcium-dependent protein kinase32 (CPK32) in the regulation of cellulose biosynthesis in A. thaliana. We identified CPK32 using CESA3 as a bait in a yeast two-hybrid assay. We showed that CPK32 phosphorylates CESA3 while it interacts with both CESA1 and CESA3. Overexpressing functionally defective CPK32 variant and phospho-dead mutation of CESA3 led to decreased motility of CSCs and reduced crystalline cellulose content in etiolated seedlings. Deregulation of CPKs impacted the stability of CSCs. We uncovered a new function of CPKs that regulates cellulose biosynthesis and a novel mechanism by which phosphorylation regulates the stability of CSCs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional
11.
Wellcome Open Res ; 8: 25, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408608

RESUMO

We present a genome assembly from an individual Limnephilus lunatus (a caddisfly; Arthropoda; Insecta; Trichoptera; Limnephilidae). The genome sequence is 1,270 megabases in span. Most of the assembly is scaffolded into 13 chromosomal pseudomolecules, including the assembled Z chromosome. The mitochondrial genome has also been assembled and is 15.4 kilobases long.

12.
Plant Reprod ; 36(3): 263-272, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37222783

RESUMO

During angiosperm sexual reproduction, pollen tubes must penetrate through multiple cell types in the pistil to mediate successful fertilization. Although this process is highly choreographed and requires complex chemical and mechanical signaling to guide the pollen tube to its destination, aspects of our understanding of pollen tube penetration through the pistil are incomplete. Our previous work demonstrated that disruption of the Arabidopsis thaliana O-FUCOSYLTRANSFERASE1 (OFT1) gene resulted in decreased pollen tube penetration through the stigma-style interface. Here, we demonstrate that second site mutations of Arabidopsis GALACTURONOSYLTRANSFERASE 14 (GAUT14) effectively suppress the phenotype of oft1 mutants, partially restoring silique length, seed set, pollen transmission, and pollen tube penetration deficiencies in navigating the female reproductive tract. These results suggest that disruption of pectic homogalacturonan (HG) synthesis can alleviate the penetrative defects associated with the oft1 mutant and may implicate pectic HG deposition in the process of pollen tube penetration through the stigma-style interface in Arabidopsis. These results also support a model in which OFT1 function directly or indirectly modifies structural features associated with the cell wall, with the loss of oft1 leading to an imbalance in the wall composition that can be compensated for by a reduction in pectic HG deposition.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pólen/genética
13.
J Pharm Sci ; 112(5): 1341-1344, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36796636

RESUMO

Pulmonary delivery is the main route of administration for treatment of local lung diseases. Recently, the interest in delivery of proteins through the pulmonary route for treatment of lung diseases has significantly increased, especially after Covid-19 pandemic. The development of an inhalable protein combines the challenges of inhaled as well as biologic products since protein stability may be compromised during manufacture or delivery. For instance, spray drying is the most common technology for manufacture of inhalable biological particles, however, it imposes shear and thermal stresses which may cause protein unfolding and aggregation post drying. Therefore, protein aggregation should be evaluated for inhaled biologics as it could impact the safety and/or efficacy of the product. While there is extensive knowledge and regulatory guidance on acceptable limits of particles, which inherently include insoluble protein aggregates, in injectable proteins, there is no comparable knowledge for inhaled ones. Moreover, the poor correlation between in vitro setup for analytical testing and the in vivo lung environment limits the predictability of protein aggregation post inhalation. Thus, the purpose of this article is to highlight the major challenges facing the development of inhaled proteins compared to parenteral ones, and to share future thoughts to resolve them.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , Agregados Proteicos , Pandemias , Administração por Inalação , Pós , Tamanho da Partícula , Inaladores de Pó Seco , Aerossóis e Gotículas Respiratórios
14.
ArXiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36713247

RESUMO

Globally, we are witnessing the rise of complex, non-communicable diseases (NCDs) related to changes in our daily environments. Obesity, asthma, cardiovascular disease, and type 2 diabetes are part of a long list of "lifestyle" diseases that were rare throughout human history but are now common. A key idea from anthropology and evolutionary biology-the evolutionary mismatch hypothesis-seeks to explain this phenomenon. It posits that humans evolved in environments that radically differ from the ones experienced by most people today, and thus traits that were advantageous in past environments may now be "mismatched" and disease-causing. This hypothesis is, at its core, a genetic one: it predicts that loci with a history of selection will exhibit "genotype by environment" (GxE) interactions and have differential health effects in ancestral versus modern environments. Here, we discuss how this concept could be leveraged to uncover the genetic architecture of NCDs in a principled way. Specifically, we advocate for partnering with small-scale, subsistence-level groups that are currently transitioning from environments that are arguably more "matched" with their recent evolutionary history to those that are more "mismatched". These populations provide diverse genetic backgrounds as well as the needed levels and types of environmental variation necessary for mapping GxE interactions in an explicit mismatch framework. Such work would make important contributions to our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and sociocultural contexts.

15.
Wellcome Open Res ; 8: 445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38784714

RESUMO

We present a genome assembly from an individual male Odontocerum albicorne (the Grey Sedge caddis fly; Arthropoda; Insecta; Trichoptera; Odontoceridae). The genome sequence is 1,287.3 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 16.57 kilobases in length.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36325185

RESUMO

Research among non-industrial societies suggests that body kinematics adopted during running vary between groups according to the cultural importance of running. Among groups in which running is common and an important part of cultural identity, runners tend to adopt what exercise scientists and coaches consider to be good technique for avoiding injury and maximising performance. In contrast, among groups in which running is not particularly culturally important, people tend to adopt suboptimal technique. This paper begins by describing key elements of good running technique, including landing with a forefoot or midfoot strike pattern and leg oriented roughly vertically. Next, we review evidence from non-industrial societies that cultural attitudes about running associate with variation in running techniques. Then, we present new data from Tsimane forager-horticulturalists in Bolivia. Our findings suggest that running is neither a common activity among the Tsimane nor is it considered an important part of cultural identity. We also demonstrate that when Tsimane do run, they tend to use suboptimal technique, specifically landing with a rearfoot strike pattern and leg protracted ahead of the knee (called overstriding). Finally, we discuss processes by which culture might influence variation in running techniques among non-industrial societies, including self-optimisation and social learning.

17.
Front Plant Sci ; 13: 1072217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388480
18.
BMJ Open ; 12(9): e058660, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127083

RESUMO

INTRODUCTION: Non-communicable disease (NCD) risk is influenced by environmental factors that are highly variable worldwide, yet prior research has focused mainly on high-income countries where most people are exposed to relatively homogeneous and static environments. Understanding the scope and complexity of environmental influences on NCD risk around the globe requires more data from people living in diverse and changing environments. Our project will investigate the prevalence and environmental causes of NCDs among the indigenous peoples of Peninsular Malaysia, known collectively as the Orang Asli, who are currently undergoing varying degrees of lifestyle and sociocultural changes that are predicted to increase vulnerability to NCDs, particularly metabolic disorders and musculoskeletal degenerative diseases. METHODS AND ANALYSIS: Biospecimen sampling and screening for a suite of NCDs (eg, cardiovascular disease, type II diabetes, osteoarthritis and osteoporosis), combined with detailed ethnographic work to assess key lifestyle and sociocultural variables (eg, diet, physical activity and wealth), will take place in Orang Asli communities spanning a gradient from remote, traditional villages to acculturated, market-integrated urban areas. Analyses will first test for relationships between environmental variables, NCD risk factors and NCD occurrence to investigate how environmental changes are affecting NCD susceptibility among the Orang Asli. Second, we will examine potential molecular and physiological mechanisms (eg, epigenetics and systemic inflammation) that mediate environmental effects on health. Third, we will identify intrinsic (eg, age and sex) and extrinsic (eg, early-life experiences) factors that predispose certain people to NCDs in the face of environmental change to better understand which Orang Asli are at greatest risk of NCDs. ETHICS AND DISSEMINATION: Approval was obtained from multiple ethical review boards including the Malaysian Ministry of Health. This study follows established principles for ethical biomedical research among vulnerable indigenous communities, including fostering collaboration, building cultural competency, enhancing transparency, supporting capacity building and disseminating research findings.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças não Transmissíveis , Estudos de Coortes , Estudos Transversais , Humanos , Malásia/epidemiologia , Doenças não Transmissíveis/epidemiologia , Fatores de Risco
19.
Methods Mol Biol ; 2499: 145-154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696079

RESUMO

Posttranslational modifications (PTMs) are critical regulators of protein behavior, and over 200 different types of PTMs have been identified. Recent developments in mass spectrometry technology and sample enrichment approaches have led to a massive expansion in the number of identified PTM types and sites within eukaryotic proteins. As these types of data become increasingly available, it is important to develop additional analysis tools and data repositories to investigate PTM cross talk and larger networks of PTMs. Recently, we developed the Functional Analysis Tools for Post-translational Modifications (FAT-PTM) database, which supports data from publicly available proteomic analyses encompassing eight different types of PTMs and over 49,000 PTM sites. In this chapter, we describe the utility of FAT-PTM for analysis of posttranslationally modified proteins in three different contexts. First, a simple protein search tool is available that allows users to investigate proteins in the Arabidopsis proteome to identify types of PTMs that are associated with the query protein as well as quantitative phosphorylation site changes associated with ten different experimental conditions. Second, FAT-PTM contains a metabolic pathway analysis tool to investigate PTMs in the broader context of over 600 different metabolic pathways compiled from the Plant Metabolic Network. Finally, FAT-PTM contains a comodification tool that can be used to identify groups of proteins that are subject to two or more user-defined PTMs. Overall, FAT-PTM provides a user-friendly platform to visualize posttranslationally modified proteins at the individual, metabolic pathway, and PTM cross-talk levels.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bases de Dados de Proteínas , Redes e Vias Metabólicas , Processamento de Proteína Pós-Traducional , Proteômica/métodos
20.
Plant Physiol ; 188(4): 2115-2130, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35022793

RESUMO

The common ancestor of seed plants and mosses contained homo-oligomeric cellulose synthesis complexes (CSCs) composed of identical subunits encoded by a single CELLULOSE SYNTHASE (CESA) gene. Seed plants use different CESA isoforms for primary and secondary cell wall deposition. Both primary and secondary CESAs form hetero-oligomeric CSCs that assemble and function in planta only when all the required isoforms are present. The moss Physcomitrium (Physcomitrella) patens has seven CESA genes that can be grouped into two functionally and phylogenetically distinct classes. Previously, we showed that PpCESA3 and/or PpCESA8 (class A) together with PpCESA6 and/or PpCESA7 (class B) form obligate hetero-oligomeric complexes required for normal secondary cell wall deposition. Here, we show that gametophore morphogenesis requires a member of class A, PpCESA5, and is sustained in the absence of other PpCESA isoforms. PpCESA5 also differs from the other class A PpCESAs as it is able to self-interact and does not co-immunoprecipitate with other PpCESA isoforms. These results are consistent with the hypothesis that homo-oligomeric CSCs containing only PpCESA5 subunits synthesize cellulose required for gametophore morphogenesis. Analysis of mutant phenotypes also revealed that, like secondary cell wall deposition, normal protonemal tip growth requires class B isoforms (PpCESA4 or PpCESA10), along with a class A partner (PpCESA3, PpCESA5, or PpCESA8). Thus, P. patens contains both homo-oligomeric and hetero-oligomeric CSCs.


Assuntos
Briófitas , Bryopsida , Bryopsida/genética , Parede Celular , Celulose , Glucosiltransferases/genética , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA