Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Artigo em Alemão | MEDLINE | ID: mdl-38750239

RESUMO

Health data are extremely important in today's data-driven world. Through automation, healthcare processes can be optimized, and clinical decisions can be supported. For any reuse of data, the quality, validity, and trustworthiness of data are essential, and it is the only way to guarantee that data can be reused sensibly. Specific requirements for the description and coding of reusable data are defined in the FAIR guiding principles for data stewardship. Various national research associations and infrastructure projects in the German healthcare sector have already clearly positioned themselves on the FAIR principles: both the infrastructures of the Medical Informatics Initiative and the University Medicine Network operate explicitly on the basis of the FAIR principles, as do the National Research Data Infrastructure for Personal Health Data and the German Center for Diabetes Research.To ensure that a resource complies with the FAIR principles, the degree of FAIRness should first be determined (so-called FAIR assessment), followed by the prioritization for improvement steps (so-called FAIRification). Since 2016, a set of tools and guidelines have been developed for both steps, based on the different, domain-specific interpretations of the FAIR principles.Neighboring European countries have also invested in the development of a national framework for semantic interoperability in the context of the FAIR (Findable, Accessible, Interoperable, Reusable) principles. Concepts for comprehensive data enrichment were developed to simplify data analysis, for example, in the European Health Data Space or via the Observational Health Data Sciences and Informatics network. With the support of the European Open Science Cloud, among others, structured FAIRification measures have already been taken for German health datasets.

2.
J Integr Bioinform ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613325

RESUMO

Modern biological research is increasingly informed by computational simulation experiments, which necessitate the development of methods for annotating, archiving, sharing, and reproducing the conducted experiments. These simulations increasingly require extensive collaboration among modelers, experimentalists, and engineers. The Minimum Information About a Simulation Experiment (MIASE) guidelines outline the information needed to share simulation experiments. SED-ML is a computer-readable format for the information outlined by MIASE, created as a community project and supported by many investigators and software tools. Level 1 Version 5 of SED-ML expands the ability of modelers to define simulations in SED-ML using the Kinetic Simulation Algorithm Onotoloy (KiSAO). While it was possible in Version 4 to define a simulation entirely using KiSAO, Version 5 now allows users to define tasks, model changes, ranges, and outputs using the ontology as well. SED-ML is supported by a growing ecosystem of investigators, model languages, and software tools, including various languages for constraint-based, kinetic, qualitative, rule-based, and spatial models, and many simulation tools, visual editors, model repositories, and validators. Additional information about SED-ML is available at https://sed-ml.org/.

3.
Stud Health Technol Inform ; 310: 1271-1275, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270019

RESUMO

To understand and handle the COVID-19 pandemic, digital tools and infrastructures were built in very short timeframes, resulting in stand-alone and non-interoperable solutions. To shape an interoperable, sustainable, and extensible ecosystem to advance biomedical research and healthcare during the pandemic and beyond, a short-term project called "Collaborative Data Exchange and Usage" (CODEX+) was initiated to integrate and connect multiple COVID-19 projects into a common organizational and technical framework. In this paper, we present the conceptual design, provide an overview of the results, and discuss the impact of such a project for the trade-off between innovation and sustainable infrastructures.


Assuntos
Pesquisa Biomédica , COVID-19 , Humanos , Centros Médicos Acadêmicos , COVID-19/epidemiologia , Instalações de Saúde , Pandemias
4.
JMIR Form Res ; 7: e50027, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060305

RESUMO

BACKGROUND: Secondary investigations into digital health records, including electronic patient data from German medical data integration centers (DICs), pave the way for enhanced future patient care. However, only limited information is captured regarding the integrity, traceability, and quality of the (sensitive) data elements. This lack of detail diminishes trust in the validity of the collected data. From a technical standpoint, adhering to the widely accepted FAIR (Findability, Accessibility, Interoperability, and Reusability) principles for data stewardship necessitates enriching data with provenance-related metadata. Provenance offers insights into the readiness for the reuse of a data element and serves as a supplier of data governance. OBJECTIVE: The primary goal of this study is to augment the reusability of clinical routine data within a medical DIC for secondary utilization in clinical research. Our aim is to establish provenance traces that underpin the status of data integrity, reliability, and consequently, trust in electronic health records, thereby enhancing the accountability of the medical DIC. We present the implementation of a proof-of-concept provenance library integrating international standards as an initial step. METHODS: We adhered to a customized road map for a provenance framework, and examined the data integration steps across the ETL (extract, transform, and load) phases. Following a maturity model, we derived requirements for a provenance library. Using this research approach, we formulated a provenance model with associated metadata and implemented a proof-of-concept provenance class. Furthermore, we seamlessly incorporated the internationally recognized Word Wide Web Consortium (W3C) provenance standard, aligned the resultant provenance records with the interoperable health care standard Fast Healthcare Interoperability Resources, and presented them in various representation formats. Ultimately, we conducted a thorough assessment of provenance trace measurements. RESULTS: This study marks the inaugural implementation of integrated provenance traces at the data element level within a German medical DIC. We devised and executed a practical method that synergizes the robustness of quality- and health standard-guided (meta)data management practices. Our measurements indicate commendable pipeline execution times, attaining notable levels of accuracy and reliability in processing clinical routine data, thereby ensuring accountability in the medical DIC. These findings should inspire the development of additional tools aimed at providing evidence-based and reliable electronic health record services for secondary use. CONCLUSIONS: The research method outlined for the proof-of-concept provenance class has been crafted to promote effective and reliable core data management practices. It aims to enhance biomedical data by imbuing it with meaningful provenance, thereby bolstering the benefits for both research and society. Additionally, it facilitates the streamlined reuse of biomedical data. As a result, the system mitigates risks, as data analysis without knowledge of the origin and quality of all data elements is rendered futile. While the approach was initially developed for the medical DIC use case, these principles can be universally applied throughout the scientific domain.

5.
J Med Internet Res ; 25: e48809, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938878

RESUMO

BACKGROUND: In the context of the Medical Informatics Initiative, medical data integration centers (DICs) have implemented complex data flows to transfer routine health care data into research data repositories for secondary use. Data management practices are of importance throughout these processes, and special attention should be given to provenance aspects. Insufficient knowledge can lead to validity risks and reduce the confidence and quality of the processed data. The need to implement maintainable data management practices is undisputed, but there is a great lack of clarity on the status. OBJECTIVE: Our study examines the current data management practices throughout the data life cycle within the Medical Informatics in Research and Care in University Medicine (MIRACUM) consortium. We present a framework for the maturity status of data management practices and present recommendations to enable a trustful dissemination and reuse of routine health care data. METHODS: In this mixed methods study, we conducted semistructured interviews with stakeholders from 10 DICs between July and September 2021. We used a self-designed questionnaire that we tailored to the MIRACUM DICs, to collect qualitative and quantitative data. Our study method is compliant with the Good Reporting of a Mixed Methods Study (GRAMMS) checklist. RESULTS: Our study provides insights into the data management practices at the MIRACUM DICs. We identify several traceability issues that can be partially explained with a lack of contextual information within nonharmonized workflow steps, unclear responsibilities, missing or incomplete data elements, and incomplete information about the computational environment information. Based on the identified shortcomings, we suggest a data management maturity framework to reach more clarity and to help define enhanced data management strategies. CONCLUSIONS: The data management maturity framework supports the production and dissemination of accurate and provenance-enriched data for secondary use. Our work serves as a catalyst for the derivation of an overarching data management strategy, abiding data integrity and provenance characteristics as key factors. We envision that this work will lead to the generation of fairer and maintained health research data of high quality.


Assuntos
Gerenciamento de Dados , Informática Médica , Humanos , Atenção à Saúde , Inquéritos e Questionários
6.
JMIR Res Protoc ; 12: e47105, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878365

RESUMO

BACKGROUND: Applications of artificial intelligence (AI) are pervasive in modern biomedical science. In fact, research results suggesting algorithms and AI models for different target diseases and conditions are continuously increasing. While this situation undoubtedly improves the outcome of AI models, health care providers are increasingly unsure which AI model to use due to multiple alternatives for a specific target and the "black box" nature of AI. Moreover, the fact that studies rarely use guidelines in developing and reporting AI models poses additional challenges in trusting and adapting models for practical implementation. OBJECTIVE: This review protocol describes the planned steps and methods for a review of the synthesized evidence regarding the quality of available guidelines and frameworks to facilitate AI applications in medicine. METHODS: We will commence a systematic literature search using medical subject headings terms for medicine, guidelines, and machine learning (ML). All available guidelines, standard frameworks, best practices, checklists, and recommendations will be included, irrespective of the study design. The search will be conducted on web-based repositories such as PubMed, Web of Science, and the EQUATOR (Enhancing the Quality and Transparency of Health Research) network. After removing duplicate results, a preliminary scan for titles will be done by 2 reviewers. After the first scan, the reviewers will rescan the selected literature for abstract review, and any incongruities about whether to include the article for full-text review or not will be resolved by the third and fourth reviewer based on the predefined criteria. A Google Scholar (Google LLC) search will also be performed to identify gray literature. The quality of identified guidelines will be evaluated using the Appraisal of Guidelines, Research, and Evaluation (AGREE II) tool. A descriptive summary and narrative synthesis will be carried out, and the details of critical appraisal and subgroup synthesis findings will be presented. RESULTS: The results will be reported using the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses) reporting guidelines. Data analysis is currently underway, and we anticipate finalizing the review by November 2023. CONCLUSIONS: Guidelines and recommended frameworks for developing, reporting, and implementing AI studies have been developed by different experts to facilitate the reliable assessment of validity and consistent interpretation of ML models for medical applications. We postulate that a guideline supports the assessment of an ML model only if the quality and reliability of the guideline are high. Assessing the quality and aspects of available guidelines, recommendations, checklists, and frameworks-as will be done in the proposed review-will provide comprehensive insights into current gaps and help to formulate future research directions. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/47105.

7.
J Med Internet Res ; 25: e45013, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37639292

RESUMO

BACKGROUND: Thorough data stewardship is a key enabler of comprehensive health research. Processes such as data collection, storage, access, sharing, and analytics require researchers to follow elaborate data management strategies properly and consistently. Studies have shown that findable, accessible, interoperable, and reusable (FAIR) data leads to improved data sharing in different scientific domains. OBJECTIVE: This scoping review identifies and discusses concepts, approaches, implementation experiences, and lessons learned in FAIR initiatives in health research data. METHODS: The Arksey and O'Malley stage-based methodological framework for scoping reviews was applied. PubMed, Web of Science, and Google Scholar were searched to access relevant publications. Articles written in English, published between 2014 and 2020, and addressing FAIR concepts or practices in the health domain were included. The 3 data sources were deduplicated using a reference management software. In total, 2 independent authors reviewed the eligibility of each article based on defined inclusion and exclusion criteria. A charting tool was used to extract information from the full-text papers. The results were reported using the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. RESULTS: A total of 2.18% (34/1561) of the screened articles were included in the final review. The authors reported FAIRification approaches, which include interpolation, inclusion of comprehensive data dictionaries, repository design, semantic interoperability, ontologies, data quality, linked data, and requirement gathering for FAIRification tools. Challenges and mitigation strategies associated with FAIRification, such as high setup costs, data politics, technical and administrative issues, privacy concerns, and difficulties encountered in sharing health data despite its sensitive nature were also reported. We found various workflows, tools, and infrastructures designed by different groups worldwide to facilitate the FAIRification of health research data. We also uncovered a wide range of problems and questions that researchers are trying to address by using the different workflows, tools, and infrastructures. Although the concept of FAIR data stewardship in the health research domain is relatively new, almost all continents have been reached by at least one network trying to achieve health data FAIRness. Documented outcomes of FAIRification efforts include peer-reviewed publications, improved data sharing, facilitated data reuse, return on investment, and new treatments. Successful FAIRification of data has informed the management and prognosis of various diseases such as cancer, cardiovascular diseases, and neurological diseases. Efforts to FAIRify data on a wider variety of diseases have been ongoing since the COVID-19 pandemic. CONCLUSIONS: This work summarises projects, tools, and workflows for the FAIRification of health research data. The comprehensive review shows that implementing the FAIR concept in health data stewardship carries the promise of improved research data management and transparency in the era of big data and open research publishing. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/22505.


Assuntos
COVID-19 , Doenças Cardiovasculares , Humanos , Pandemias , Big Data , Confiabilidade dos Dados
8.
J Med Internet Res ; 25: e45948, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37486754

RESUMO

The vast and heterogeneous data being constantly generated in clinics can provide great wealth for patients and research alike. The quickly evolving field of medical informatics research has contributed numerous concepts, algorithms, and standards to facilitate this development. However, these difficult relationships, complex terminologies, and multiple implementations can present obstacles for people who want to get active in the field. With a particular focus on medical informatics research conducted in Germany, we present in our Viewpoint a set of 10 important topics to improve the overall interdisciplinary communication between different stakeholders (eg, physicians, computational experts, experimentalists, students, patient representatives). This may lower the barriers to entry and offer a starting point for collaborations at different levels. The suggested topics are briefly introduced, then general best practice guidance is given, and further resources for in-depth reading or hands-on tutorials are recommended. In addition, the topics are set to cover current aspects and open research gaps of the medical informatics domain, including data regulations and concepts; data harmonization and processing; and data evaluation, visualization, and dissemination. In addition, we give an example on how these topics can be integrated in a medical informatics curriculum for higher education. By recognizing these topics, readers will be able to (1) set clinical and research data into the context of medical informatics, understanding what is possible to achieve with data or how data should be handled in terms of data privacy and storage; (2) distinguish current interoperability standards and obtain first insights into the processes leading to effective data transfer and analysis; and (3) value the use of newly developed technical approaches to utilize the full potential of clinical data.


Assuntos
Informática Médica , Humanos , Currículo , Algoritmos , Alemanha
10.
Stud Health Technol Inform ; 302: 741-742, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203481

RESUMO

The need to harness large amounts of data, possibly within a short period of time, became apparent during the Covid-19 pandemic outbreak. In 2022, the Corona Data Exchange Platform (CODEX), which had been developed within the German Network University Medicine (NUM), was extended by a number of common components, including a section on FAIR science. The FAIR principles enable research networks to evaluate how well they comply with current standards in open and reproducible science. To be more transparent, but also to guide scientists on how to improve data and software reusability, we disseminated an online survey within the NUM. Here we present the outcomes and lessons learnt.


Assuntos
COVID-19 , Medicina , Humanos , COVID-19/epidemiologia , Universidades , Pandemias , Software
11.
Stud Health Technol Inform ; 302: 747-748, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203484

RESUMO

HealthECCO is the driving force behind the COVID-19 knowledge graph spanning multiple biomedical data domains. One way to access CovidGraph is SemSpect, an interface designed for data exploration in graphs. To showcase the possibilities that arise from integrating a variety of COVID-19 related data sources over the last three years, we present three use cases from the (bio-)medical domain. Availability: The project is open source and freely available from: https://healthecco.org/covidgraph/. The source code and documentation are available on GitHub: https://github.com/covidgraph.


Assuntos
COVID-19 , Humanos , Software , Documentação
12.
Stud Health Technol Inform ; 302: 749-750, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203485

RESUMO

The German Medical Informatics Initiative (MII) aims to increase the interoperability and reuse of clinical routine data for research purposes. One important result of the MII work is a German-wide common core data set (CDS), which is to be provided by over 31 data integration centers (DIZ) following a strict specification. One standard format for data sharing is HL7/FHIR. Locally, classical data warehouses are often in use for data storage and retrieval. We are interested to investigate the advantages of a graph database in this setting. After having transferred the MII CDS into a graph, storing it in a graph database and subsequently enriching it with accompanying meta-information, we see a great potential for more sophisticated data exploration and analysis. Here we describe the extract-transform-load process which we set up as a proof of concept to achieve the transformation and to make the common set of core data accessible as a graph.


Assuntos
Registros Eletrônicos de Saúde , Armazenamento e Recuperação da Informação , Disseminação de Informação , Data Warehousing , Bases de Dados Factuais , Nível Sete de Saúde
13.
Stud Health Technol Inform ; 302: 757-758, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203489

RESUMO

In medicine and biomedical research, sex- and gender-related aspects are ubiquitous. If not considered adequately, a lower quality of research data can be expected together with a lower generalizability of study results with real-world settings. From a translational perspective, a lack of sex- and gender-sensitivity in acquired data can have negative implications for diagnosis, treatment (outcome and side effects), and risk prediction. To establish improved recognition and reward settings we set out to develop a pilot of systemic sex and gender awareness in a German medical faculty, with actions such as implementing equality in routine clinical practice and research, as well as in scientific practice (incl. science education). We believe that the change of culture will have a positive effect on research outcomes, lead to a rethinking in the scientific domain, foster sex- and gender-related clinical studies, and influence the design of good scientific practices.


Assuntos
Pesquisa Biomédica , Medicina , Masculino , Feminino , Humanos , Identidade de Gênero , Relações Interpessoais , Liderança
14.
Stud Health Technol Inform ; 302: 63-67, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203610

RESUMO

The interest in the application of AI in medicine has intensely increased over the past decade with most of the changes in the past five years. Most recently, the application of deep learning algorithms in prediction and classification of cardiovascular diseases (CVD) using computed tomography (CT) images showed promising results. The notable and exciting advancement in this area of study is, however, associated with different challenges related to the findability (F), accessibility(A), interoperability(I), reusability(R) of both data and source code. The aim of this work is to identify reoccurring missing FAIR-related features and to assess the level of FAIRness of data and models used to predict/diagnose cardiovascular diseases from CT images. We evaluated the FAIRness of data and models in published studies using the RDA (Research Data Alliance) FAIR Data maturity model and FAIRshake toolkit. The finding showed that although AI is anticipated to bring ground breaking solutions for complex medical problems, the findability, accessibility, interoperability and reusability of data/metadata/code is still a prominent challenge.


Assuntos
Doenças Cardiovasculares , Aprendizado Profundo , Humanos , Doenças Cardiovasculares/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Software , Algoritmos
15.
Stud Health Technol Inform ; 302: 272-276, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203661

RESUMO

The German Medical Informatics Initiative makes clinical routine data available for biomedical research. In total, 37 university hospitals have set up so-called data integration centers to facilitate this data reuse. A standardized set of HL7 FHIR profiles ("MII Core Data Set") defines the common data model across all centers. Regular Projectathons ensure continuous evaluation of the implemented data sharing processes on artificial and real-world clinical use cases. In this context, FHIR continues to rise in popularity for exchanging patient care data. As reusing data from patient care in clinical research requires high trust in the data, data quality assessments are a key point of concern in the data sharing process. To support the setup of data quality assessments within data integration centers, we suggest a process for finding elements of interest from FHIR profiles. We focus on the specific data quality measures defined by Kahn et al.


Assuntos
Pesquisa Biomédica , Informática Médica , Humanos , Registros Eletrônicos de Saúde , Confiabilidade dos Dados , Hospitais Universitários
16.
Stud Health Technol Inform ; 302: 390-391, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203700

RESUMO

Extensive workflows have been designed to FAIRify data from various domains. These tend to be cumbersome and overwhelming. This work summarises our own experiences with FAIRification in health data management and provides simple steps that can be implemented to achieve a relatively low but improved level of FAIRness. The steps lead the data steward to register the data in a repository and then annotate it with the metadata recommended by that repository. It further leads the data steward to provide the data in a machine-readable format using an established and accessible language, establish a well-defined framework to describe and structure the (meta)data as well as publish the (meta)data. We hope that following the simple roadmap described in this work helps to demystify the FAIR data principles in the health domain.


Assuntos
Gerenciamento de Dados , Metadados
17.
J Integr Bioinform ; 20(1)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36989443

RESUMO

This special issue of the Journal of Integrative Bioinformatics contains updated specifications of COMBINE standards in systems and synthetic biology. The 2022 special issue presents three updates to the standards: CellML 2.0.1, SBML Level 3 Package: Spatial Processes, Version 1, Release 1, and Synthetic Biology Open Language (SBOL) Version 3.1.0. This document can also be used to identify the latest specifications for all COMBINE standards. In addition, this editorial provides a brief overview of the COMBINE 2022 meeting in Berlin.


Assuntos
Biologia Computacional , Biologia Sintética , Linguagens de Programação , Software
18.
Front Cardiovasc Med ; 10: 1308668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235288

RESUMO

Artificial intelligence (AI) has emerged as a promising field in cardiovascular disease (CVD) research, offering innovative approaches to enhance diagnosis, treatment, and patient outcomes. In this study, we conducted bibliometric analysis combined with topic modeling to provide a comprehensive overview of the AI research landscape in CVD. Our analysis included 23,846 studies from Web of Science and PubMed, capturing the latest advancements and trends in this rapidly evolving field. By employing LDA (Latent Dirichlet Allocation) we identified key research themes, trends, and collaborations within the AI-CVD domain. The findings revealed the exponential growth of AI-related research in CVD, underscoring its immense potential to revolutionize cardiovascular healthcare. The annual scientific publication of machine learning papers in CVD increases continuously and significantly since 2016, with an overall annual growth rate of 22.8%. Almost half (46.2%) of the growth happened in the last 5 years. USA, China, India, UK and Korea were the top five productive countries in number of publications. UK, Germany and Australia were the most collaborative countries with a multiple country publication (MCP) value of 42.8%, 40.3% and 40.0% respectively. We observed the emergence of twenty-two distinct research topics, including "stroke and robotic rehabilitation therapy," "robotic-assisted cardiac surgery," and "cardiac image analysis," which persisted as major topics throughout the years. Other topics, such as "retinal image analysis and CVD" and "biomarker and wearable signal analyses," have recently emerged as dominant areas of research in cardiovascular medicine. Convolutional neural network appears to be the most mentioned algorithm followed by LSTM (Long Short-Term Memory) and KNN (K-Nearest Neighbours). This indicates that the future direction of AI cardiovascular research is predominantly directing toward neural networks and image analysis. As AI continues to shape the landscape of CVD research, our study serves as a comprehensive guide for researchers, practitioners, and policymakers, providing valuable insights into the current state of AI in CVD research. This study offers a deep understanding of research trends and paves the way for future directions to maximiz the potential of AI to effectively combat cardiovascular diseases.

19.
Bioinformatics ; 38(20): 4843-4845, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36040169

RESUMO

SUMMARY: Reliable and integrated data are prerequisites for effective research on the recent coronavirus disease 2019 (COVID-19) pandemic. The CovidGraph project integrates and connects heterogeneous COVID-19 data in a knowledge graph, referred to as 'CovidGraph'. It provides easy access to multiple data sources through a single point of entry and enables flexible data exploration. AVAILABILITY AND IMPLEMENTATION: More information on CovidGraph is available from the project website: https://healthecco.org/covidgraph/. Source code and documentation are provided on GitHub: https://github.com/covidgraph. SUPPLEMENTARY INFORMATION: Supplementary data is available at Bioinformatics online.


Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Armazenamento e Recuperação da Informação , Software
20.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35671510

RESUMO

Computational models are often employed in systems biology to study the dynamic behaviours of complex systems. With the rise in the number of computational models, finding ways to improve the reusability of these models and their ability to reproduce virtual experiments becomes critical. Correct and effective model annotation in community-supported and standardised formats is necessary for this improvement. Here, we present recent efforts toward a common framework for annotated, accessible, reproducible and interoperable computational models in biology, and discuss key challenges of the field.


Assuntos
Biologia Computacional , Biologia de Sistemas , Simulação por Computador , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA