Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Appl Opt ; 62(23): 6282-6286, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707097

RESUMO

We present a simple method to determine the refractive index of fluids that is suitable for real-time integrated measurements by imaging a collimated beam through a fluid volume and determining its diameter on a CMOS sensor. Our experimental results agree with the prediction of our analytical model, and the resulting refractive index agrees with the measurements obtained with a commercial refractometer with an RMS deviation of just ±0.003. This method requires only inexpensive components: a light source, two lenses, and a camera sensor; it is suitable for real-time monitoring, and it is essentially unlimited in the range of refractive indices.

2.
Opt Express ; 31(18): 29703-29715, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710765

RESUMO

Various techniques in microscopy are based on point-wise acquisition, which provides advantages in acquiring sectioned images, for example in confocal or two-photon microscopy. The advantages come along with the need to perform three-dimensional scanning, which is often realized by mechanical movement achieved by stage-scanning or piezo-based scanning in the axial direction. Lateral scanning often employs galvo-mirrors, leading to a reflective setup and hence to a folded beam path. In this paper, we introduce a fully refractive microscope capable of three-dimensional scanning, which employs the combination of an adaptive lens, an adaptive prism, and a tailored telecentric f-theta objective. Our results show that this microscope is capable to perform flexible three-dimensional scanning, with low scan-induced aberrations, at a uniform resolution over a large tuning range of X=Y=6300 µ m and Z=480 µ m with only transmissive components. We demonstrate the capabilities at the example of volumetric measurements on the transgenic fluorescence of the thyroid of a zebrafish embryo and mixed pollen grains. This is the first step towards flexible aberration-free volumetric smart microscopy of three-dimensional samples like embryos and organoids, which could be exploited for the demands in both lateral and axial dimensions in biomedical samples without compromising image quality.


Assuntos
Microscopia , Peixe-Zebra , Animais , Refração Ocular , Testes Visuais , Cintilografia
3.
Sensors (Basel) ; 23(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37420660

RESUMO

We demonstrate a method for self-sensing of a magnetically actuated prism that can be used, e.g., in a feedback-loop without the need of additional sensors. In order to use the impedance of the actuation coils as a measurement parameter, we first obtained the optimal measurement frequency that is well separated from the actuation frequencies and at the same time provides the best compromise between sensitivity to the position and robustness. We then developed a combined actuation and measurement driver, and correlated its output signal to the mechanical state of the prism using a defined calibration sequence. We demonstrate that we can reliably measure the state of each actuator and determine the tilt angle of the prism with an accuracy of ±0.1∘ in the polar angle over a range of ±4∘ and ±20 mrad in the azimuthal angle.

4.
Opt Express ; 31(14): 23393-23405, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475424

RESUMO

We present a compact adaptive glass membrane lens for higher order wavefront correction and axial scanning, driven by integrated segmented piezoelectric actuators. The membrane can be deformed in a combination of rotational symmetry providing focus control of up to ± 6 m-1 and spherical aberration correction of up to 5 wavelengths and different discrete symmetries to correct higher order aberrations such as astigmatism, coma and trefoil by up to 10 wavelengths. Our design provides a large clear aperture of 12 mm at an outer diameter of the actuator of 18 mm, a thickness of 2 mm and a response time of less than 2 ms.

5.
Micromachines (Basel) ; 14(6)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37374777

RESUMO

We present the prototype and analytical model of a miniaturized impact actuation mechanism, providing a fast out-of-plane displacement to accelerate objects against gravity, allowing for freely moving objects and hence for large displacements without the need for cantilevers. To achieve the necessary high speed, we chose a piezoelectric stack actuator driven by a high-current pulse generator, connected to a rigid support and a rigid three-point contact with the object. We describe this mechanism with a spring-mass model and compare various spheres with different masses and diameters and from different materials. As expected, we found that larger flight heights are achieved by harder spheres, achieving, e.g., approx. 3 mm displacement for a 3 mm steel sphere using a 3 × 3 × 2 mm3 piezo stack.

6.
Appl Opt ; 62(12): 3072-3082, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37133153

RESUMO

We compare different aspects of the robustness to environmental conditions of two different types of piezo-actuated fluid-membrane lenses: a silicone membrane lens, where the piezo actuator indirectly deforms the flexible membrane through fluid displacement, and a glass membrane lens, where the piezo actuator directly deforms the stiff membrane. While both lenses operated reliably over the temperature range of 0°-75°C, there was a significant effect on their actuation characteristics, which can be well described through a simple model. The silicone lens in particular showed a variation in focal power of up to 0.1m-1 ∘C-1. We demonstrated that integrated pressure and temperature sensors can provide feedback for focal power, however, limited by the response time of the elastomers in the lenses, with polyurethane in the support structures of the glass membrane lens being more critical than the silicone. Studying the mechanical effects, the silicone membrane lens showed a gravity-induced coma and tilt, and a reduced imaging quality with the Strehl ratio decreasing from 0.89 to 0.31 at a vibration frequency of 100 Hz and an acceleration of 3g. The glass membrane lens was unaffected by gravity, and the Strehl ratio decreased from 0.92 to 0.73 at a vibration of 100 Hz, 3g. Overall, the stiffer glass membrane lens is more robust against environmental influences.

7.
Opt Express ; 30(26): 46528-46540, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558604

RESUMO

We present two versions of tunable achromatic doublets based on each two piezoelectrically actuated glass membranes that create the surface of fluid volumes with different dispersions: a straightforward back-to-back and a more intricate stack of the fluid volumes. In both cases, we can control the chromatic focal shift and focal power independently by a suitable combination of actuation voltages on both active membranes. The doublets have a large aperture of 12 mm at an outer diameter of the actuator of 18 mm, an overall thickness of 3 mm and a short response time of around 0.5 ms and, in addition, provide spherical aberration correction. The two designs have an achromatic focal power range of ±2.2 m-1 and ±3.2 m-1 or, for the purpose of actively correcting chromatic errors, a chromatic focal shift at vanishing combined focal power of up to ±0.08 m-1 and ±0.12 m-1.

8.
PLoS One ; 16(5): e0250903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970948

RESUMO

We present the development of a dual-mode imaging platform that combines optical microscopy with magnetic resonance microscopy. Our microscope is designed to operate inside a 9.4T small animal scanner with the option to use a 72mm bore animal RF coil or different integrated linear micro coils. With a design that minimizes the magnetic distortions near the sample, we achieved a field inhomogeneity of 19 ppb RMS. We further integrated a waveguide in the optical layout for the electromagnetic shielding of the camera, which minimizes the noise increase in the MR and optical images below practical relevance. The optical layout uses an adaptive lens for focusing, 2 × 2 modular combinations of objectives with 0.6mm to 2.3mm field of view and 4 configurable RGBW illumination channels and achieves a plano-apochromatic optical aberration correction with 0.6µm to 2.3µm resolution. We present the design, implementation and characterization of the prototype including the general optical and MR-compatible design strategies, a knife-edge optical characterization and different concurrent imaging demonstrations.


Assuntos
Desenho de Equipamento/instrumentação , Imageamento por Ressonância Magnética/métodos , Microscopia/métodos , Imagem Óptica/métodos , Animais , Imageamento por Ressonância Magnética/instrumentação , Microscopia/instrumentação , Imagem Óptica/instrumentação , Imagens de Fantasmas , Ondas de Rádio
9.
Micromachines (Basel) ; 11(4)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235434

RESUMO

Contactless ultrasonic power transmission (UPT) through a metal barrier has become an exciting field of research, as metal barriers prevent the use of electromagnetic wireless power transfer due to Faraday shielding effects. In this paper, we demonstrate power transfer through a metal wall with the use of ultrasonic waves generated from a piezoelectric transducer. Accurate characterization and modeling of the transducer and investigation of the influence of the acoustic properties of the transmitting medium are instrumental for the performance prediction and optimal design of an ultrasonic power link. In this work, we applied the KLM model for the emitting and receiving transducers, with respect to the transmitting medium and model for both the emission and reception function. A practical UPT system was built by mechanically coupling and co-axially aligning two composite transducers on opposite sides of a transmitting medium wall. The optimal transmission performance of the ultrasonic power link through thickness-stretch vibrations of the wall together with two piezoelectric transducers working in TE mode was determined. Eventually, the operating frequency and ohmic loading condition for maximum power transmission were obtained for two different media, aluminium and polyoxymethylene (POM), with contrasting specific acoustic impedances. The results showed that the measured optimal electric loads and operating frequency for maximum power transfer agreed well with the theoretical predictions.

10.
Micromachines (Basel) ; 10(12)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757081

RESUMO

In this paper, we present a finite-element simulation of an adaptive piezoelectric fluid-membrane lens for which we modelled the fluid-structure interaction and resulting membrane deformation in COMSOL Multiphysics®. Our model shows the explicit coupling of the piezoelectric physics with the fluid dynamics physics to simulate the interaction between the piezoelectric and the fluid forces that contribute to the deformation of a flexible membrane in the adaptive lens. Furthermore, the simulation model is extended to describe the membrane deformation by additional fluid forces from the fluid thermal expansion. Subsequently, the simulation model is used to study the refractive power of the adaptive lens as a function of internal fluid pressure and analyze the effect of the fluid thermal expansion on the refractive power. Finally, the simulation results of the refractive power are compared to the experimental results at different actuation levels and temperatures validating the coupled COMSOL model very well. This is explicitly proven by explaining an observed positive drift of the refractive power at higher temperatures.

11.
Sci Rep ; 9(1): 9532, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31267005

RESUMO

Diffraction-limited deep focusing into biological tissue is challenging due to aberrations that lead to a broadening of the focal spot. The diffraction limit can be restored by employing aberration correction for example with a deformable mirror. However, this results in a bulky setup due to the required beam folding. We propose a bi-actuator adaptive lens that simultaneously enables axial scanning and the correction of specimen-induced spherical aberrations with a compact setup. Using the bi-actuator lens in a confocal microscope, we show diffraction-limited axial scanning up to 340 µm deep inside a phantom specimen. The application of this technique to in vivo measurements of zebrafish embryos with reporter-gene-driven fluorescence in a thyroid gland reveals substructures of the thyroid follicles, indicating that the bi-actuator adaptive lens is a meaningful supplement to the existing adaptive optics toolset.

12.
Soft Matter ; 15(4): 779-784, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30633288

RESUMO

We present a new and accurate method to determine the Poisson's ratio of PDMS, using thermal expansion and an optical surface profilometer. The Poisson's ratio of Sylgard 184 was found to be ν = 0.4950 ± 0.0010 and for Sylgard 182, ν = 0.4974 ± 0.0006. Furthermore, we found that for both PDMS types, the coefficient of thermal expansion depends approximately linearly on the curing temperature. This method can be used for almost any kind of soft polymer that can be cured from a liquid at elevated temperatures.

13.
Rev Sci Instrum ; 89(8): 083113, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30184673

RESUMO

Among the methods developed for hyperspectral imaging, pushbroom spatial scanning stands out when it comes to achieving high spectral resolution over a wide spectral range. However, conventional pushbroom systems are usually realized using passive system components, which has limited their flexibility and adaptability and narrowed their application scenarios. In this work, we adopt a different approach to the design and construction of pushbroom systems based on using active internal components. We present a new system concept utilizing an internal line scanning unit and a rotating camera mechanism. This enables a dual-mode imaging system that allows switching between 2D spatial imaging and spectral imaging. The line scanning unit, which consists of a narrow slit mounted to a linear piezo motor, facilitates the spatial scanning of the target while eliminating the laborious relative motion between the target and the imaging system, which is needed in conventional spectrographs. A software is developed for the automation and synchronization of the active components, which enables a novel feed-forward compensation function to compensate the shift in the diffraction angle due to the scanning motion of the slit and provide higher flexibility in data acquisition.

14.
Opt Express ; 26(5): 6090-6102, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529804

RESUMO

We present a varifocal mirror based on a piezo-actuated glass membrane that can be used as a secondary mirror in miniature Cassegrain-type mirror- or catadioptric objectives. The mirror section has a diameter of 10 mm on a clear membrane diameter of 23 mm, with a focal range of ±8 m-1 and a response time on the millisecond-scale. The two piezo layers enable an aspherical tuning range that covers the elliptic, parabolic and hyperbolic regime over most of the focal range. We demonstrate the application of the mirror in a simple catadioptric telefocus objective with a focal length of 68 mm at an aperture of 22 mm and a thickness of 16.6 mm.

15.
Opt Express ; 25(19): 22640-22647, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29041571

RESUMO

We investigate segmented Bessel beams that are created by placing different ring apertures behind an axicon that is illuminated with a plane wave. We find an analytical estimate to determine the shortest possible beam segment by deriving a scale-invariant analytical model using appropriate dimensionless parameters such as the wavelength and the axicon angle. This is verified using simulations and measurements, which are in good agreement. The size of the ring apertures was varied from small aperture sizes in the Frauhofer diffraction limit to larger aperture sizes in the classical limit.

16.
PLoS One ; 12(8): e0182779, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813485

RESUMO

A high NMR detection sensitivity is indispensable when dealing with mass and volume-limited samples, or whenever a high spatial resolution is required. The use of miniaturised RF coils is a proven way to increase sensitivity, but situations may arise where space restrictions could prevent the use of a small resonant coil, e.g., in the interior of the smallest practicable micro-coils. We present the use of magnetic lenses, denoted as Lenz lenses due to their working principle, to focus the magnetic flux of an RF coil into a smaller volume and thereby locally enhance the sensitivity of the NMR experiment-at the expense of the total sensitive volume. Besides focusing, such lenses facilitate re-guiding or re-shaping of magnetic fields much like optical lenses do with light beams. For the first time we experimentally demonstrate the use of Lenz lenses in magnetic resonance and provide a compact mathematical description of the working principle. Through simulations we show that optimal arrangements can be found.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Modelos Teóricos , Reprodutibilidade dos Testes
17.
Opt Express ; 24(21): 23765-23776, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27828213

RESUMO

We present a new principle for tuning the diffraction efficiency of an optical grating and its implementation in a micro-optical device. The overlap of two phase gratings is used to vary the effective phase shift and hence the diffraction efficiency. We study the working principle using Fourier Optics to simulate the diffraction pattern in the far field and design and realize a device based on integrated piezo actuation. We find good agreement between simulation and experiment and observe a suppression of the first diffraction order intensity by more than 97% and response times of less than 3 ms.

19.
Opt Express ; 24(15): 17433-52, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27464190

RESUMO

We study the spatial intensity distribution and the self-reconstruction of quasi-Bessel beams produced from refractive axicon lenses with edge emitting laser diodes as asymmetric and astigmatic illumination sources. Comparing these to a symmetric mono-mode fiber source, we find that the asymmetry results in a transition of a quasi-Bessel beam into a bow-tie shaped pattern and eventually to a line shaped profile at a larger distance along the optical axis. Furthermore, we analytically estimate and discuss the effects of astigmatism, substrate modes and non-perfect axicons. We find a good agreement between experiment, simulation and analytic considerations. Results include the derivation of a maximal axicon angle related to astigmatism of the illuminating beam, impact of laser diode beam profile imperfections like substrate modes and a longitudinal oscillation of the core intensity and radius caused by a rounded axicon tip.

20.
Opt Express ; 24(13): 15029-41, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410654

RESUMO

Electrically tunable lenses exhibit strong potential for fast motion-free axial scanning in a variety of microscopes. However, they also lead to a degradation of the achievable resolution because of aberrations and misalignment between illumination and detection optics that are induced by the scan itself. Additionally, the typically nonlinear relation between actuation voltage and axial displacement leads to over- or under-sampled frame acquisition in most microscopic techniques because of their static depth-of-field. To overcome these limitations, we present an Adaptive-Lens-High-and-Low-frequency (AL-HiLo) microscope that enables volumetric measurements employing an electrically tunable lens. By using speckle-patterned illumination, we ensure stability against aberrations of the electrically tunable lens. Its depth-of-field can be adjusted a-posteriori and hence enables to create flexible scans, which compensates for irregular axial measurement positions. The adaptive HiLo microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 µm and sub-micron lateral resolution over the full scanning range. Proof of concept measurements at home-built specimens as well as zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are shown.


Assuntos
Lentes , Microscopia , Eletricidade , Desenho de Equipamento , Cristalino , Iluminação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA