Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38691660

RESUMO

SNPs in the FAM13A locus are amongst the most commonly reported risk alleles associated with chronic obstructive pulmonary disease (COPD) and other respiratory diseases, however the physiological role of FAM13A is unclear. In humans, two major protein isoforms are expressed at the FAM13A locus: 'long' and 'short', but their functions remain unknown, partly due to a lack of isoform conservation in mice. We performed in-depth characterisation of organotypic primary human airway epithelial cell subsets and show that multiciliated cells predominantly express the FAM13A long isoform containing a putative N-terminal Rho GTPase activating protein (RhoGAP) domain. Using purified proteins, we directly demonstrate RhoGAP activity of this domain. In Xenopus laevis, which conserve the long isoform, Fam13a-deficiency impaired cilia-dependent embryo motility. In human primary epithelial cells, long isoform deficiency did not affect multiciliogenesis but reduced cilia co-ordination in mucociliary transport assays. This is the first demonstration that FAM13A isoforms are differentially expressed within the airway epithelium, with implications for the assessment and interpretation of SNP effects on FAM13A expression levels. We also show that the long FAM13A isoform co-ordinates cilia-driven movement, suggesting that FAM13A risk alleles may affect susceptibility to respiratory diseases through deficiencies in mucociliary clearance. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

2.
J Biol Chem ; 299(12): 105482, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992806

RESUMO

Bromodomains (BDs) regulate gene expression by recognizing protein motifs containing acetyllysine. Although originally characterized as histone-binding proteins, it has since become clear that these domains interact with other acetylated proteins, perhaps most prominently transcription factors. The likely transient nature and low stoichiometry of such modifications, however, has made it challenging to fully define the interactome of any given BD. To begin to address this knowledge gap in an unbiased manner, we carried out mRNA display screens against a BD-the N-terminal BD of BRD3-using peptide libraries that contained either one or two acetyllysine residues. We discovered peptides with very strong consensus sequences and with affinities that are significantly higher than typical BD-peptide interactions. X-ray crystal structures also revealed modes of binding that have not been seen with natural ligands. Intriguingly, however, our sequences are not found in the human proteome, perhaps suggesting that strong binders to BDs might have been selected against during evolution.


Assuntos
Proteoma , Fatores de Transcrição , Humanos , Proteoma/metabolismo , Fatores de Transcrição/metabolismo , Domínios Proteicos , Motivos de Aminoácidos , Peptídeos/metabolismo , Ligação Proteica , Acetilação
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220242, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37778376

RESUMO

Peptidyl arginine deiminase 6 (PADI6) is a maternal factor that is vital for early embryonic development. Deletion and mutations of its encoding gene in female mice or women lead to early embryonic developmental arrest, female infertility, maternal imprinting defects and hyperproliferation of the trophoblast. PADI6 is the fifth and least well-characterized member of the peptidyl arginine deiminases (PADIs), which catalyse the post-translational conversion of arginine to citrulline. It is less conserved than the other PADIs, and currently has no reported catalytic activity. While there are many suggested functions of PADI6 in the early mouse embryo, including in embryonic genome activation, cytoplasmic lattice formation, maternal mRNA and ribosome regulation, and organelle distribution, the molecular mechanisms of its function remain unknown. In this review, we discuss what is known about the function of PADI6 and highlight key outstanding questions that must be answered if we are to understand the crucial role it plays in early embryo development and female fertility. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Assuntos
Desenvolvimento Embrionário , Fertilidade , Proteína-Arginina Desiminase do Tipo 6 , Animais , Feminino , Humanos , Camundongos , Arginina/metabolismo , Proteína-Arginina Desiminase do Tipo 6/genética , Proteína-Arginina Desiminase do Tipo 6/metabolismo , Ribossomos/metabolismo
4.
Structure ; 31(8): 912-923.e4, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37269828

RESUMO

DNA-encoded cyclic peptide libraries can yield high-potency, high-specificity ligands against target proteins. We used such a library to seek ligands that could distinguish between paralogous bromodomains from the closely related bromodomain and extra-terminal domain family of epigenetic regulators. Several peptides isolated from a screen against the C-terminal bromodomain of BRD2, together with new peptides discovered in previous screens against the corresponding domain from BRD3 and BRD4, bound their targets with nanomolar and sub-nanomolar affinities. X-ray crystal structures of several of these bromodomain-peptide complexes reveal diverse structures and binding modes, which nevertheless display several conserved features. Some peptides demonstrate significant paralog-level specificity, although the physicochemical explanations for this specificity are often not clear. Our data demonstrate the power of cyclic peptides to discriminate between very similar proteins with high potency and hint that differences in conformational dynamics might modulate the affinity of these domains for particular ligands.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos Cíclicos , Ligantes , Domínios Proteicos , Proteínas de Ciclo Celular/metabolismo
5.
Commun Chem ; 6(1): 103, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258712

RESUMO

Photoaffinity labelling is a promising method for studying protein-ligand interactions. However, obtaining a specific, efficient crosslinker can require significant optimisation. We report a modified mRNA display strategy, photocrosslinking-RaPID (XL-RaPID), and exploit its ability to accelerate the discovery of cyclic peptides that photocrosslink to a target of interest. As a proof of concept, we generated a benzophenone-containing library and applied XL-RaPID screening against a model target, the second bromodomain of BRD3. This crosslinking screening gave two optimal candidates that selectively labelled the target protein in cell lysate. Overall, this work introduces direct photocrosslinking screening as a versatile technique for identifying covalent peptide ligands from mRNA display libraries incorporating reactive warheads.

6.
Chem Soc Rev ; 50(22): 12292-12307, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34581717

RESUMO

Protein interactions underlie most molecular events in biology. Many methods have been developed to identify protein partners, to measure the affinity with which these biomolecules interact and to characterise the structures of the complexes. Each approach has its own advantages and limitations, and it can be difficult for the newcomer to determine which methodology would best suit their system. This review provides an overview of many of the techniques most widely used to identify protein partners, assess stoichiometry and binding affinity, and determine low-resolution models for complexes. Key methods covered include: yeast two-hybrid analysis, affinity purification mass spectrometry and proximity labelling to identify partners; size-exclusion chromatography, scattering methods, native mass spectrometry and analytical ultracentrifugation to estimate stoichiometry; isothermal titration calorimetry, biosensors and fluorometric methods (including microscale thermophoresis, anisotropy/polarisation, resonance energy transfer, AlphaScreen, and differential scanning fluorimetry) to measure binding affinity; and crosslinking and hydrogen-deuterium exchange mass spectrometry to probe the structure of complexes.


Assuntos
Proteínas , Cromatografia de Afinidade , Espectrometria de Massas
7.
RSC Chem Biol ; 2(1): 151-165, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458778

RESUMO

Combining different compound classes gives molecular hybrids that can offer access to novel chemical space and unique properties. Peptides provide ideal starting points for such molecular hybrids, which can be easily modified with a variety of molecular entities. The addition of small molecules can improve the potency, stability and cell permeability of therapeutically relevant peptides. Furthermore, they are often applied to create peptide-based tools in chemical biology. In this review, we discuss general methods that allow the discovery of this compound class and highlight key examples of peptide-small molecule hybrids categorised by the application and function of the small molecule entity.

8.
ChemMedChem ; 16(20): 3185-3188, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34236771

RESUMO

The major obstacle in applying peptides to intracellular targets is their low inherent cell permeability. Standard approaches to attach a fluorophore (e. g. FITC, TAMRA) can change the physicochemical properties of the parent peptide and influence their ability to penetrate and localize in cells. We report a label-free strategy for evaluating the cell permeability of cyclic peptide leads. Fluorescent tryptophan analogues 4-cyanotryptophan (4CNW) and ß-(1-azulenyl)-L-alanine (AzAla) were incorporated into in vitro translated macrocyclic peptides by initiator reprogramming. We then demonstrate these efficient blue fluorescent emitters are good tools for monitoring peptide penetration into cells.


Assuntos
Alanina/análogos & derivados , Corantes Fluorescentes/química , Imagem Óptica , Peptídeos Cíclicos/química , Sesquiterpenos/química , Triptofano/análogos & derivados , Alanina/química , Azulenos/química , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Permeabilidade , Triptofano/química
9.
Epigenetics ; 16(1): 14-27, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32609604

RESUMO

Post-translational modifications (PTMs) to the tails of the core histone proteins are critically involved in epigenetic regulation. Hypoxia affects histone modifications by altering the activities of histone-modifying enzymes and the levels of hypoxia-inducible factor (HIF) isoforms. Synthetic hypoxia mimetics promote a similar response, but how accurately the hypoxia mimetics replicate the effects of limited oxygen availability on the levels of histone PTMs is uncertain. Here we report studies on the profiling of the global changes to PTMs on intact histones in response to hypoxia/hypoxia-related stresses using liquid chromatography-mass spectrometry (LC-MS). We demonstrate that intact protein LC-MS profiling is a relatively simple and robust method for investigating potential effects of drugs on histone modifications. The results provide insights into the profiles of PTMs associated with hypoxia and inform on the extent to which hypoxia and hypoxia mimetics cause similar changes to histones. These findings imply chemically-induced hypoxia does not completely replicate the substantial effects of physiological hypoxia on histone PTMs, highlighting that caution should be used in interpreting data from their use.


Assuntos
Hipóxia Celular , Código das Histonas , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Quelantes de Ferro/toxicidade , Células MCF-7 , Processamento de Proteína Pós-Traducional
10.
Proc Natl Acad Sci U S A ; 117(43): 26728-26738, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33046654

RESUMO

Cyclic peptide library screening technologies show immense promise for identifying drug leads and chemical probes for challenging targets. However, the structural and functional diversity encoded within such libraries is largely undefined. We have systematically profiled the affinity, selectivity, and structural features of library-derived cyclic peptides selected to recognize three closely related targets: the acetyllysine-binding bromodomain proteins BRD2, -3, and -4. We report affinities as low as 100 pM and specificities of up to 106-fold. Crystal structures of 13 peptide-bromodomain complexes reveal remarkable diversity in both structure and binding mode, including both α-helical and ß-sheet structures as well as bivalent binding modes. The peptides can also exhibit a high degree of structural preorganization. Our data demonstrate the enormous potential within these libraries to provide diverse binding modes against a single target, which underpins their capacity to yield highly potent and selective ligands.


Assuntos
Biblioteca de Peptídeos , Peptídeos Cíclicos , Sítios de Ligação , Descoberta de Drogas , Humanos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
11.
Cell Chem Biol ; 26(10): 1349-1354, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31626782

RESUMO

The 8th Chemical Protein Synthesis meeting took place in Berlin in June 2019, covering broad topics in protein chemistry, ranging from synthetic methodology to applications in medicine and biomaterials. The meeting was also the culmination of the Priority Program SPP1623 on "Chemoselective Reactions for the Synthesis and Application of Functional Proteins" funded by the German Science Foundation (DFG) from 2012 to 2018. We present highlights from presentations at the forefront of the field, grouped into broad themes that illustrate how the field of protein chemistry is looking ahead to new discoveries and applications.


Assuntos
Técnicas de Química Sintética , Proteínas/síntese química , Berlim , Alemanha , Proteínas/química
12.
FEBS Lett ; 592(19): 3264-3273, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30156264

RESUMO

N-Methylation of lysyl residues is widely observed on histone proteins. Using isolated enzymes, we report mechanistic and structural studies on histone lysine demethylase (KDM)-catalysed demethylation of Nε -methylated lysine 26 on histone 1 isotype 4 (H1.4). The results reveal that methylated H1.4K26 is a substrate for all members of the KDM4 subfamily and that KDM4A-catalysed demethylation of H1.4K26me3 peptide is similarly efficient to that of H3K9me3. Crystallographic studies of an H1.4K26me3:KDM4A complex reveal a conserved binding geometry to that of H3K9me3. In the light of the high activity of the KDM4s on this mark, our results suggest JmjC KDM-catalysed demethylation of H1.4K26 may be as prevalent as demethylation on the H3 tail and warrants further investigation in cells.


Assuntos
Desmetilação , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Sequência de Aminoácidos , Biocatálise , Cristalografia por Raios X , Histonas/química , Histonas/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/genética , Cinética , Lisina/química , Lisina/genética , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos
13.
Chem Rec ; 18(12): 1760-1781, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30151867

RESUMO

The 2-oxoglutarate (2OG) dependent oxygenases were first identified as having roles in the post-translational modification of procollagen in animals. Subsequently in plants and microbes, they were shown to have roles in the biosynthesis of many secondary metabolites, including signalling molecules and the penicillin/cephalosporin antibiotics. Crystallographic studies of microbial 2OG oxygenases and related enzymes, coupled to DNA sequence analyses, led to the prediction that 2OG oxygenases are widely distributed in aerobic biology. This personal account begins with examples of the roles of 2OG oxygenases in antibiotic biosynthesis, and then describes efforts to assign functions to other predicted 2OG oxygenases. In humans, 2OG oxygenases have been found to have roles in small molecule metabolism, as well as in the epigenetic regulation of protein and nucleic acid biosynthesis and function. The roles and functions of human 2OG oxygenases are compared, focussing on discussion of their substrate and product selectivities. The account aims to emphasize how scoping the substrate selectivity of, sometimes promiscuous, enzymes can provide insights into their functions and so enable therapeutic work.


Assuntos
Oxigenases/metabolismo , Animais , Epigenômica , Histona Desmetilases/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Oxigenases/antagonistas & inibidores , Oxigenases/química , Prolil Hidroxilases/química , Prolil Hidroxilases/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional
14.
Chem Commun (Camb) ; 54(57): 7975-7978, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-29961803

RESUMO

Jumonji domain-containing demethylases (JmjC-KDMs) catalyse demethylation of Nε-methylated lysines on histones and play important roles in gene regulation. We report selectivity studies on KDM6B (JMJD3), a disease-relevant JmjC-KDM, using synthetic lysine analogues. The results unexpectedly reveal that KDM6B accepts multiple Nε-alkylated lysine analogues, forming alcohol, aldehyde and carboxylic acid products.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Sequência de Aminoácidos , Biocatálise , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Lisina/metabolismo , Oxirredução , Peptídeos/síntese química , Peptídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Curr Opin Biotechnol ; 48: 242-250, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28783603

RESUMO

The ready availability of potent peptide binders for any desired target highlights their potential impact as therapeutic agents. Despite their versatility, however, peptides tend to display unfavourable pharmacological properties, such as low bioavailability, high renal clearance and proteolytic degradation rates, and low cell permeability. Fortunately, an increasing number of promising strategies to produce novel peptides and furnish pre-existing scaffolds with more drug-like properties are now becoming available. These strategies include incorporation of non-proteinogenic amino acids, tag appendage to existing peptides and grafting onto scaffolds already possessing desirable pharmacokinetic properties. As a consequence, a variety of promising bioactive macrocyclic peptides have recently been discovered highlighting the promise of this class of molecules as future medicines.


Assuntos
Descoberta de Drogas , Compostos Macrocíclicos/química , Animais , Peptídeos Penetradores de Células/química , Endocitose , Humanos , Receptores de Superfície Celular/metabolismo
16.
Nat Commun ; 8: 14773, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28382930

RESUMO

The JmjC histone demethylases (KDMs) are linked to tumour cell proliferation and are current cancer targets; however, very few highly selective inhibitors for these are available. Here we report cyclic peptide inhibitors of the KDM4A-C with selectivity over other KDMs/2OG oxygenases, including closely related KDM4D/E isoforms. Crystal structures and biochemical analyses of one of the inhibitors (CP2) with KDM4A reveals that CP2 binds differently to, but competes with, histone substrates in the active site. Substitution of the active site binding arginine of CP2 to N-ɛ-trimethyl-lysine or methylated arginine results in cyclic peptide substrates, indicating that KDM4s may act on non-histone substrates. Targeted modifications to CP2 based on crystallographic and mass spectrometry analyses results in variants with greater proteolytic robustness. Peptide dosing in cells manifests KDM4A target stabilization. Although further development is required to optimize cellular activity, the results reveal the feasibility of highly selective non-metal chelating, substrate-competitive inhibitors of the JmjC KDMs.


Assuntos
Inibidores Enzimáticos/farmacologia , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Cristalografia por Raios X , Humanos , Concentração Inibidora 50 , Histona Desmetilases com o Domínio Jumonji/metabolismo , Espectrometria de Massas , Proteólise , Relação Estrutura-Atividade , Especificidade por Substrato
17.
Curr Opin Chem Biol ; 38: 52-61, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28319812

RESUMO

From their early roots in natural products, peptides now represent an expanding class of novel drugs. Their modular structures make them ideal candidates for pooled library screening approaches. Key technologies for library generation and screening, such as SICLOPPS, phage display and mRNA display, give unparalleled access to tight binding peptides. Through combination with genetic code reprogramming and chemical modifications, access to more natural product-like libraries, spanning non-canonical peptide space, is readily achievable. Recent advances in these fields enable introduction of diverse non-standard motifs, such as cyclisation and backbone methylations. Peptide discovery platforms now allow robust access to potent, highly functionalised peptides against virtually any protein of interest, with typical binding constants in the nanomolar range. Application of these optimised platforms in a drug discovery setting has the potential to significantly accelerate identification of new leads.


Assuntos
Descoberta de Drogas/métodos , Peptídeos/química , Sequência de Aminoácidos , Humanos , Peptídeos/farmacologia
18.
Nat Commun ; 7: 11974, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27337104

RESUMO

While the oxygen-dependent reversal of lysine N(ɛ)-methylation is well established, the existence of bona fide N(ω)-methylarginine demethylases (RDMs) is controversial. Lysine demethylation, as catalysed by two families of lysine demethylases (the flavin-dependent KDM1 enzymes and the 2-oxoglutarate- and oxygen-dependent JmjC KDMs, respectively), proceeds via oxidation of the N-methyl group, resulting in the release of formaldehyde. Here we report detailed biochemical studies clearly demonstrating that, in purified form, a subset of JmjC KDMs can also act as RDMs, both on histone and non-histone fragments, resulting in formaldehyde release. RDM catalysis is studied using peptides of wild-type sequences known to be arginine-methylated and sequences in which the KDM's methylated target lysine is substituted for a methylated arginine. Notably, the preferred sequence requirements for KDM and RDM activity vary even with the same JmjC enzymes. The demonstration of RDM activity by isolated JmjC enzymes will stimulate efforts to detect biologically relevant RDM activity.


Assuntos
Arginina/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Sítios de Ligação , Desmetilação , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , Modelos Moleculares , Conformação Proteica , Células Sf9
19.
ACS Chem Biol ; 11(3): 755-62, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26555343

RESUMO

The dynamic post-translational modifications of histones play important roles in the regulation of transcription in animals. The demethylation of N(ε)-methyl lysine residues in the N-terminal tail of histone H3 is catalyzed by demethylases, of which the largest family is the ferrous iron and 2-oxoglutarate dependent demethylases (JmjC KDMs), which catalyze demethylation via initial hydroxylation of the N-methyl groups. We report studies on the conformational requirements of the JmjC KDM substrates using N-methylated lysine analogues prepared by metathesis reactions of suitably protected N-allylglycine. The results support the proposed requirement for a positively charged N(ε)-amino group in JmjC KDM catalysis. Demethylation of a trans-C-4/C-5 dehydrolysine substrate analogue was observed with representative KDM4 subfamily members KDM4A, KDM4B and KDM4E, and KDM7B, which are predicted, based on crystallographic analyses, to bind the N(ε)-methylated lysine residue in different conformations during catalysis. This information may be useful in the design of JmjC KDM selective inhibitors.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/análogos & derivados , Sítios de Ligação , Catálise , Histona Desmetilases com o Domínio Jumonji/genética , Lisina/química , Metilação , Especificidade por Substrato
20.
Epigenomics ; 7(5): 791-811, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25832587

RESUMO

The response to hypoxia is primarily mediated by the hypoxia-inducible transcription factor (HIF). Levels of HIF are regulated by the oxygen-sensing HIF hydroxylases, members of the 2-oxoglutarate (2OG) dependent oxygenase family. JmjC-domain containing histone lysine demethylases (JmjC-KDMs), also members of the 2OG oxygenase family, are key epigenetic regulators that modulate the methylation levels of histone tails. Kinetic studies of the JmjC-KDMs indicate they could also act in an oxygen-sensitive manner. This may have important implications for epigenetic regulation in hypoxia. In this review we examine evidence that the levels and activity of JmjC-KDMs are sensitive to oxygen availability, and consider how this may influence their roles in early development and hypoxic disease states including cancer and cardiovascular disease.


Assuntos
Epigênese Genética , Histonas/metabolismo , Hipóxia/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Humanos , Hipóxia/metabolismo , Lisina/metabolismo , Metilação , Modelos Genéticos , Neoplasias/genética , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA