Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Br Dent J ; 236(12): 931, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38942833
2.
Sci Rep ; 13(1): 14472, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660110

RESUMO

Ascorbic acid (Asc), dexamethasone (Dex) and ß-glycerophosphate (ß-Gly) are commonly used to promote osteogenic behaviour by osteoblasts in vitro. According to the literature, several osteosarcoma cells lines appear to respond differently to the latter with regards to proliferation kinetics and osteogenic gene transcription. Unsurprisingly, these differences lead to contrasting data between publications that necessitate preliminary studies to confirm the phenotype of the chosen osteosarcoma cell line in the presence of Asc, Dex and ß-Gly. The present study exposed Saos-2 cells to different combinations of Asc, Dex and ß-Gly for 14 days and compared the response with immortalised human mesenchymal stromal/stem cells (MSCs). Cell numbers, cytotoxicity, mineralised matrix deposition and cell proliferation were analysed to assess osteoblast-like behaviour in the presence of Asc, Dex and ß-Gly. Additionally, gene expression of runt-related transcription factor 2 (RUNX2); osteocalcin (OCN); alkaline phosphatase (ALP); phosphate regulating endopeptidase homolog X-linked (PHEX); marker of proliferation MKI67 and proliferating cell nuclear antigen (PCNA) was performed every two days during the 14-day cultures. It was found that proliferation of Saos-2 cells was significantly decreased by the presence of ß-Gly which contrasted with hMSCs where no change was observed. Furthermore, unlike hMSCs, Saos-2 cells demonstrated an upregulated expression of late osteoblastic markers, OCN and PHEX that suggested ß-Gly could affect later stages of osteogenic differentiation. In summary, it is important to consider that ß-Gly significantly affects key cell processes of Saos-2 when using it as an osteoblast-like cell model.


Assuntos
Genes cdc , Osteogênese , Humanos , Glicerofosfatos/farmacologia , Linhagem Celular
3.
Br Dent J ; 233(11): 944, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36494538
4.
PLoS One ; 17(11): e0277134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36331951

RESUMO

Human dental pulp stem cells (hDPSCs) have increasingly gained interest as a potential therapy for nerve regeneration in medicine and dentistry, however their neurogenic potential remains a matter of debate. This study aimed to characterize hDPSC neuronal differentiation in comparison with the human SH-SY5Y neuronal stem cell differentiation model. Both hDPSCs and SH-SY5Y could be differentiated to generate typical neuronal-like cells following sequential treatment with all-trans retinoic acid (ATRA) and brain-derived neurotrophic factor (BDNF), as evidenced by significant expression of neuronal proteins ßIII-tubulin (TUBB3) and neurofilament medium (NF-M). Both cell types also expressed multiple neural gene markers including growth-associated protein 43 (GAP43), enolase 2/neuron-specific enolase (ENO2/NSE), synapsin I (SYN1), nestin (NES), and peripherin (PRPH), and exhibited measurable voltage-activated Na+ and K+ currents. In hDPSCs, upregulation of acetylcholinesterase (ACHE), choline O-acetyltransferase (CHAT), sodium channel alpha subunit 9 (SCN9A), POU class 4 homeobox 1 (POU4F1/BRN3A) along with a downregulation of motor neuron and pancreas homeobox 1 (MNX1) indicated that differentiation was more guided toward a cholinergic sensory neuronal lineage. Furthermore, the Extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126 significantly impaired hDPSC neuronal differentiation and was associated with reduction of the ERK1/2 phosphorylation. In conclusion, this study demonstrates that extracellular signal-regulated kinase/Mitogen-activated protein kinase (ERK/MAPK) is necessary for sensory cholinergic neuronal differentiation of hDPSCs. hDPSC-derived cholinergic sensory neuronal-like cells represent a novel model and potential source for neuronal regeneration therapies.


Assuntos
Acetilcolinesterase , Neuroblastoma , Humanos , Acetilcolinesterase/metabolismo , Polpa Dentária/metabolismo , Neuroblastoma/metabolismo , Diferenciação Celular , Tretinoína/farmacologia , Células-Tronco , Colinérgicos , Células Cultivadas , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
5.
Ultrasound Med Biol ; 48(9): 1745-1761, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35760602

RESUMO

Ultrasound accelerates healing in fractured bone; however, the mechanisms responsible are poorly understood. Experimental setups and ultrasound exposures vary or are not adequately characterized across studies, resulting in inter-study variation and difficulty in concluding biological effects. This study investigated experimental variability introduced through the cell culture platform used. Continuous wave ultrasound (45 kHz; 10, 25 or 75 mW/cm2, 5 min/d) was applied, using a Duoson device, to Saos-2 cells seeded in multiwell plates or Petri dishes. Pressure field and vibration quantification and finite-element modelling suggested formation of complex interference patterns, resulting in localized displacement and velocity gradients, more pronounced in multiwell plates. Cell experiments revealed lower metabolic activities in both culture platforms at higher ultrasound intensities and absence of mineralization in certain regions of multiwell plates but not in Petri dishes. Thus, the same transducer produced variable results in different cell culture platforms. Analysis on Petri dishes further revealed that higher intensities reduced vinculin expression and distorted cell morphology, while causing mitochondrial and endoplasmic reticulum damage and accumulation of cells in sub-G1 phase, leading to cell death. More defined experimental setups and reproducible ultrasound exposure systems are required to study the real effect of ultrasound on cells for development of effective ultrasound-based therapies not just limited to bone repair and regeneration.


Assuntos
Técnicas de Cultura de Células , Terapia por Ultrassom , Transdutores , Terapia por Ultrassom/métodos , Ultrassonografia
6.
NPJ Biofilms Microbiomes ; 7(1): 44, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990612

RESUMO

Quantifying biofilm formation on surfaces is challenging because traditional microbiological methods, such as total colony-forming units (CFUs), often rely on manual counting. These are laborious, resource intensive techniques, more susceptible to human error. Confocal laser scanning microscopy (CLSM) is a high-resolution technique that allows 3D visualisation of biofilm architecture. In combination with a live/dead stain, it can be used to quantify biofilm viability on both transparent and opaque surfaces. However, there is little consensus on the appropriate methodology to apply in confocal micrograph processing. In this study, we report the development of an image analysis approach to repeatably quantify biofilm viability and surface coverage. We also demonstrate its use for a range of bacterial species and translational applications. This protocol has been created with ease of use and accessibility in mind, to enable researchers who do not specialise in computational techniques to be confident in applying these methods to analyse biofilm micrographs. Furthermore, the simplicity of the method enables the user to adapt it for their bespoke needs. Validation experiments demonstrate the automated analysis is robust and accurate across a range of bacterial species and an improvement on traditional microbiological analysis. Furthermore, application to translational case studies show the automated method is a reliable measurement of biomass and cell viability. This approach will ensure image analysis is an accessible option for those in the microbiology and biomaterials field, improve current detection approaches and ultimately support the development of novel strategies for preventing biofilm formation by ensuring comparability across studies.


Assuntos
Biofilmes , Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal , Fenótipo , Software , Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Humanos , Microscopia Confocal/métodos , Curva ROC
7.
J Vis Exp ; (163)2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32955504

RESUMO

An experimental and image analysis technique is presented for imaging cavitation bubbles and calculating their area. The high-speed imaging experimental technique and image analysis protocol presented here can also be applied for imaging microscopic bubbles in other fields of research; therefore, it has a wide range of applications. We apply this to image cavitation around dental ultrasonic scalers. It is important to image cavitation to characterize it and to understand how it can be exploited for various applications. Cavitation occurring around dental ultrasonic scalers can be used as a novel method of dental plaque removal, which would be more effective and cause less damage than current periodontal therapy techniques. We present a method for imaging the cavitation bubble clouds occurring around dental ultrasonic scaler tips using a high-speed camera and a zoom lens. We also calculate the area of cavitation using machine learning image analysis. Open source software is used for image analysis. The image analysis presented is easy to replicate, does not require programming experience, and can be modified easily to suit the application of the user.


Assuntos
Processamento de Imagem Assistida por Computador , Microbolhas , Fotografação , Raspagem Dentária/instrumentação , Movimento (Física) , Fotografação/métodos , Sonicação/instrumentação
8.
Br Dent J ; 228(11): 807, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32541694

Assuntos
Odontologia
9.
Dent Mater ; 36(6): 733-743, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32299665

RESUMO

OBJECTIVES: Current instruments cannot clean in between dental implant threads and effectively remove biofilm from the rough implant surface without damaging it. Cavitation bubbles have the potential to disrupt biofilms. The aim of this study was to see how biofilms can be disrupted using non-contact cavitation from an ultrasonic scaler, imaged inside a restricted implant pocket model using high speed imaging. METHODS: Streptococcus sanguinis biofilm was grown for 7 days on dental implants. The implants were placed inside a custom made restricted pocket model and immersed inside a water tank. An ultrasonic scaler tip was placed 0.5mm away from the implant surface and operated at medium power or high power for 2s. The biofilm removal process was imaged using a high speed camera operating at 500 fps. Image analysis was used to calculate the amount of biofilm removed from the high speed images. Scanning electron microscopy was done to visualize the implant surface after cleaning. RESULTS: Cavitation was able to remove biofilm from dental implants. More biofilm was removed at high power. Scanning electron microscopy showed that the implant surface was clean at the points where the cavitation was most intense. High speed imaging showed biofilm removal underneath implant threads, in areas next to the ultrasonic scaler tip. SIGNIFICANCE: A high speed imaging protocol has been developed to visualize and quantify biofilm removal from dental implants in vitro. Cavitation bubbles from dental ultrasonic scalers are able to successfully disrupt biofilm in between implant threads.


Assuntos
Implantes Dentários , Ultrassom , Biofilmes , Raspagem Dentária , Microscopia Eletrônica de Varredura , Propriedades de Superfície
10.
Ultrasound Med Biol ; 45(5): 1044-1055, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30792088

RESUMO

Bacterial biofilms are a cause of contamination in a wide range of medical and biological areas. Ultrasound is a mechanical energy that can remove these biofilms using cavitation and acoustic streaming, which generate shear forces to disrupt biofilm from a surface. The aim of this narrative review is to investigate the literature on the mechanical removal of biofilm using acoustic cavitation to identify the different operating parameters affecting its removal using this method. The properties of the liquid and the properties of the ultrasound have a large impact on the type of cavitation generated. These include gas content, temperature, surface tension, frequency of ultrasound and acoustic pressure. For many of these parameters, more research is required to understand their mechanisms in the area of ultrasonic biofilm removal, and further research will help to optimise this method for effective removal of biofilms from different surfaces.


Assuntos
Biofilmes/crescimento & desenvolvimento , Implantes Dentários/microbiologia , Ondas Ultrassônicas , Acústica , Materiais Biocompatíveis , Microscopia Eletrônica de Varredura , Propriedades de Superfície
11.
J Endod ; 43(7): 1130-1136, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28527849

RESUMO

INTRODUCTION: Piezo1 and Piezo2 are mechanosensitive membrane ion channels. We hypothesized that Piezo proteins may play a role in transducing ultrasound-associated mechanical signals and activate downstream mitogen-activated protein kinase (MAPK) signaling processes in dental cells. In this study, the expression and role of Piezo channels were investigated in dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) after treatment with low-intensity pulsed ultrasound (LIPUS). METHODS: Cell proliferation was evaluated by bromodeoxyuridine incorporation. Western blots were used to analyze the proliferating cell nuclear antigen as well as the transcription factors c-fos and c-jun. Enzyme-linked immunosorbent assay and Western blotting were used to determine the activation of MAPK after LIPUS treatment. Ruthenium red (RR), a Piezo ion channel blocker, was applied to determine the functional role of Piezo proteins in LIPUS-stimulated cell proliferation and MAPK signaling. RESULTS: Western blotting showed the presence of Piezo1 and Piezo2 in both dental cell types. LIPUS treatment significantly increased the level of the Piezo proteins in DPSCs after 24 hours; however, no significant effects were observed in PDLSCs. Treatment with RR significantly inhibited LIPUS-stimulated DPSC proliferation but not PDLSC proliferation. Extracellular signal-related kinase (ERK) 1/2 MAPK was consistently activated in DPSCs over a 24-hour time period after LIPUS exposure, whereas phosphorylated c-Jun N-terminal kinase and p38 mitogen-activated protein kinase MAPK were mainly increased in PDLSCs. RR affected MAPK signaling in both dental cell types with its most prominent effects on ERK1/2/MAPK phosphorylation levels; the significant inhibition of LIPUS-induced stimulation of ERK1/2 activation in DPSCs by RR suggests that stimulation of DPSC proliferation by LIPUS involves Piezo-mediated regulation of ERK1/2 MAPK signaling. CONCLUSIONS: This study for the first time supports the role of Piezo ion channels in transducing the LIPUS response in dental stem cells.


Assuntos
Polpa Dentária/efeitos da radiação , Canais Iônicos/metabolismo , Células-Tronco/efeitos da radiação , Ondas Ultrassônicas , Animais , Western Blotting , Proliferação de Células , Polpa Dentária/citologia , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos da radiação , Ratos , Ratos Wistar
12.
PLoS One ; 11(3): e0149804, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26934340

RESUMO

Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.


Assuntos
Raspagem Dentária/métodos , Ultrassom/métodos , Instrumentos Odontológicos , Análise do Estresse Dentário/métodos , Diagnóstico por Imagem/métodos , Desenho de Equipamento/métodos , Humanos , Lasers , Vibração
13.
J Endod ; 42(3): 425-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26830427

RESUMO

INTRODUCTION: Mesenchymal stem cells (MSCs) from dental tissues may respond to low-intensity pulsed ultrasound (LIPUS) treatment, potentially providing a therapeutic approach to promoting dental tissue regeneration. This work aimed to compare LIPUS effects on the proliferation and MAPK signaling in MSCs from rodent dental pulp stem cells (DPSCs) compared with MSCs from periodontal ligament stem cells (PDLSCs) and bone marrow stem cells (BMSCs). METHODS: Isolated MSCs were treated with 1-MHz LIPUS at an intensity of 250 or 750 mW/cm2 for 5 or 20 minutes. Cell proliferation was evaluated by 5-bromo-2-deoxyuridine (BrdU) staining after 24 hours of culture following a single LIPUS treatment. Specific ELISAs were used to determine the total and activated p38, ERK1/2, and JNK MAPK signaling proteins up to 4 hours after treatment. Selective MAPK inhibitors PD98059 (ERK1/2), SB203580 (p38), and SP600125 (JNK) were used to determine the role of activation of the particular MAPK pathways. RESULTS: The proliferation of all MSC types was significantly increased after LIPUS treatment. LIPUS at a 750-mW/cm2 dose induced the greatest effects on DPSCs. BMSC proliferation was stimulated in equal measures by both intensities, whereas 250 mW/cm2 LIPUS exposure exerted maximum effects on PDLSCs. ERK1/2 was activated immediately in DPSCs after treatment. Concomitantly, DPSC proliferation was specifically modulated by ERK1/2 inhibition, whereas p38 and JNK inhibition exerted no effects. In BMSCs, JNK MAPK signaling was LIPUS activated, and the increase in proliferation was blocked by specific inhibition of the JNK pathway. In PDLSCs, JNK MAPK signaling was activated immediately after LIPUS, whereas p-p38 MAPK increased significantly in these cells 4 hours after exposure. Correspondingly, JNK and p38 inhibition modulated LIPUS-stimulated PDLSC proliferation. CONCLUSIONS: LIPUS promoted MSC proliferation in an intensity and cell-specific dependent manner via activation of distinct MAPK pathways.


Assuntos
Polpa Dentária/citologia , Polpa Dentária/efeitos da radiação , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células-Tronco/enzimologia , Células-Tronco/efeitos da radiação , Terapia por Ultrassom/métodos , Animais , Sequência de Bases , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Masculino , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/efeitos da radiação , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos da radiação , Ratos , Ratos Wistar , Regeneração/efeitos da radiação , Ondas Ultrassônicas
14.
J Dent Educ ; 79(12): 1471-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26632303

RESUMO

Instant messaging (IM) is when users communicate instantly via their mobile devices, and it has become one of the most preferred choices of tools to communicate amongst health professions students. The aim of this study was to understand how dental students communicate via IM, faculty members' perspectives on using IM to communicate with students, and whether such tools are useful in the learning environment. After free-associating themes on online communication, two draft topic guides for structured interviews were designed that focussed on mobile device-related communication activities. A total of 20 students and six faculty members at the University of Birmingham School of Dentistry agreed to take part in the interviews. Students were selected from years 1-5 representing each year group. The most preferred communication tools were emails, social networking, and IM. Emails were used for more formal messages, and IM and social networking sites were used for shorter messages. WhatsApp was the most used IM app because of its popular features such as being able to check if recipients have read and received messages and group work. The students reported that changes were necessary to improve their communication with faculty members. The faculty members reported having mixed feelings toward the use of IM to communicate with students. The students wished to make such tools a permanent part of their learning environment, but only with the approval of faculty members. The faculty members were willing to accept IM as a communication tool only if it is monitored and maintained by the university and has a positive effect on learning.


Assuntos
Comunicação , Educação em Odontologia , Estudantes de Odontologia , Envio de Mensagens de Texto , Adolescente , Adulto , Atitude do Pessoal de Saúde , Correio Eletrônico , Inglaterra , Docentes de Odontologia , Feminino , Humanos , Internet , Relações Interprofissionais , Aprendizagem , Masculino , Pessoa de Meia-Idade , Aplicativos Móveis , Smartphone , Rede Social , Estudantes de Odontologia/psicologia , Ensino/métodos , Adulto Jovem
15.
J Ther Ultrasound ; 3: 8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26146556

RESUMO

BACKGROUND: Ultrasound with frequencies in the kilohertz range has been demonstrated to promote biological effects and has been suggested as a non-invasive tool for tissue healing and repair. However, many challenges exist to characterize and develop kilohertz ultrasound for therapy. In particular there is a limited evidence-based guidance and standard procedure in the literature concerning the methodology of exposing biological cells to ultrasound in vitro. METHODS: This study characterized a 45-kHz low-frequency ultrasound at three different preset intensity levels (10, 25, and 75 mW/cm(2)) and compared this with the thermal and biological effects seen in a 6-well culture setup using murine odontoblast-like cells (MDPC-23). Ultrasound was produced from a commercially available ultrasound-therapy system, and measurements were recorded using a needle hydrophone in a water tank. The transducer was displaced horizontally and vertically from the hydrophone to plot the lateral spread of ultrasound energy. Calculations were performed using Fourier transform and average intensity plotted against distance from the transducer. During ultrasound treatment, cell cultures were directly exposed to ultrasound by submerging the ultrasound transducer into the culture media. Four groups of cell culture samples were treated with ultrasound. Three with ultrasound at an intensity level of 10, 25, and 75 mW/cm(2), respectively, and the final group underwent a sham treatment with no ultrasound. Cell proliferation and viability were analyzed from each group 8 days after three ultrasound treatments, each separated by 48 h. RESULTS: The ultrasonic output demonstrated considerable lateral spread of the ultrasound field from the exposed well toward the adjacent culture wells in the multiwell culture plate; this correlated well with the dose-dependent increase in the number of cultured cells where significant biological effects were also seen in adjacent untreated wells. Significant thermal variations were not detected in adjacent untreated wells. CONCLUSIONS: This study highlights the pitfalls of using multiwell plates when investigating the biological effect of kilohertz low-frequency ultrasound on adherent cell cultures.

16.
Cochrane Database Syst Rev ; (6): CD002281, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24934383

RESUMO

BACKGROUND: Removing dental plaque may play a key role maintaining oral health. There is conflicting evidence for the relative merits of manual and powered toothbrushing in achieving this. This is an update of a Cochrane review first published in 2003, and previously updated in 2005. OBJECTIVES: To compare manual and powered toothbrushes in everyday use, by people of any age, in relation to the removal of plaque, the health of the gingivae, staining and calculus, dependability, adverse effects and cost. SEARCH METHODS: We searched the following electronic databases: the Cochrane Oral Health Group's Trials Register (to 23 January 2014), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2014, Issue 1), MEDLINE via OVID (1946 to 23 January 2014), EMBASE via OVID (1980 to 23 January 2014) and CINAHL via EBSCO (1980 to 23 January 2014). We searched the US National Institutes of Health Trials Register and the WHO Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. SELECTION CRITERIA: Randomised controlled trials of at least four weeks of unsupervised powered toothbrushing versus manual toothbrushing for oral health in children and adults. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by The Cochrane Collaboration. Random-effects models were used provided there were four or more studies included in the meta-analysis, otherwise fixed-effect models were used. Data were classed as short term (one to three months) and long term (greater than three months). MAIN RESULTS: Fifty-six trials met the inclusion criteria; 51 trials involving 4624 participants provided data for meta-analysis. Five trials were at low risk of bias, five at high and 46 at unclear risk of bias.There is moderate quality evidence that powered toothbrushes provide a statistically significant benefit compared with manual toothbrushes with regard to the reduction of plaque in both the short term (standardised mean difference (SMD) -0.50 (95% confidence interval (CI) -0.70 to -0.31); 40 trials, n = 2871) and long term (SMD -0.47 (95% CI -0.82 to -0.11; 14 trials, n = 978). These results correspond to an 11% reduction in plaque for the Quigley Hein index (Turesky) in the short term and 21% reduction long term. Both meta-analyses showed high levels of heterogeneity (I(2) = 83% and 86% respectively) that was not explained by the different powered toothbrush type subgroups.With regard to gingivitis, there is moderate quality evidence that powered toothbrushes again provide a statistically significant benefit when compared with manual toothbrushes both in the short term (SMD -0.43 (95% CI -0.60 to -0.25); 44 trials, n = 3345) and long term (SMD -0.21 (95% CI -0.31 to -0.12); 16 trials, n = 1645). This corresponds to a 6% and 11% reduction in gingivitis for the Löe and Silness index respectively. Both meta-analyses showed high levels of heterogeneity (I(2) = 82% and 51% respectively) that was not explained by the different powered toothbrush type subgroups.The number of trials for each type of powered toothbrush varied: side to side (10 trials), counter oscillation (five trials), rotation oscillation (27 trials), circular (two trials), ultrasonic (seven trials), ionic (four trials) and unknown (five trials). The greatest body of evidence was for rotation oscillation brushes which demonstrated a statistically significant reduction in plaque and gingivitis at both time points. AUTHORS' CONCLUSIONS: Powered toothbrushes reduce plaque and gingivitis more than manual toothbrushing in the short and long term. The clinical importance of these findings remains unclear. Observation of methodological guidelines and greater standardisation of design would benefit both future trials and meta-analyses.Cost, reliability and side effects were inconsistently reported. Any reported side effects were localised and only temporary.


Assuntos
Dispositivos para o Cuidado Bucal Domiciliar/efeitos adversos , Dispositivos para o Cuidado Bucal Domiciliar/economia , Placa Dentária/prevenção & controle , Gengivite/prevenção & controle , Escovação Dentária/instrumentação , Placa Dentária/complicações , Doenças da Gengiva/prevenção & controle , Humanos , Saúde Bucal , Doenças Periodontais/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Escovação Dentária/métodos
17.
J Endod ; 39(8): 1067-70, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23880279

RESUMO

INTRODUCTION: The ability of single-file, reciprocating instruments to remove inorganic debris is uncertain. By using micro-computed tomography (microCT), this study compared the 3-dimensional distribution, quantity, and density of remaining inorganic debris in the mesial root of mandibular molars after instrumentation. A single reciprocating file was compared with a multifile rotary instrumentation technique. METHODS: Teeth were selected for instrumentation using reciprocating or rotary instruments (n = 19). Teeth were scanned using microCT before and after instrumentation. Through shape recognition and superimposition image analysis techniques, remaining inorganic tissue debris was identified, quantified, and visualized 3-dimensionally, mapping debris to its location. The use of a density phantom enabled the debris density to be calculated, giving a measure of compactness. RESULTS: After single-file instrumentation, an average of 19.5% debris remained in the canal compared with 10.6% with the multifile technique (P = .01) and at an average density of 1.60 g/m(3) compared with 1.55 g/m(3) for the multifile system (P > .05). Isthmuses, protrusions, and irregularities in the canal wall were repeatedly seen at the locations of debris accumulation. CONCLUSIONS: In canals with a high prevalence of isthmuses and protrusions, using multifile rotary systems may be preferred over reciprocating files because it can yield cleaner canals with less debris accumulation.


Assuntos
Cavidade Pulpar/diagnóstico por imagem , Imageamento Tridimensional/métodos , Preparo de Canal Radicular/métodos , Microtomografia por Raio-X/métodos , Dentina/diagnóstico por imagem , Diamante/química , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Irrigantes do Canal Radicular/uso terapêutico , Preparo de Canal Radicular/instrumentação , Hipoclorito de Sódio/uso terapêutico
18.
Clin Oral Investig ; 17(3): 905-12, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22638772

RESUMO

OBJECTIVES: Ultrasonic surgery is an increasingly popular technique for cutting bone, but little research has investigated how the ultrasonic tip oscillations may affect the cuts they produce in bone. The aim of this investigation was to evaluate the oscillation and cutting characteristics of an ultrasonic surgical device. MATERIALS AND METHODS: A Piezosurgery 3 (Mectron, Carasco, Italy) ultrasonic cutting system was utilised with an OP3 style tip. The system was operated with the tip in contact with porcine bone samples (loads of 50 to 200 g) mounted at 45° to the vertical insert tip and with a water flow of 57 ml/min. Tip oscillation amplitude was determined using scanning laser vibrometry. Bone surfaces defects were characterised using laser profilometry and scanning electron microscopy. RESULTS: A positive relationship was observed between the magnitude of tip oscillations and the dimensions of defects cut into the bone surface. Overloading the tip led to a reduction in oscillation and hence in the defect produced. A contact load of 150 g provided the greatest depth of cut. Defects produced in the bone came from two clear phases of cutting. CONCLUSIONS: The structure of the bone was found to be an important factor in the cut characteristics following piezosurgery. CLINICAL RELEVANCE: Cutting of bone with ultrasonics is influenced by the load applied and the setting used. Care must be used to prevent the tip from sliding over the bone at low loadings.


Assuntos
Osso e Ossos/cirurgia , Piezocirurgia , Animais , Osso e Ossos/anatomia & histologia , Desenho de Equipamento , Microscopia Confocal , Microscopia Eletrônica de Varredura , Suínos , Vibração
19.
J Ther Ultrasound ; 1: 12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25516801

RESUMO

BACKGROUND: Low-intensity ultrasound is considered an effective non-invasive therapy to stimulate hard tissue repair, in particular to accelerate delayed non-union bone fracture healing. More recently, ultrasound has been proposed as a therapeutic tool to repair and regenerate dental tissues. Our recent work suggested that low-frequency kilohertz-range ultrasound is able to interact with dental pulp cells which could have potential to stimulate dentine reparative processes and hence promote the viability and longevity of teeth. METHODS: In this study, the biophysical characteristics of low-frequency ultrasound transmission through teeth towards the dental pulp were explored. We conducted cell culture studies using an odontoblast-like/dental pulp cell line, MDPC-23. Half of the samples underwent ultrasound exposure while the other half underwent 'sham treatment' where the transducer was submerged into the medium but no ultrasound was generated. Ultrasound was applied directly to the cell cultures using a therapeutic ultrasound device at a frequency of 45 kHz with intensity settings of 10, 25 and 75 mW/cm(2) for 5 min. Following ultrasound treatment, the odontoblast-like cells were detached from the culture using a 0.25% Trypsin/EDTA solution, and viable cell numbers were counted. Two-dimensional tooth models based on µ-CT 2D images of the teeth were analyzed using COMSOL as the finite element analysis platform. This was used to confirm experimental results and to demonstrate the potential theory that with the correct combination of frequency and intensity, a tooth can be repaired using small doses of ultrasound. Frequencies in the 30 kHz-1 MHz range were analyzed. For each frequency, pressure/intensity plots provided information on how the intensity changes at each point throughout the propagation path. Spatial peak temporal average (SPTA) intensity was calculated and related to existing optimal spatial average temporal average (SATA) intensity deemed effective for cell proliferation during tooth repair. RESULTS: The results demonstrate that odontoblast MDPC-23 cell numbers were significantly increased following three consecutive ultrasound treatments over a 7-day culture period as compared with sham controls underscoring the anabolic effects of ultrasound on these cells. Data show a distinct increase in cell number compared to the sham data after ultrasound treatment for intensities of 10 and 25 mW/cm(2) (p < 0.05 and p < 0.01, respectively). Using finite element analysis, we demonstrated that ultrasound does indeed propagate through the mineralized layers of the teeth and into the pulp chamber where it forms a 'therapeutic' force field to interact with the living dental pulp cells. This allowed us to observe the pressure/intensity of the wave as it propagates throughout the tooth. A selection of time-dependent snapshots of the pressure/intensity reveal that the lower frequency waves propagate to the pulp and remain within the chamber for a while, which is ideal for cell excitation. Input frequencies and pressures of 30 kHz (70 Pa) and 45 kHz (31 kPa), respectively, with an average SPTA of up to 120 mW/cm(2) in the pulp seem to be optimal and agree with the SATA intensities reported experimentally. CONCLUSIONS: Our data suggest that ultrasound can be harnessed to propagate to the dental pulp region where it can interact with the living cells to promote dentine repair. Further research is required to analyze the precise physical and biological interactions of low-frequency ultrasound with the dental pulp to develop a novel non-invasive tool for dental tissue regeneration.

20.
Clin Oral Investig ; 17(4): 1227-34, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22893034

RESUMO

OBJECTIVES: Cavitation arising within the water around the oscillating ultrasonic scaler tip is an area that may lead to advances in enhancing biofilm removal. The aim of this study is to map the occurrence of cavitation around scaler tips under loaded conditions. MATERIALS AND METHODS: Two designs of piezoelectric ultrasonic scaling probes were evaluated with a scanning laser vibrometer and luminol dosimetric system under loaded (100 g/200 g) and unloaded conditions. Loads were applied to the probe tips via teeth mounted in a load-measuring apparatus. RESULTS: There was a positive correlation between probe displacement amplitude and cavitation production for ultrasonic probes. The position of cavitation at the tip of each probe was greater under loaded conditions than unloaded and for the longer P probe towards the tip. CONCLUSIONS: Whilst increasing vibration displacement amplitude of ultrasonic scalers increases the occurrence of cavitation, factors such as the length of the probe influence the amount of cavitation activity generated. The application of load affects the production of cavitation at the most clinically relevant area-the tip. CLINICAL RELEVANCE: Loading and the design of ultrasonic scalers lead to maximising the occurrence of the cavitation at the tip and enhance the cleaning efficiency of the scaler.


Assuntos
Raspagem Dentária/instrumentação , Análise do Estresse Dentário , Terapia por Ultrassom/instrumentação , Desenho de Equipamento , Humanos , Modelos Lineares , Dente Molar , Oscilometria , Estatísticas não Paramétricas , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA