Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Comput Biol Med ; 179: 108846, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38976959

RESUMO

BACKGROUND: Autofluorescence imaging of the coenzyme, reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), provides a label-free technique to assess cellular metabolism. Because NAD(P)H is localized in the cytosol and mitochondria, instance segmentation of cell cytoplasms from NAD(P)H images allows quantification of metabolism with cellular resolution. However, accurate cytoplasmic segmentation of autofluorescence images is difficult due to irregular cell shapes and cell clusters. METHOD: Here, a cytoplasm segmentation method is presented and tested. First, autofluorescence images are segmented into cells via either hand-segmentation or Cellpose, a deep learning-based segmentation method. Then, a cytoplasmic post-processing algorithm (CPPA) is applied for cytoplasmic segmentation. CPPA uses a binarized segmentation image to remove non-segmented pixels from the NAD(P)H image and then applies an intensity-based threshold to identify nuclei regions. Errors at cell edges are removed using a distance transform algorithm. The nucleus mask is then subtracted from the cell segmented image to yield the cytoplasm mask image. CPPA was tested on five NAD(P)H images of three different cell samples, quiescent T cells, activated T cells, and MCF7 cells. RESULTS: Using POSEA, an evaluation method tailored for instance segmentation, the CPPA yielded F-measure values of 0.89, 0.87, and 0.94 for quiescent T cells, activated T cells, and MCF7 cells, respectively, for cytoplasm identification of hand-segmented cells. CPPA achieved F-measure values of 0.84, 0.74, and 0.72 for Cellpose segmented cells. CONCLUSION: These results exceed the F-measure value of a comparative cell segmentation method (CellProfiler, ∼0.50-0.60) and support the use of artificial intelligence and post-processing techniques for accurate segmentation of autofluorescence images for single-cell metabolic analyses.

2.
J Biomed Opt ; 29(Suppl 2): S22708, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872791

RESUMO

Significance: The ability to observe and monitor cell density and morphology has been imperative for assessing the health of a cell culture and for producing high quality, high yield cell cultures for decades. Microcarrier-based cultures, used for large-scale cellular expansion processes, are not compatible with traditional visualization-based methods, such as widefield microscopy, due to their thickness and material composition. Aim: Here, we assess the optical imaging compatibilities of commercial polystyrene microcarriers versus custom-fabricated gelatin methacryloyl (gelMA) microcarriers for non-destructive and non-invasive visualization of the entire microcarrier surface, direct cell enumeration, and sub-cellular visualization of mesenchymal stem/stromal cells. Approach: Mie scattering and wavefront error simulations of the polystyrene and gelMA microcarriers were performed to assess the potential for elastic scattering-based imaging of adherent cells. A Zeiss Z.1 light-sheet microscope was adapted to perform light-sheet tomography using label-free elastic scattering contrast from planar side illumination to achieve optical sectioning and permit non-invasive and non-destructive, in toto, three-dimensional, high-resolution visualization of cells cultured on microcarriers. Results: The polystyrene microcarrier prevents visualization of cells on the distal half of the microcarrier using either fluorescence or elastic scattering contrast, whereas the gelMA microcarrier allows for high fidelity visualization of cell morphology and quantification of cell density using light-sheet fluorescence microscopy and tomography. Conclusions: The combination of optical-quality gelMA microcarriers and label-free light-sheet tomography will facilitate enhanced control of bioreactor-microcarrier cell culture processes.


Assuntos
Adesão Celular , Hidrogéis , Células-Tronco Mesenquimais , Poliestirenos , Poliestirenos/química , Células-Tronco Mesenquimais/citologia , Hidrogéis/química , Adesão Celular/fisiologia , Imagem Óptica/métodos , Imagem Óptica/instrumentação , Humanos , Gelatina/química , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Animais
3.
Cell Stem Cell ; 31(4): 570-581.e7, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38521057

RESUMO

Neural stem cells (NSCs) must exit quiescence to produce neurons; however, our understanding of this process remains constrained by the technical limitations of current technologies. Fluorescence lifetime imaging (FLIM) of autofluorescent metabolic cofactors has been used in other cell types to study shifts in cell states driven by metabolic remodeling that change the optical properties of these endogenous fluorophores. Using this non-destructive, live-cell, and label-free strategy, we found that quiescent NSCs (qNSCs) and activated NSCs (aNSCs) have unique autofluorescence profiles. Specifically, qNSCs display an enrichment of autofluorescence localizing to a subset of lysosomes, which can be used as a graded marker of NSC quiescence to predict cell behavior at single-cell resolution. Coupling autofluorescence imaging with single-cell RNA sequencing, we provide resources revealing transcriptional features linked to deep quiescence and rapid NSC activation. Together, we describe an approach for tracking mouse NSC activation state and expand our understanding of adult neurogenesis.


Assuntos
Células-Tronco Neurais , Camundongos , Animais , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurônios , Biomarcadores/metabolismo
4.
APL Bioeng ; 8(1): 016112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38420625

RESUMO

Fluorescence lifetime imaging of the co-enzyme reduced nicotinamide adenine dinucleotide (NADH) offers a label-free approach for detecting cellular metabolic perturbations. However, the relationships between variations in NADH lifetime and metabolic pathway changes are complex, preventing robust interpretation of NADH lifetime data relative to metabolic phenotypes. Here, a three-dimensional convolutional neural network (3D CNN) trained at the cell level with 3D NAD(P)H lifetime decay images (two spatial dimensions and one time dimension) was developed to identify metabolic pathway usage by cancer cells. NADH fluorescence lifetime images of MCF7 breast cancer cells with three isolated metabolic pathways, glycolysis, oxidative phosphorylation, and glutaminolysis were obtained by a multiphoton fluorescence lifetime microscope and then segmented into individual cells as the input data for the classification models. The 3D CNN models achieved over 90% accuracy in identifying cancer cells reliant on glycolysis, oxidative phosphorylation, or glutaminolysis. Furthermore, the model trained with human breast cancer cell data successfully predicted the differences in metabolic phenotypes of macrophages from control and POLG-mutated mice. These results suggest that the integration of autofluorescence lifetime imaging with 3D CNNs enables intracellular spatial patterns of NADH intensity and temporal dynamics of the lifetime decay to discriminate multiple metabolic phenotypes. Furthermore, the use of 3D CNNs to identify metabolic phenotypes from NADH fluorescence lifetime decay images eliminates the need for time- and expertise-demanding exponential decay fitting procedures. In summary, metabolic-prediction CNNs will enable live-cell and in vivo metabolic measurements with single-cell resolution, filling a current gap in metabolic measurement technologies.

5.
Front Bioeng Biotechnol ; 11: 1293268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090715

RESUMO

Metabolic reprogramming at a cellular level contributes to many diseases including cancer, yet few assays are capable of measuring metabolic pathway usage by individual cells within living samples. Here, autofluorescence lifetime imaging is combined with single-cell segmentation and machine-learning models to predict the metabolic pathway usage of cancer cells. The metabolic activities of MCF7 breast cancer cells and HepG2 liver cancer cells were controlled by growing the cells in culture media with specific substrates and metabolic inhibitors. Fluorescence lifetime images of two endogenous metabolic coenzymes, reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD), were acquired by a multi-photon fluorescence lifetime microscope and analyzed at the cellular level. Quantitative changes of NADH and FAD lifetime components were observed for cells using glycolysis, oxidative phosphorylation, and glutaminolysis. Conventional machine learning models trained with the autofluorescence features classified cells as dependent on glycolytic or oxidative metabolism with 90%-92% accuracy. Furthermore, adapting convolutional neural networks to predict cancer cell metabolic perturbations from the autofluorescence lifetime images provided improved performance, 95% accuracy, over traditional models trained via extracted features. Additionally, the model trained with the lifetime features of cancer cells could be transferred to autofluorescence lifetime images of T cells, with a prediction that 80% of activated T cells were glycolytic, and 97% of quiescent T cells were oxidative. In summary, autofluorescence lifetime imaging combined with machine learning models can detect metabolic perturbations between glycolysis and oxidative metabolism of living samples at a cellular level, providing a label-free technology to study cellular metabolism and metabolic heterogeneity.

6.
Bioact Mater ; 30: 184-199, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37589031

RESUMO

Vascularization is a key pre-requisite to engineered anatomical scale three dimensional (3-D) constructs to ensure their nutrient and oxygen supply upon implantation. Presently, engineered pre-vascularized 3-D tissues are limited to only micro-scale hydrogels, which meet neither the anatomical scale needs nor the complexity of natural extracellular matrix (ECM) environments. Anatomical scale perfusable constructs are critically needed for translational applications. To overcome this challenge, we previously developed pre-vascularized ECM sheets with long and oriented dense microvascular networks. The present study further evaluated the patency, perfusability and innate immune response toward these pre-vascularized constructs. Macrophage-co-cultured pre-vascularized constructs were evaluated in vitro to confirm micro-vessel patency and perturbations in macrophage metabolism. Subcutaneously implanted pre-vascularized constructs remained viable and formed a functional anastomosis with host vasculature within 3 days of implantation. This completely biological pre-vascularized construct holds great potential as a building block to engineer perfusable anatomical scale tissues.

7.
Front Bioinform ; 3: 1210157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455808

RESUMO

Introduction: Autofluorescence imaging of the coenzymes reduced nicotinamide (phosphate) dinucleotide (NAD(P)H) and oxidized flavin adenine dinucleotide (FAD) provides a label-free method to detect cellular metabolism and phenotypes. Time-domain fluorescence lifetime data can be analyzed by exponential decay fitting to extract fluorescence lifetimes or by a fit-free phasor transformation to compute phasor coordinates. Methods: Here, fluorescence lifetime data analysis by biexponential decay curve fitting is compared with phasor coordinate analysis as input data to machine learning models to predict cell phenotypes. Glycolysis and oxidative phosphorylation of MCF7 breast cancer cells were chemically inhibited with 2-deoxy-d-glucose and sodium cyanide, respectively; and fluorescence lifetime images of NAD(P)H and FAD were obtained using a multiphoton microscope. Results: Machine learning algorithms built from either the extracted lifetime values or phasor coordinates predict MCF7 metabolism with a high accuracy (∼88%). Similarly, fluorescence lifetime images of M0, M1, and M2 macrophages were acquired and analyzed by decay fitting and phasor analysis. Machine learning models trained with features from curve fitting discriminate different macrophage phenotypes with improved performance over models trained using only phasor coordinates. Discussion: Altogether, the results demonstrate that both curve fitting and phasor analysis of autofluorescence lifetime images can be used in machine learning models for classification of cell phenotype from the lifetime data.

8.
Br J Cancer ; 128(11): 2013-2024, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37012319

RESUMO

BACKGROUND: Cisplatin (CDDP) is a mainstay treatment for advanced head and neck squamous cell carcinomas (HNSCC) despite a high frequency of innate and acquired resistance. We hypothesised that tumours acquire CDDP resistance through an enhanced reductive state dependent on metabolic rewiring. METHODS: To validate this model and understand how an adaptive metabolic programme might be imprinted, we performed an integrated analysis of CDDP-resistant HNSCC clones from multiple genomic backgrounds by whole-exome sequencing, RNA-seq, mass spectrometry, steady state and flux metabolomics. RESULTS: Inactivating KEAP1 mutations or reductions in KEAP1 RNA correlated with Nrf2 activation in CDDP-resistant cells, which functionally contributed to resistance. Proteomics identified elevation of downstream Nrf2 targets and the enrichment of enzymes involved in generation of biomass and reducing equivalents, metabolism of glucose, glutathione, NAD(P), and oxoacids. This was accompanied by biochemical and metabolic evidence of an enhanced reductive state dependent on coordinated glucose and glutamine catabolism, associated with reduced energy production and proliferation, despite normal mitochondrial structure and function. CONCLUSIONS: Our analysis identified coordinated metabolic changes associated with CDDP resistance that may provide new therapeutic avenues through targeting of these convergent pathways.


Assuntos
Antineoplásicos , Neoplasias de Cabeça e Pescoço , Humanos , Cisplatino/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Glucose , Antineoplásicos/farmacologia
9.
PLoS One ; 18(3): e0283692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36989326

RESUMO

Many techniques and software packages have been developed to segment individual cells within microscopy images, necessitating a robust method to evaluate images segmented into a large number of unique objects. Currently, segmented images are often compared with ground-truth images at a pixel level; however, this standard pixel-level approach fails to compute errors due to pixels incorrectly assigned to adjacent objects. Here, we define a per-object segmentation evaluation algorithm (POSEA) that calculates segmentation accuracy metrics for each segmented object relative to a ground truth segmented image. To demonstrate the performance of POSEA, precision, recall, and f-measure metrics are computed and compared with the standard pixel-level evaluation for simulated images and segmented fluorescence microscopy images of three different cell samples. POSEA yields lower accuracy metrics than the standard pixel-level evaluation due to correct accounting of misclassified pixels of adjacent objects. Therefore, POSEA provides accurate evaluation metrics for objects with pixels incorrectly assigned to adjacent objects and is robust for use across a variety of applications that require evaluation of the segmentation of unique adjacent objects.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência/métodos , Processamento de Imagem Assistida por Computador/métodos
10.
PLoS One ; 18(3): e0282298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36976801

RESUMO

The adoption of cell-based therapies into the clinic will require tremendous large-scale expansion to satisfy future demand, and bioreactor-microcarrier cultures are best suited to meet this challenge. The use of spherical microcarriers, however, precludes in-process visualization and monitoring of cell number, morphology, and culture health. The development of novel expansion methods also motivates the advancement of analytical methods used to characterize these microcarrier cultures. A robust optical imaging and image-analysis assay to non-destructively quantify cell number and cell volume was developed. This method preserves 3D cell morphology and does not require membrane lysing, cellular detachment, or exogenous labeling. Complex cellular networks formed in microcarrier aggregates were imaged and analyzed in toto. Direct cell enumeration of large aggregates was performed in toto for the first time. This assay was successfully applied to monitor cellular growth of mesenchymal stem cells attached to spherical hydrogel microcarriers over time. Elastic scattering and fluorescence lightsheet microscopy were used to quantify cell volume and cell number at varying spatial scales. The presented study motivates the development of on-line optical imaging and image analysis systems for robust, automated, and non-destructive monitoring of bioreactor-microcarrier cell cultures.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Humanos , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células em Três Dimensões , Reatores Biológicos , Proliferação de Células
11.
bioRxiv ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36747690

RESUMO

New non-destructive tools are needed to reliably assess lymphocyte function for immune profiling and adoptive cell therapy. Optical metabolic imaging (OMI) is a label-free method that measures the autofluorescence intensity and lifetime of metabolic cofactors NAD(P)H and FAD to quantify metabolism at a single-cell level. Here, we investigate whether OMI can resolve metabolic changes between human quiescent versus IL4/CD40 activated B cells and IL12/IL15/IL18 activated memory-like NK cells. We found that quiescent B and NK cells were more oxidized compared to activated cells. Additionally, the NAD(P)H mean fluorescence lifetime decreased and the fraction of unbound NAD(P)H increased in the activated B and NK cells compared to quiescent cells. Machine learning classified B cells and NK cells according to activation state (CD69+) based on OMI parameters with up to 93.4% and 92.6% accuracy, respectively. Leveraging our previously published OMI data from activated and quiescent T cells, we found that the NAD(P)H mean fluorescence lifetime increased in NK cells compared to T cells, and further increased in B cells compared to NK cells. Random forest models based on OMI classified lymphocytes according to subtype (B, NK, T cell) with 97.8% accuracy, and according to activation state (quiescent or activated) and subtype (B, NK, T cell) with 90.0% accuracy. Our results show that autofluorescence lifetime imaging can accurately assess lymphocyte activation and subtype in a label-free, non-destructive manner.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36642995

RESUMO

Cell-based therapies harness functional cells or tissues to mediate healing and treat disease. Assessment of cellular therapeutics requires methods that are non-destructive to ensure therapies remain viable and uncontaminated for use in patients. Optical imaging of endogenous collagen, by second-harmonic generation, and the metabolic coenzymes NADH and FAD, by autofluorescence microscopy, provides tissue structure and cellular information. Here, we review applications of label-free nonlinear optical imaging of cellular metabolism and collagen second-harmonic generation for assessing cell-based therapies. Additionally, we discuss the potential of label-free imaging for quality control of cell-based therapies, as well as the current limitations and potential future directions of label-free imaging technologies.

13.
Soft Matter ; 18(31): 5791-5806, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35894795

RESUMO

Metastatic cancers are chemoresistant, involving complex interplay between disseminated cancer cell aggregates and the distant organ microenvironment (extracellular matrix and stromal cells). Conventional metastasis surrogates (scratch/wound healing, Transwell migration assays) lack 3D architecture and ECM presence. Metastasis studies can therefore significantly benefit from biomimetic 3D in vitro models recapitulating the complex cascade of distant organ invasion and colonization by collective clusters of cells. We aimed to engineer reproducible and quantifiable 3D models of highly therapy-resistant cancer processes: (i) colorectal cancer liver metastasis; and (ii) breast cancer lung metastasis. Metastatic seeds are engineered using 3D tumor spheroids to recapitulate the 3D aggregation of cancer cells both in the tumor and in circulation throughout the metastatic cascade of many cancers. Metastatic soil was engineered by decellularizing porcine livers and lungs to generate biomatrix scaffolds, followed by extensive materials characterization. HCT116 colorectal and MDA-MB-231 breast cancer spheroids were generated on hanging drop arrays to initiate clustered metastatic seeding into liver and lung biomatrix scaffolds, respectively. Between days 3-7, biomatrix cellular colonization was apparent with increased metabolic activity and the presence of cellular nests evaluated via multiphoton microscopy. HCT116 and MDA-MB-231 cells colonized liver and lung biomatrices, and at least 15% of the cells invaded more than 20 µm from the surface. Engineered metastases also expressed increased signatures of genes associated with the metastatic epithelial to mesenchymal transition (EMT). Importantly, inhibition of matrix metalloproteinase-9 inhibited metastatic invasion into the biomatrix. Furthermore, metastatic nests were significantly more chemoresistant (>3 times) to the anti-cancer drug oxaliplatin, compared to 3D spheroids. Together, our data indicated that HCT116 and MDA-MB-231 spheroids invade, colonize, and proliferate in livers and lungs establishing metastatic nests in 3D settings in vitro. The metastatic nature of these cells was confirmed with functional readouts regarding EMT and chemoresistance. Modeling the dynamic metastatic cascade in vitro has potential to identify therapeutic targets to treat or prevent metastatic progression in chemoresistant metastatic cancers.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Animais , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Suínos , Microambiente Tumoral
14.
Elife ; 112022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35200139

RESUMO

The function of macrophages in vitro is linked to their metabolic rewiring. However, macrophage metabolism remains poorly characterized in situ. Here, we used two-photon intensity and lifetime imaging of autofluorescent metabolic coenzymes, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD), to assess the metabolism of macrophages in the wound microenvironment. Inhibiting glycolysis reduced NAD(P)H mean lifetime and made the intracellular redox state of macrophages more oxidized, as indicated by reduced optical redox ratio. We found that TNFα+ macrophages had lower NAD(P)H mean lifetime and were more oxidized compared to TNFα- macrophages. Both infection and thermal injury induced a macrophage population with a more oxidized redox state in wounded tissues. Kinetic analysis detected temporal changes in the optical redox ratio during tissue repair, revealing a shift toward a more reduced redox state over time. Metformin reduced TNFα+ wound macrophages, made intracellular redox state more reduced and improved tissue repair. By contrast, depletion of STAT6 increased TNFα+ wound macrophages, made redox state more oxidized and impaired regeneration. Our findings suggest that autofluorescence of NAD(P)H and FAD is sensitive to dynamic changes in intracellular metabolism in tissues and can be used to probe the temporal and spatial regulation of macrophage metabolism during tissue damage and repair.


Assuntos
Flavina-Adenina Dinucleotídeo/metabolismo , Macrófagos/metabolismo , NADP/metabolismo , Ferimentos e Lesões/metabolismo , Peixe-Zebra/metabolismo , Animais , Feminino , Fluorescência , Glicólise , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Oxirredução , Fator de Necrose Tumoral alfa/metabolismo
15.
Cytometry A ; 101(6): 497-506, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35038211

RESUMO

Drug-resistant cells and anti-inflammatory immune cells within tumor masses contribute to tumor aggression, invasion, and worse patient outcomes. These cells can be a small proportion (<10%) of the total cell population of the tumor. Due to their small quantity, the identification of rare cells is challenging with traditional assays. Single cell analysis of autofluorescence images provides a live-cell assay to quantify cellular heterogeneity. Fluorescence intensities and lifetimes of the metabolic coenzymes reduced nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide allow quantification of cellular metabolism and provide features for classification of cells with different metabolic phenotypes. In this study, Gaussian distribution modeling and machine learning classification algorithms are used for the identification of rare cells within simulated autofluorescence lifetime image data of a large tumor comprised of tumor cells and T cells. A Random Forest machine learning algorithm achieved an overall accuracy of 95% for the identification of cell type from the simulated optical metabolic imaging data of a heterogeneous tumor of 20,000 cells consisting of 70% drug responsive breast cancer cells, 5% drug resistant breast cancer cells, 20% quiescent T cells and 5% activated T cells. High resolution imaging methods combined with single-cell quantitative analyses allows identification and quantification of rare populations of cells within heterogeneous cultures.


Assuntos
Neoplasias da Mama , Flavina-Adenina Dinucleotídeo , Neoplasias da Mama/diagnóstico por imagem , Feminino , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , NAD/metabolismo , NADP/metabolismo , Imagem Óptica/métodos
16.
J Vis Exp ; (177)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34842243

RESUMO

Cellular metabolism is the process by which cells generate energy, and many diseases, including cancer, are characterized by abnormal metabolism. Reduced nicotinamide adenine (phosphate) dinucleotide (NAD(P)H) and oxidized flavin adenine dinucleotide (FAD) are coenzymes of metabolic reactions. NAD(P)H and FAD exhibit autofluorescence and can be spectrally isolated by excitation and emission wavelengths. Both coenzymes, NAD(P)H and FAD, can exist in either a free or protein-bound configuration, each of which has a distinct fluorescence lifetime-the time for which the fluorophore remains in the excited state. Fluorescence lifetime imaging (FLIM) allows quantification of the fluorescence intensity and lifetimes of NAD(P)H and FAD for label-free analysis of cellular metabolism. Fluorescence intensity and lifetime microscopes can be optimized for imaging NAD(P)H and FAD by selecting the appropriate excitation and emission wavelengths. Metabolic perturbations by cyanide verify autofluorescence imaging protocols to detect metabolic changes within cells. This article will demonstrate the technique of autofluorescence imaging of NAD(P)H and FAD for measuring cellular metabolism.


Assuntos
Flavina-Adenina Dinucleotídeo , NAD , Coenzimas , Flavina-Adenina Dinucleotídeo/metabolismo , NAD/metabolismo , NADP/metabolismo , Imagem Óptica/métodos
17.
J Biomed Opt ; 26(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34032035

RESUMO

SIGNIFICANCE: Autofluorescence measurements of the metabolic cofactors NADH and flavin adenine dinucleotide (FAD) provide a label-free method to quantify cellular metabolism. However, the effect of extracellular pH on flavin lifetimes is currently unknown. AIM: To quantify the relationship between extracellular pH and the fluorescence lifetimes of FAD, flavin mononucleotide (FMN), and reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H]. APPROACH: Human breast cancer (BT474) and HeLa cells were placed in pH-adjusted media. Images of an intracellular pH indicator or endogenous fluorescence were acquired using two-photon fluorescence lifetime imaging. Fluorescence lifetimes of FAD and FMN in solutions were quantified over the same pH range. RESULTS: The relationship between intracellular and extracellular pH was linear in both cell lines. Between extracellular pH 4 to 9, FAD mean lifetimes increased with increasing pH. NAD(P)H mean lifetimes decreased with increasing pH between extracellular pH 5 to 9. The relationship between NAD(P)H lifetime and extracellular pH differed between the two cell lines. Fluorescence lifetimes of FAD, FAD-cholesterol oxidase, and FMN solutions decreased, showed no trend, and showed no trend, respectively, with increasing pH. CONCLUSIONS: Changes in endogenous fluorescence lifetimes with extracellular pH are mostly due to indirect changes within the cell rather than direct pH quenching of the endogenous molecules.


Assuntos
Flavina-Adenina Dinucleotídeo , NAD , Fluorescência , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , NADP
18.
PLoS Pathog ; 17(1): e1009168, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444400

RESUMO

There is a critical need for adjuvants that can safely elicit potent and durable T cell-based immunity to intracellular pathogens. Here, we report that parenteral vaccination with a carbomer-based adjuvant, Adjuplex (ADJ), stimulated robust CD8 T-cell responses to subunit antigens and afforded effective immunity against respiratory challenge with a virus and a systemic intracellular bacterial infection. Studies to understand the metabolic and molecular basis for ADJ's effect on antigen cross-presentation by dendritic cells (DCs) revealed several unique and distinctive mechanisms. ADJ-stimulated DCs produced IL-1ß and IL-18, suggestive of inflammasome activation, but in vivo activation of CD8 T cells was unaffected in caspase 1-deficient mice. Cross-presentation induced by TLR agonists requires a critical switch to anabolic metabolism, but ADJ enhanced cross presentation without this metabolic switch in DCs. Instead, ADJ induced in DCs, an unique metabolic state, typified by dampened oxidative phosphorylation and basal levels of glycolysis. In the absence of increased glycolytic flux, ADJ modulated multiple steps in the cytosolic pathway of cross-presentation by enabling accumulation of degraded antigen, reducing endosomal acidity and promoting antigen localization to early endosomes. Further, by increasing ROS production and lipid peroxidation, ADJ promoted antigen escape from endosomes to the cytosol for degradation by proteasomes into peptides for MHC I loading by TAP-dependent pathways. Furthermore, we found that induction of lipid bodies (LBs) and alterations in LB composition mediated by ADJ were also critical for DC cross-presentation. Collectively, our model challenges the prevailing metabolic paradigm by suggesting that DCs can perform effective DC cross-presentation, independent of glycolysis to induce robust T cell-dependent protective immunity to intracellular pathogens. These findings have strong implications in the rational development of safe and effective immune adjuvants to potentiate robust T-cell based immunity.


Assuntos
Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/fisiologia , Resinas Acrílicas/química , Adjuvantes Imunológicos/farmacologia , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , NADPH Oxidase 2/fisiologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Nat Biomed Eng ; 5(1): 77-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32719514

RESUMO

The function of a T cell depends on its subtype and activation state. Here, we show that imaging of the autofluorescence lifetime signals of quiescent and activated T cells can be used to classify the cells. T cells isolated from human peripheral blood and activated in culture using tetrameric antibodies against the surface ligands CD2, CD3 and CD28 showed specific activation-state-dependent patterns of autofluorescence lifetime. Logistic regression models and random forest models classified T cells according to activation state with 97-99% accuracy, and according to activation state (quiescent or activated) and subtype (CD3+CD8+ or CD3+CD4+) with 97% accuracy. Autofluorescence lifetime imaging can be used to non-destructively determine T-cell function.


Assuntos
Ativação Linfocitária/fisiologia , Imagem Óptica/métodos , Linfócitos T , Células Cultivadas , Humanos , Linfócitos T/classificação , Linfócitos T/citologia , Linfócitos T/fisiologia
20.
Biomed Opt Express ; 11(10): 5674-5688, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33149978

RESUMO

The auto-fluorescent coenzymes reduced nicotinamide dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD) allow label-free detection of cellular metabolism. The optical redox ratio, which is traditionally computed as the ratio of NADH and FAD intensities, allows quantification of cell redox state. In addition to multiple formulations of the optical redox ratio from NADH and FAD intensity measurements, a fluorescence lifetime redox ratio (FLIRR) based on the fractions of protein-bound NADH and FAD was developed to overcome the limitations of experimental factors that influence fluorescence intensity measurements. In this paper, we compare fluorescence-intensity computations of the optical redox ratio with the fluorescence lifetime redox ratio for quiescent and activated T cells. Fluorescence lifetime images of NAD(P)H and FAD of T cells were acquired with a two-photon fluorescence lifetime microscope. Metabolic perturbation experiments, including inhibition of glycolysis, oxidative phosphorylation, glutaminolysis, and fatty acid synthesis revealed differences between the intensity and lifetime redox ratios. Statistical analysis reveals that the FLIRR has a lower standard deviation and skewness (two-tail T-test, P value = 0.05) than the intensity redox ratio. Correlation analysis revealed a weak relationship between FLIRR and intensity redox ratio for individual cells, with a stronger correlation identified for activated T cells (Linear regression, R-value = 0.450) than quiescent T cells (R-value = 0.172). Altogether, the results demonstrate that while both the fluorescence lifetime and intensity redox ratios resolve metabolic perturbations in T cells, the endpoints are influenced by different metabolic processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA