Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biometeorol ; 66(2): 251-262, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33733303

RESUMO

The objective of this study was to investigate the effect of acute and chronic heat load events on scrotal temperature (ST), body temperature (BT) and bull behaviour, and to examine the interrelationship between these parameters; the underlying hypothesis was that adverse heat treatments delivered in a temperature controlled environment will lead to thermoregulatory dysfunction of the bull scrotum. Six sexually mature Wagyu bulls were used in this study with data loggers surgically implanted into the abdominal cavity and scrotum. Body temperate and ST were recorded at 30-min intervals for the duration of the study. There were two housing locations used throughout the study, outdoor pens and climate control rooms. The study was designed as a four-phase crossover design with two heat treatments: (1) a 5-day acute challenge, and (2) a 14-day chronic challenge. The study was also blocked by phase to control for systematic change between phases with a thermoneutral (TN) phase in outdoor pens between each heat challenge. Observations within the climate rooms were conducted at 1-h intervals and data on panting scores (PS), respiration rate (RR), posture (standing or lying) and general behaviours (feeding, drinking, ruminating) recorded. Ambient temperature (AT, °C) and relative humidity (RH, %) were obtained at 10-min intervals and used to calculate the temperature humidity index (THI). Multiple models were conducted using a linear mixed effects model that contained different permutations of date and time factors and interactions as well as inclusion of an autoregressive parameter. The strongest model based on Akaike's information criterion (AIC) was selected and further analysed. Ambient conditions during heat treatments were consistent with heat load and bulls showed typical physiological symptoms of the same. Maximum ST for acute and chronic treatments occurred once AT had exceeded 34 °C for at least 3 h (acute 35.59 °C at 1500 h; chronic 35.18 °C at 1400 h), whereas during TN conditions, maximum ST was at 2100 h. All phases showed variation in ST throughout the day. There were strong cross correlations between ST and RR during the heat treatments (acute r = 0.918, P < 0.0001; chronic r = 0.916, P < 0.0001), but not during TN (r = 0.411, P < 0.05). Our results confirmed that the ST of the bulls used in this study was not held at a constant temperature and that there was a possible connection between ST and RR. We have shown that during a period of heat load, the thermoregulatory mechanisms thought responsible for maintaining bovine ST appear to breakdown.


Assuntos
Temperatura Alta , Escroto , Animais , Temperatura Corporal , Regulação da Temperatura Corporal , Bovinos , Estudos Cross-Over , Umidade , Masculino
2.
Animals (Basel) ; 9(6)2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31174286

RESUMO

Heat stress and cold stress have a negative influence on cattle welfare and productivity. There have been some studies investigating the influence of cold stress on cattle, however the emphasis within this review is the influence of heat stress on cattle. The impact of hot weather on cattle is of increasing importance due to the changing global environment. Heat stress is a worldwide phenomenon that is associated with reduced animal productivity and welfare, particularly during the summer months. Animal responses to their thermal environment are extremely varied, however, it is clear that the thermal environment influences the health, productivity, and welfare of cattle. Whilst knowledge continues to be developed, managing livestock to reduce the negative impact of hot climatic conditions remains somewhat challenging. This review provides an overview of the impact of heat stress on production and reproduction in bovines.

3.
Int J Biometeorol ; 61(8): 1381-1387, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28280936

RESUMO

The bull's scrotum and scrotal cord vasculature has traditionally been regarded as a thermoregulatory device for maintaining optimal testicular temperature for normal spermatogenesis. This assumption has mostly been derived from discrete measurements using thermocouples with limited data correlating continuous scrotal temperature (ST) to body temperature (BT). From mid-summer to early autumn, four Wagyu bulls (9-18 months) were surgically implanted with two data loggers (DL) logging at 30 min intervals: one on the right hand side flank and the other was attached to the visceral vaginal tunic of the mid-testis. Bulls were firstly housed in a paddock (PK) for 13 days and then moved to individual pens (IP), again for 13 days. Repeated measures analysis modelled the long-term and diurnal trends in BT and ST. While both day and time of day (TOD) were significant effects for ST at both housing locations (P < 0.005), only TOD showed significance for BT at both locations (P < 0.0001). Significant effects were seen between bulls with ST (F = 167.2, P < 0.001) but not BT (F = 0.03, P = 0.863), suggestive of variation in individual bull thermoregulatory capacity. Dual peaks were observed in ST at 0500 and 2130 h when housed in PK but not IP, suggesting ST may be influenced by external stimuli such as postural or behavioural changes. Reporting concurrent and continuous BT and ST will allow further investigation into factors influencing bovine ST and should be useful in selecting bulls with high degrees of thermoregulation capacity.


Assuntos
Regulação da Temperatura Corporal , Escroto/fisiologia , Criação de Animais Domésticos , Animais , Temperatura Corporal , Bovinos/fisiologia , Umidade , Masculino , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA