Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Front Mol Neurosci ; 10: 433, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29354030

RESUMO

Lipid metabolism is drastically dysregulated in amyotrophic lateral sclerosis and impacts prognosis of patients. Animal models recapitulate alterations in the energy metabolism, including hypermetabolism and severe loss of adipose tissue. To gain insight into the molecular mechanisms underlying disease progression in amyotrophic lateral sclerosis, we have performed RNA-sequencing and lipidomic profiling in spinal cord of symptomatic SOD1G86R mice. Spinal transcriptome of SOD1G86R mice was characterized by differential expression of genes related to immune system, extracellular exosome, and lysosome. Hypothesis-driven identification of metabolites showed that lipids, including sphingomyelin(d18:0/26:1), ceramide(d18:1/22:0), and phosphatidylcholine(o-22:1/20:4) showed profound altered levels. A correlation between disease severity and gene expression or metabolite levels was found for sphingosine, ceramide(d18:1/26:0), Sgpp2, Sphk1, and Ugt8a. Joint-analysis revealed a significant enrichment of glycosphingolipid metabolism in SOD1G86R mice, due to the down-regulation of ceramide, glucosylceramide, and lactosylceramide and the overexpression of genes involved in their recycling in the lysosome. A drug-gene interaction database was interrogated to identify potential drugs able to modulate the dysregulated genes from the signaling pathway. Our results suggest that complex lipids are pivotally changed during the first phase of motor symptoms in an animal model of amyotrophic lateral sclerosis.

2.
J Virol Methods ; 240: 73-77, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27923589

RESUMO

Grapevine (Vitis spp.) can be infected by numerous viruses that are often widespread and of great economic importance. Reliable detection methods are necessary for sanitary selection which is the only way to partly control grapevine virus diseases. Biological indexing and ELISA are currently the standard methods for screening propagation material, and PCR-methods are becoming increasingly popular. Due to the diversity of virus isolates, it is essential to verify that the tests allow the detection of the largest possible virus populations. We developed three quadruplex TaqMan® RT-qPCR assays for detecting nine different viruses that cause considerable damage in many vineyards world-wide. Each assay is designed to detect three viruses and the grapevine Actin as an internal control. A large population of grapevines from diverse cultivars and geographic location was tested for the presence of nine viruses: Arabis mosaic virus (ArMV), Grapevine fleck virus (GFkV), Grapevine fanleaf virus (GFLV), Grapevine leafroll-associated viruses (GLRaV-1, -2, -3), Grapevine rupestris stem pitting-associated virus (GRSPaV), Grapevine virus A (GVA), and Grapevine virus B (GVB). In general, identical results were obtained with multiplex TaqMan® RT-qPCR and ELISA although, in some cases, viruses could be detected by only one of the two techniques.


Assuntos
Closteroviridae/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Flexiviridae/isolamento & purificação , Nepovirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Tymoviridae/isolamento & purificação , Vitis/virologia , Closteroviridae/genética , Closteroviridae/imunologia , Primers do DNA , DNA Complementar , Flexiviridae/genética , Flexiviridae/imunologia , Nepovirus/genética , Nepovirus/imunologia , Doenças das Plantas/virologia , RNA Viral/isolamento & purificação , Tymoviridae/genética , Tymoviridae/imunologia
3.
Phytochemistry ; 131: 92-99, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27623505

RESUMO

Grapevine (Vitis spp) is susceptible to serious fungal diseases usually controlled by chemical treatments. Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts which can stimulate plant defences. We investigated the effect of mycorrhization on grapevine stilbenoid defences. Vitis vinifera cvs Chasselas, Pinot noir and the interspecific hybrid Divico, on the rootstock 41B, were mycorrhized with Rhizophagus irregularis before leaf infection by Plasmopara viticola or Botrytis cinerea. Gene expression analysis showed an up-regulation of PAL, STS, and ROMT, involved in the stilbenoid biosynthesis pathway, in plant leaves, 48 h after pathogen inoculation. This defense response could be potentiated under AMF colonization, with an intensity level depending on the gene, the plant cultivar and/or the pathogen. We also showed that higher amounts of active forms of stilbenoids (i.e trans-form of resveratrol, ε- and δ-viniferins and pterostilbene) were produced in mycorrhized plants of the three genotypes in comparison with non-mycorrhized ones, 10 days post-inoculation with either pathogen. These results support the hypothesis that AMF root colonization enhances defence reactions against a biotrophic and a necrotrophic pathogen, in the aerial parts of grapevine.


Assuntos
Botrytis/química , Fenilpropionatos/metabolismo , Doenças das Plantas/microbiologia , Estilbenos/metabolismo , Simbiose , Vitis/química , Benzofuranos , Oomicetos , Componentes Aéreos da Planta/metabolismo , Folhas de Planta/metabolismo , Resorcinóis , Resveratrol , Estilbenos/química
4.
Plant Biotechnol J ; 12(9): 1231-45, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25431200

RESUMO

In the past few years, the usefulness of transient expression assays has continuously increased for the characterization of unknown gene function and metabolic pathways. In grapevine (Vitis vinifera L.), one of the most economically important fruit crops in the world, recent systematic sequencing projects produced many gene data sets that require detailed analysis. Due to their rapid nature, transient expression assays are well suited for large-scale genetic studies. Although genes and metabolic pathways of any species can be analysed by transient expression in model plants, a need for homologous systems has emerged to avoid the misinterpretation of results due to a foreign genetic background. Over the last 10 years, various protocols have thus been developed to apply this powerful technology to grapevine. Using cell suspension cultures, somatic embryos, leaves or whole plantlets, transient expression assays enabled the study of the function, regulation and subcellular localization of genes involved in specific metabolic pathways such as the biosynthesis of phenylpropanoids. Disease resistance genes that could be used for marker-assisted selection in conventional breeding or for stable transformation of elite cultivars have also been characterized. Additionally, transient expression assays have proved useful for shaping new tools for grapevine genetic improvement: synthetic promoters, silencing constructs, minimal linear cassettes or viral vectors. This review provides an update on the different tools (DNA constructs, reporter genes, vectors) and methods (Agrobacterium-mediated and direct gene transfer methods) available for transient gene expression in grapevine. The most representative results published thus far are then described.


Assuntos
Expressão Gênica , Engenharia Genética/métodos , Vitis/genética , DNA de Plantas/genética , Técnicas de Transferência de Genes , Vetores Genéticos/metabolismo
5.
Mol Biotechnol ; 55(3): 236-48, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23723045

RESUMO

Grapevine is one of the most economically important fruit crops. Molecular markers have been used to study grapevine diversity. For instance, simple sequence repeats are a powerful tool for identification of grapevine cultivars, while amplified fragment length polymorphisms have shown their usefulness in intra-varietal diversity studies. Other techniques such as sequence-specific amplified polymorphism are based on the presence of mobile elements in the genome, but their detection lies upon their activity. Relevant attention has been drawn toward epigenetic sources of variation. In this study, a set of Vitis vinifera cv Pinot noir clones were analyzed using the methylation-sensitive amplified polymorphism technique with isoschizomers MspI and HpaII. Nine out of fourteen selective primer combinations were informative and generated two types of polymorphic fragments which were categorized as "stable" and "unstable." In total, 23 stable fragments were detected and they discriminated 92.5 % of the studied clones. Detected stable polymorphisms were either common to several clones, restricted to a few clones or unique to a single clone. The identification of these stable epigenetic markers will be useful in clonal diversity studies. We highlight the relevance of stable epigenetic variation in V. vinifera clones and analyze at which level these markers could be applicable for the development of forthright techniques for clonal distinction.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Epigênese Genética , Polimorfismo Genético , Vitis/classificação , Vitis/genética , Células Clonais , Metilação de DNA , Evolução Molecular , Genes de Plantas , Marcadores Genéticos , Variação Genética , Genoma de Planta , Repetições de Microssatélites , Filogenia
6.
Transgenic Res ; 21(6): 1319-27, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22427113

RESUMO

Grapevines are affected worldwide by viruses that compromise fruit yield and quality. Grapevine fanleaf virus (GFLV) causes fanleaf degeneration disease, a major threat to grapevine production. Transgenic approaches exploiting the RNA silencing machinery have proven suitable for engineering viral resistance in several crop species. However, the artificial microRNA (amiRNA)-based strategy has not yet been reported in grapevine. We developed two amiRNA precursors (pre-amiRNAs) targeting the coat protein (CP) gene of GFLV and characterised their functionality in grapevine somatic embryos. To create these pre-amiRNAs, natural pre-miR319a of Arabidopsis thaliana was modified by overlapping PCR in order to replace miR319a with two amiRNAs targeting different regions of the CP gene: amiR(CP)-1 or amiR(CP)-2. Transient expression of these two pre-amiRNA constructs was tested in grapevine somatic embryos after co-cultivation with Agrobacterium tumefaciens. Expression of amiR(CP)-1 and amiR(CP)-2 was detected in plant tissues by an endpoint stem-loop RT-PCR as early as 1 day after a 48-h co-cultivation, indicating active processing of pre-amiRNAs by the plant machinery. In parallel, GUS-sensor constructs (G(CP)-1 and G(CP)-2) were obtained by fusing the target sequence of amiR(CP)-1 or amiR(CP)-2 to the 3' terminus of the GUS gene. Co-transformation assays with GUS-sensors and the pre-amiRNA constructs provided evidence for in vivo recognition and cleavage of the 21-nt target sequence of GUS-sensors by the corresponding amiRNA. This is the first report of amiRNA ectopic expression in grapevine. The constructs we developed could be useful for engineering GFLV-resistant grapes in the future.


Assuntos
MicroRNAs/fisiologia , Nepovirus/genética , Interferência de RNA , Vitis/genética , Agrobacterium tumefaciens/genética , Arabidopsis/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , RNA de Plantas/genética , RNA Viral/genética , Vitis/embriologia , Vitis/crescimento & desenvolvimento
7.
BMC Plant Biol ; 10: 184, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20727162

RESUMO

BACKGROUND: Genes belonging to the pathogenesis related 10 (PR10) group have been studied in several plant species, where they form multigene families. Until now, such an analysis has not been performed in Vitis vinifera, although three different PR10 genes were found to be expressed under pathogen attack or abiotic stress, and during somatic embryogenesis induction. We used the complete genome sequence for characterising the whole V. vinifera PR10 gene family. The expression of candidate genes was studied in various non-treated tissues and following somatic embryogenesis induction by the auxin 2,4-D. RESULTS: In addition to the three V. vinifera PR10 genes already described, namely VvPR10.1, VvPR10.2 and VvPR10.3, fourteen different PR10 related sequences were identified. Showing high similarity, they form a single cluster on the chromosome 5 comprising three pseudogenes. The expression of nine different genes was detected in various tissues. Although differentially expressed in non-treated plant organs, several genes were up-regulated in tissues treated with 2,4-D, as expected for PR genes. CONCLUSIONS: PR10 genes form a multigene family in V. vinifera, as found in birch, apple or peach. Seventeen closely related PR10 sequences are arranged in a tandem array on the chromosome 5, probably reflecting small-scale duplications during evolution. Various expression patterns were found for nine studied genes, highlighting functional diversification. A phylogenetic comparison of deduced proteins with PR10 proteins of other plants showed a characteristic low intraspecific variability. Particularly, a group of seven close tandem duplicates including VvPR10.1, VvPR10.2 and VvPR10.3 showed a very high similarity, suggesting concerted evolution or/and recent duplications.


Assuntos
Família Multigênica , Proteínas de Plantas/genética , Pseudogenes , Vitis/genética , Ácido 2,4-Diclorofenoxiacético/farmacologia , Sequência de Aminoácidos , Evolução Molecular , Etiquetas de Sequências Expressas , Genes Duplicados , Genes de Plantas , Genoma de Planta , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , RNA de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de DNA
8.
Biol Direct ; 5: 9, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20137081

RESUMO

BACKGROUND: Grapevine is subjected to numerous pests and diseases resulting in the use of phytochemicals in large quantities. The will to decrease the use of phytochemicals leads to attempts to find alternative strategies, implying knowledge of defence mechanisms. Numerous studies have led to the identification of signalling pathways and regulatory elements involved in defence in various plant species. Nonexpressor of Pathogenesis Related 1 (NPR1) is an important regulatory component of systemic acquired resistance (SAR) in Arabidopsis thaliana. RESULTS: Two putative homologs of NPR1 gene were found in the two sequenced grapevine genomes available in the Genoscope database for line 40024 and in the IASMA database for Pinot noir ENTAV 115. We named these two NPR1 genes of Vitis vinifera : VvNPR1.1 and VvNPR1.2. A PCR-based strategy with primers designed on exons was used to successfully amplify NPR1 gene fragments from different Vitaceae accessions. Sequence analyses show that NPR1.1 and NPR1.2 are highly conserved among the different accessions not only V. vinifera cultivars but also other species. We report nucleotide polymorphisms in NPR1.1 and NPR1.2 from fifteen accessions belonging to the Vitaceae family. The ratio of nonsynonymous to synonymous nucleotide substitutions determines the evolutionary pressures acting on the Vitaceae NPR1 genes. These genes appear to be experiencing purifying selection. In some of the species we have analysed one of the two alleles of NPR1.1 contains a premature stop codon. The deduced amino acid sequences share structural features with known NPR1-like proteins: ankyrin repeats, BTB/POZ domains, nuclear localization signature and cysteines. Phylogenetic analyses of deduced amino acid sequences show that VvNPR1.1 belongs to a first group of NPR1 proteins known as positive regulators of SAR and VvNPR1.2 belongs to a second group of NPR1 proteins whose principal members are AtNPR3 and AtNPR4 defined as negative regulators of SAR. CONCLUSION: Our study shows that NPR1.1 and NPR1.2 are highly conserved among different accessions in the Vitaceae family. VvNPR1.1 and VvNPR1.2 are phylogenetically closer to the group of positive or negative SAR regulators respectively.


Assuntos
Proteínas de Arabidopsis , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Homologia de Sequência de Aminoácidos , Vitaceae/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Éxons/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
9.
Plant Physiol Biochem ; 47(8): 743-52, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19406655

RESUMO

A culture model was developed in Vitis vinifera L., cultivar 'Chardonnay' for studying SE (Somatic Embryogenesis). The auxin 2,4-D (2,4-Dichlorophenoxyacetic acid) was used to induce indirect secondary embryogenesis at a high rate, starting from embryos derived from embryogenic cultures previously obtained. Cotyledonary embryos were shown to be more responsive to SE induction than embryos at the torpedo-stage and were used for molecular analyses. The expression of SERK (Somatic Embryogenesis Receptor Kinase), L1L (Leafy Cotyledon1 Like) and a set of PR (Pathogenesis-Related) genes was monitored during the whole SE process. VvSERK1, VvSERK2 and VvL1L were down-regulated by the 2,4-D treatment but expressed in embryonic tissues. On the contrary, VvPR1, VvPR8, VvPR10.1 and VvPR10.3 were strongly up-regulated by the 2,4-D treatment, and their transcripts were not or only weakly detected in clusters of secondary embryos. VvSERK3, VvPR3 and VvPR10.2 were more stably expressed in all tissues examined. The discussion deals with the putative role of the different genes in grapevine SE.


Assuntos
Indução Embrionária/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética , Vitis/metabolismo , Ácido 2,4-Diclorofenoxiacético , Cotilédone , Expressão Gênica , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Técnicas de Cultura de Tecidos , Vitis/embriologia , Vitis/genética
10.
BMC Plant Biol ; 9: 54, 2009 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-19432948

RESUMO

BACKGROUND: Grapevine protection against diseases needs alternative strategies to the use of phytochemicals, implying a thorough knowledge of innate defense mechanisms. However, signalling pathways and regulatory elements leading to induction of defense responses have yet to be characterized in this species. In order to study defense response signalling to pathogens in Vitis vinifera, we took advantage of its recently completed genome sequence to characterize two putative orthologs of NPR1, a key player in salicylic acid (SA)-mediated resistance to biotrophic pathogens in Arabidopsis thaliana. RESULTS: Two cDNAs named VvNPR1.1 and VvNPR1.2 were isolated from Vitis vinifera cv chardonnay, encoding proteins showing 55% and 40% identity to Arabidopsis NPR1 respectively. Constitutive expression of VvNPR1.1 and VvNPR1.2 monitored in leaves of V. vinifera cv chardonnay was found to be enhanced by treatment with benzothiadiazole, a SA analog. In contrast, VvNPR1.1 and VvNPR1.2 transcript levels were not affected during infection of resistant Vitis riparia or susceptible V. vinifera with Plasmopara viticola, the causal agent of downy mildew, suggesting regulation of VvNPR1 activity at the protein level. VvNPR1.1-GFP and VvNPR1.2-GFP fusion proteins were transiently expressed by agroinfiltration in Nicotiana benthamiana leaves, where they localized predominantly to the nucleus. In this system, VvNPR1.1 and VvNPR1.2 expression was sufficient to trigger the accumulation of acidic SA-dependent pathogenesis-related proteins PR1 and PR2, but not of basic chitinases (PR3) in the absence of pathogen infection. Interestingly, when VvNPR1.1 or AtNPR1 were transiently overexpressed in Vitis vinifera leaves, the induction of grapevine PR1 was significantly enhanced in response to P. viticola. CONCLUSION: In conclusion, our data identified grapevine homologs of NPR1, and their functional analysis showed that VvNPR1.1 and VvNPR1.2 likely control the expression of SA-dependent defense genes. Overexpression of VvNPR1 has thus the potential to enhance grapevine defensive capabilities upon fungal infection. As a consequence, manipulating VvNPR1 and other signalling elements could open ways to strengthen disease resistance mechanisms in this crop species.


Assuntos
Doenças das Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Oomicetos/patogenicidade , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , RNA de Plantas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Tiadiazóis/farmacologia , Nicotiana/genética , Nicotiana/metabolismo , Vitis/metabolismo , Vitis/microbiologia
11.
Plant Cell Rep ; 27(12): 1799-809, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18766346

RESUMO

Little is known about the genes expressed during grapevine somatic embryogenesis. Both groups of Somatic Embryogenesis Receptor Kinase (SERK) and Leafy Cotyledon (LEC and L1L) genes seem to play key roles during somatic embryogenesis in various plant species. Therefore, we identified and analysed the sequences of VvSERK and VvL1L (Leafy cotyledon1-Like) genes. The deduced amino acid sequences of VvSERK1, VvSERK2 and VvSERK3 are very similar to that of registered SERK proteins, with highest homologies for the kinase domain in the C-terminal region. The amino acid sequence of VvL1L presents all the domains that are characteristic for LEC1 and L1L proteins, particularly, the 16 amino acid residues that serve as signature of the B-domain. Phylogenetic analysis distinguishes members of subclass LEC1 and subclass L1L, and VvL1L is closely related to L1L proteins. Using semi-quantitative RT-PCR, we studied gene expression of VvSERK1, VvSERK2, VvSERK3 and VvL1L in calli and somatic embryos obtained from anther culture of Vitis vinifera L. cv Chardonnay. Expression of VvSERK2 is relatively stable during in vitro culture. In contrast, VvSERK1, VvSERK3 and VvL1L are expressed more 4 to 6 weeks after transfer of the calli onto embryo induction medium, before the visible appearance of embryos on the calli as seen by environmental scanning electron microscopy. Later on (8 weeks after transfer) VvSERK1 expression is maintained in the embryogenic calli and VvSERK3 in the embryos, whereas VvL1L expression is very low. All together, these data suggest the involvement of VvSERK and VvL1L genes in grapevine somatic embryogenesis.


Assuntos
Genes de Plantas , Vitis/embriologia , Vitis/genética , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA/genética , DNA de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Vitis/enzimologia
12.
BMC Plant Biol ; 8: 78, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18627604

RESUMO

BACKGROUND: In traditional vine areas, the production should present a typicity that partly depends on the grapevine variety. Therefore, vine improvement is considered difficult because of the limited choice in the natural variability of the cultivars within the limits of their characteristics. A possibility to circumvent this problem is the use of somatic variability. In vitro somatic embryogenesis and organogenesis can lead to genotypic and phenotypic variations, described as somaclonal variation, that could be useful for the selection of improved grapevine genotypes. RESULTS: In order to study tissue culture-induced variation of grapevine, we have analysed 78 somaclones obtained from somatic embryos of two distinct cultivars using molecular marker techniques. SSRs were only useful to verify the conservation of the microsatellite genotype between the somaclones and the respective mother clones. AFLP polymorphism between mother clones and somaclones was 1.3-2.8 times higher to that found between clones. However, a majority of the somaclones (45/78) exhibited only few changes. Seven and five somaclones of 'Chardonnay 96' and 'Syrah 174', respectively, which covered at least all polymorphic loci found in AFLP analysis were used for MSAP study. All of the 120 polymorphic fragments were found only in the somaclones. The percentage of full methylation at CCGG recognition sites was slightly higher in somaclones due to more polymorphic bands generated after cleavage by EcoRI/HpaII. Different digestion patterns revealed different methylation status, especially different levels of de-methylation, that are the consequence of the in vitro culture. CONCLUSION: MSAP highlights DNA methylation variation in somaclones compared to mother clones and, therefore, is a powerful tool for genotypic characterisation of somatic embryo-derived grapevines. The detection of the same polymorphic bands in numerous somaclones of different cultivars suggests the possibility of hot spots of DNA methylation variation. SSR profiles of the 'Chardonnay' and 'Syrah' somaclones were the same as of the respective mother clones. The somaclones exhibited a higher AFLP variation than clones obtained via traditional clonal selection in the field. Therefore, somatic embryogenesis through in vitro culture technique could be useful for the selection of improved cultivars with subtle changes but conserving their main characteristics.


Assuntos
Metilação de DNA , Polimorfismo Genético , Vitis/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA de Plantas/genética , Epigênese Genética , Marcadores Genéticos , Genótipo , Repetições de Microssatélites , Folhas de Planta/genética , Técnicas de Cultura de Tecidos , Vitis/embriologia
13.
Plant Physiol Biochem ; 46(4): 469-81, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17988883

RESUMO

The reduction of phytochemicals applied to grapevine relies on the development of alternative strategies involving activation of the plant's own defense system. The aim of this work was to study the signaling of defense responses to pathogens in Vitis vinifera. We identified in V. vinifera cv. Chardonnay two putative regulatory elements, VvNHL1 and VvEDS1, with similarity to Arabidopsis defense regulators NDR1 and EDS1. Expression studies of these putative signaling genes together with other known grape defense genes show that they are differentially regulated by salicylic acid and jasmonate-ethylene treatments, as well as by inoculation with different types of pathogens. The expression of VvEDS1 was stimulated by salicylic acid treatment, Botrytis cinerea and Plasmopara viticola inoculation, whereas VvNHL1 was repressed by B. cinerea. VvNHL1 overexpression introduced in Arabidopsis ndr1 mutant did not complement the mutation in terms of sensitivity to avirulent Pseudomonas syringae pv. tomato. Moreover, we observed a weakened resistance to B. cinerea of ndr1 mutants overexpressing VvNHL1, which may be related to cell death enhancement. Together, our results identify two new pathogen-responsive regulatory elements in Vitis vinifera, with potential roles in pathogen defense.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Doenças das Plantas , Elementos de Resposta , Transdução de Sinais , Vitis/metabolismo , Doenças das Plantas/microbiologia
14.
BMC Plant Biol ; 5: 20, 2005 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16194273

RESUMO

BACKGROUND: Grapevine can be a periclinal chimera plant which is composed at least of two distinct cell layers (L1, L2). When the cell layers of this plant are separated by passage through somatic embryogenesis, regenerated plants could show distinct DNA profiles and a novel phenotype which proved different from that of the parent plant. RESULTS: Genetically Chardonnay clone 96 is a periclinal chimera plant in which is L1 and L2 cell layers are distinct. Plants obtained via organogenesis through meristematic bulks are shown to be composed of both cell layers. However, plants regenerated through somatic embryogenesis starting from anthers or nodal explants are composed only of L1 cells. These somaclones do not show phenotypic differences to the parental clone up to three years after regeneration. Interestingly, the only somaclone showing an atypical phenotype (asymmetric leave) shows a genotypic modification. CONCLUSION: These results suggest that the phenotype of Chardonnay 96 does not result from an interaction between the two distinct cell layers L1 and L2. If phenotype conformity is further confirmed, somatic embryogenesis will result in true-to-type somaclones of Chardonnay 96 and would be well suitable for gene transfer.


Assuntos
Quimera/genética , Vitis/embriologia , Vitis/genética , Clonagem de Organismos , Marcadores Genéticos , Genótipo , Meristema/anatomia & histologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Organogênese/genética , Fenótipo , Brotos de Planta/anatomia & histologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Regeneração/genética , Vitis/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA