Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Thromb Haemost ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653482

RESUMO

BACKGROUND: Platelet glycoprotein VI (GPVI) stimulation activates the tyrosine kinases Syk and Btk, and the effector proteins phospholipase Cγ 2 (PLCγ2) and protein kinase C (PKC). Here, the activation sequence, crosstalk, and downstream effects of this Syk-Btk-PKC signalosome in human platelets were analyzed. METHODS AND RESULTS: Using immunoblotting, we quantified 14 regulated phospho-sites in platelets stimulated by convulxin with and without inhibition of Syk, Btk, or PKC. Convulxin induced fast, reversible tyrosine phosphorylation (pY) of Syk, Btk, LAT, and PLCγ2, followed by reversible serine/threonine phosphorylation (pS/T) of Syk, Btk, and downstream kinases MEK1/2, Erk1/2, p38, and Akt. Syk inhibition by PRT-060318 abolished all phosphorylations, except Syk pY352. Btk inhibition by acalabrutinib strongly decreased Btk pY223/pS180, Syk pS297, PLCγ2 pY759/Y1217, MEK1/2 pS217/221, Erk1/2 pT202/Y204, p38 pT180/Y182, and Akt pT308/S473. PKC inhibition by GF109203X abolished most pS/T phosphorylations except p38 pT180/Y182 and Akt pT308, but enhanced most Y-phosphorylations. Acalabrutinib, but not GF109203X, suppressed convulxin-induced intracellular Ca2+ mobilization, whereas all three protein kinase inhibitors abolished degranulation and αIIbß3 integrin activation assessed by flow cytometry. Inhibition of autocrine ADP effects by AR-C669931 partly diminished convulxin-triggered degranulation. CONCLUSION: Kinetic analysis of GPVI-initiated multisite protein phosphorylation in human platelets demonstrates multiple phases and interactions of tyrosine and serine/threonine kinases with activation-altering feedforward and feedback loops partly involving PKC. The protein kinase inhibitor effects on multisite protein phosphorylation and functional readouts reveal that the signaling network of Syk, Btk, and PKC controls platelet granule exocytosis and αIIbß3 integrin activation.

2.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175486

RESUMO

Bruton's tyrosine kinase (Btk) and spleen tyrosine kinase (Syk) are major signaling proteins in human platelets that are implicated in atherothrombosis and thrombo-inflammation, but the mechanisms controlling their activities are not well understood. Previously, we showed that Syk becomes phosphorylated at S297 in glycoprotein VI (GPVI)-stimulated human platelets, which limits Syk activation. Here, we tested the hypothesis that protein kinases C (PKC) and A (PKA) and protein phosphatase 2A (PP2A) jointly regulate GPVI-induced Btk activation in platelets. The GPVI agonist convulxin caused rapid, transient Btk phosphorylation at S180 (pS180↑), Y223 and Y551, while direct PKC activation strongly increased Btk pS180 and pY551. This increase in Btk pY551 was also Src family kinase (SFK)-dependent, but surprisingly Syk-independent, pointing to an alternative mechanism of Btk phosphorylation and activation. PKC inhibition abolished convulxin-stimulated Btk pS180 and Syk pS297, but markedly increased the tyrosine phosphorylation of Syk, Btk and effector phospholipase Cγ2 (PLCγ2). PKA activation increased convulxin-induced Btk activation at Y551 but strongly suppressed Btk pS180 and Syk pS297. PP2A inhibition by okadaic acid only increased Syk pS297. Both platelet aggregation and PLCγ2 phosphorylation with convulxin stimulation were Btk-dependent, as shown by the selective Btk inhibitor acalabrutinib. Together, these results revealed in GPVI-stimulated platelets a transient Syk, Btk and PLCγ2 phosphorylation at multiple sites, which are differentially regulated by PKC, PKA or PP2A. Our work thereby demonstrated the GPVI-Syk-Btk signalosome as a tightly controlled protein kinase network, in agreement with its role in atherothrombosis.


Assuntos
Proteína Quinase C , Proteína Fosfatase 2 , Humanos , Tirosina Quinase da Agamaglobulinemia/metabolismo , Plaquetas/metabolismo , Fosfolipase C gama/metabolismo , Fosforilação , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteína Quinase C/metabolismo , Proteína Fosfatase 2/metabolismo , Quinase Syk/metabolismo
3.
Platelets ; 33(6): 859-868, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34845961

RESUMO

Cyclic nucleotides (cAMP and cGMP) and corresponding protein kinases, protein kinase A (PKA) and protein kinase G (PKG), are the main intracellular mediators of endothelium-derived platelet inhibitors. Pharmacological PKA/PKG inhibitors are often used to discriminate between these two kinase activities and to analyze their underlying mechanisms. Previously we showed that all widely used PKG inhibitors (KT5823, DT3, RP isomers) either did not inhibit PKG or inhibited and even activated platelets independently from PKG. In this study, we examined several PKA inhibitors as well as inhibitors of adenylate and guanylate cyclases to reveal their effects on platelets and establish whether they are mediated by PKA/PKG. The commonly used PKA inhibitor H89 inhibited both PKA and PKG but PKA-independently inhibited thrombin-induced platelet activation. In our experiments, KT5720 did not inhibit PKA and had no effect on platelet activation. PKI inhibited PKA activity in platelets but also strongly PKA-independently activated platelets. Inhibition of adenylate and guanylate cyclases may be an alternative approach to analyze PKA/PKG function. Based on our previous and presented data, we conclude that all results where the mentioned PKA inhibitors were used for the analysis of PKA activity in intact platelets should be considered with caution.


Assuntos
AMP Cíclico , Proteínas Quinases Dependentes de GMP Cíclico , Plaquetas/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular
4.
Hamostaseologie ; 41(3): 206-216, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34192779

RESUMO

Comprehensive proteomic analyses of human and murine platelets established an extraordinary intracellular repertoire of signaling components, which control crucial functions. The spectrum of platelet serine/threonine protein kinases (more than 100) includes the AGC family (protein kinase A, G, C [PKA, PKG, PKC]), the mitogen-activated protein kinases (MAPKs), and others. PKA and PKG have multiple significantly overlapping substrates in human platelets, which possibly affect functions with clear "signaling nodes" of regulation by multiple protein kinases/phosphatases. Signaling nodes are intracellular Ca2+ stores, the contractile system (myosin light chains), and other signaling components such as G-proteins, protein kinases, and protein phosphatases. An example for this fine-tuning is the tyrosine kinase Syk, a crucial component of platelet activation, which is controlled by several serine/threonine and tyrosine protein kinases as well as phosphatases. Other protein kinases including PKA/PKG modulate protein phosphatase 2A, which may be a master regulator of MAPK signaling in human platelets. Protein kinases and in particular MAPKs are targeted by an increasing number of clinically used inhibitors. However, the precise regulation and fine-tuning of these protein kinases and their effects on other signaling components in platelets are only superficially understood-just the beginning. However, promising future approaches are in sight.


Assuntos
Plaquetas/efeitos dos fármacos , Fosfoproteínas Fosfatases/farmacologia , Proteínas Quinases/farmacologia , Serina/metabolismo , Treonina/metabolismo , Animais , Plaquetas/metabolismo , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Animais , Cadeias Leves de Miosina/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Ativação Plaquetária/genética , Proteômica , Transdução de Sinais , Quinase Syk/metabolismo
5.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255747

RESUMO

Distinct membrane receptors activate platelets by Src-family-kinase (SFK)-, immunoreceptor-tyrosine-based-activation-motif (ITAM)-dependent stimulation of spleen tyrosine kinase (Syk). Recently, we reported that platelet activation via glycoprotein (GP) VI or GPIbα stimulated the well-established Syk tyrosine (Y)-phosphorylation, but also stoichiometric, transient protein kinase C (PKC)-mediated Syk serine(S)297 phosphorylation in the regulatory interdomain-B, suggesting possible feedback inhibition. The transient nature of Syk S297 phosphorylation indicated the presence of an unknown Syk pS297 protein phosphatase. In this study, we hypothesize that the S-protein phosphatase 2A (PP2A) is responsible for Syk pS297 dephosphorylation, thereby affecting Syk Y-phosphorylation and activity in human washed platelets. Using immunoblotting, we show that specific inhibition of PP2A by okadaic acid (OA) alone leads to stoichiometric Syk S297 phosphorylation, as analyzed by Zn2+-Phos-tag gels, without affecting Syk Y-phosphorylation. Pharmacological inhibition of Syk by PRT060318 or PKC by GF109203X only minimally reduced OA-induced Syk S297 phosphorylation. PP2A inhibition by OA preceding GPVI-mediated platelet activation induced by convulxin extended Syk S297 phosphorylation but inhibited Syk Y-phosphorylation. Our data demonstrate a novel biochemical and functional link between the S-protein phosphatase PP2A and the Y-protein kinase Syk in human platelets, and suggest that PP2A represents a potential enhancer of GPVI-mediated Syk activity caused by Syk pS297 dephosphorylation.


Assuntos
Plaquetas/metabolismo , Ativação Plaquetária/genética , Proteína Fosfatase 2/genética , Quinase Syk/genética , Humanos , Fosforilação , Agregação Plaquetária/genética , Proteínas Tirosina Quinases/genética , Transdução de Sinais/genética
6.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153214

RESUMO

Diabetes is associated with platelet hyper-reactivity and enhanced risk of thrombosis development. Here we compared protein expression in platelets from healthy donors and diabetic patients to identify differentially expressed proteins and their possible function in platelet activation. Mass spectrometry analyses identified cyclin Y (CCNY) in platelets and its reduced expression in platelets from diabetic patients, a phenomenon that could be attributed to the increased activity of calpains. To determine the role of CCNY in platelets, mice globally lacking the protein were studied. CCNY-/- mice demonstrated lower numbers of circulating platelets but platelet responsiveness to thrombin and a thromboxane A2 analogue were comparable with that of wild-type mice, as was agonist-induced α and dense granule secretion. CCNY-deficient platelets demonstrated enhanced adhesion to fibronectin and collagen as well as an attenuated spreading and clot retraction, indicating an alteration in "outside in" integrin signalling. This phenotype was accompanied by a significant reduction in the agonist-induced tyrosine phosphorylation of ß3 integrin. Taken together we have shown that CCNY is present in anucleated platelets where it is involved in the regulation of integrin-mediated outside in signalling associated with thrombin stimulation.


Assuntos
Plaquetas/metabolismo , Ciclinas/genética , Integrinas/metabolismo , Adulto , Animais , Ciclinas/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Ativação Plaquetária/genética , Adesividade Plaquetária/genética , Agregação Plaquetária/genética , Transdução de Sinais/genética , Adulto Jovem
7.
J Thromb Haemost ; 18(11): 3002-3012, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32692911

RESUMO

BACKGROUND: Circulating platelets are maintained in an inactive state by the endothelial lining of the vasculature. Endothelium-derived prostacyclin and nitric oxide stimulate cAMP- and cGMP-dependent kinases, PKA and PKG, to inhibit platelets. PKA and PKG effects include the inhibition of the GTPase RhoA, which has been suggested to involve the direct phosphorylation of RhoA on serine 188. OBJECTIVES: We wanted to confirm RhoA S188 phosphorylation by cyclic nucleotide-dependent kinases and to identify possible alternative mechanisms of RhoA regulation in platelets. METHODS: Phosphoproteomics data of human platelets were used to identify candidate PKA and PKG substrates. Phosphorylation of individual proteins was studied by Western blotting and Phos-tag gel electrophoresis in human platelets and transfected HEK293T cells. Pull-down assays were performed to analyze protein interaction and function. RESULTS: Our data indicate that RhoA is not phosphorylated by PKA in platelets. Instead, we provide evidence that cyclic nucleotide effects are mediated through the phosphorylation of the RhoA-specific GTPase-activating protein Myo9b and the guanine nucleotide exchange factor GEF-H1. We identify Myo9b S1354 and guanine nucleotide exchange factor-H1 (GEF-H1) S886 as PKA and PKG phosphorylation sites. Myo9b S1354 phosphorylation enhances its GTPase activating protein function leading to reduced RhoA-GTP levels. GEF-H1 S886 phosphorylation stimulates binding of 14-3-3ß and has been shown to inhibit GEF function by facilitating binding of GEF-H1 to microtubules. Microtubule disruption increases RhoA-GTP levels confirming the importance of GEF-H1 in platelets. CONCLUSION: Phosphorylation of RhoA regulatory proteins Myo9b and GEF-H1, but not RhoA itself, is involved in cyclic nucleotide-mediated control of RhoA in human platelets.


Assuntos
Plaquetas , Miosinas , Nucleotídeos Cíclicos , Fatores de Troca de Nucleotídeo Guanina Rho , Plaquetas/metabolismo , Células HEK293 , Humanos , Fosforilação , Proteína rhoA de Ligação ao GTP/metabolismo
8.
FASEB J ; 34(7): 9337-9357, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32463151

RESUMO

Thrombin converts fibrinogen to fibrin and activates blood and vascular cells in thrombo-inflammatory diseases. Platelets are amplifiers of thrombin formation when activated by leukocyte- and vascular cell-derived thrombin. CD36 on platelets acts as sensitizer for molecules with damage-associated molecular patterns, thereby increasing platelet reactivity. Here, we investigated the role of CD36 in thrombin-generation on human platelets, including selected patients with advanced chronic kidney disease (CKD). Platelets deficient in CD36 or blocked by anti-CD36 antibody FA6.152 showed impaired thrombin generation triggered by thrombin in calibrated automated thrombography. Using platelets with congenital function defects, blocking antibodies, pharmacological inhibitors, and factor-depleted plasma, CD36-sensitive thrombin generation was dependent on FXI, fibrin, and platelet signaling via GPIbα and SFKs. CD36-deficiency or blocking suppressed thrombin-induced platelet αIIbß3 activation, granule exocytosis, binding of adhesion proteins and FV, FVIII, FIX, FX, but not anionic phospholipid exposure determined by flow cytometry. CD36 ligated specifically soluble fibrin, which recruited distinct coagulation factors via thiols. Selected patients with CKD showed elevated soluble fibrin plasma levels and enhanced thrombin-induced thrombin generation, which was normalized by CD36 blocking. Thus, CD36 is an important amplifier of platelet-dependent thrombin generation when exposure of anionic phospholipids is limited. This pathway might contribute to hypercoagulability in CKD.


Assuntos
Plaquetas/metabolismo , Antígenos CD36/metabolismo , Fator XI/metabolismo , Fibrina/metabolismo , Insuficiência Renal Crônica/metabolismo , Trombina/metabolismo , Fatores de Coagulação Sanguínea , Humanos , Ativação Plaquetária , Insuficiência Renal Crônica/patologia
9.
Cells ; 9(2)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085646

RESUMO

The cell cycle is controlled by microtubule-associated serine/threonine kinase-like (MASTL), which phosphorylates the cAMP-regulated phosphoproteins 19 (ARPP19) at S62 and 19e/α-endosulfine (ENSA) at S67and converts them into protein phosphatase 2A (PP2A) inhibitors. Based on initial proteomic data, we hypothesized that the MASTL-ENSA/ARPP19-PP2A pathway, unknown until now in platelets, is regulated and functional in these anucleate cells. We detected ENSA, ARPP19 and various PP2A subunits (including seven different PP2A B-subunits) in proteomic studies of human platelets. ENSA-S109/ARPP19-S104 were efficiently phosphorylated in platelets treated with cAMP- (iloprost) and cGMP-elevating (NO donors/riociguat) agents. ENSA-S67/ARPP19-S62 phosphorylations increased following PP2A inhibition by okadaic acid (OA) in intact and lysed platelets indicating the presence of MASTL or a related protein kinase in human platelets. These data were validated with recombinant ENSA/ARPP19 and phospho-mutants using recombinant MASTL, protein kinase A and G. Both ARPP19 phosphorylation sites S62/S104 were dephosphorylated by platelet PP2A, but only S62-phosphorylated ARPP19 acted as PP2A inhibitor. Low-dose OA treatment of platelets caused PP2A inhibition, diminished thrombin-stimulated platelet aggregation and increased phosphorylation of distinct sites of VASP, Akt, p38 and ERK1/2 MAP kinases. In summary, our data establish the entire MASTL(like)-ENSA/ARPP19-PP2A pathway in human platelets and important interactions with the PKA, MAPK and PI3K/Akt systems.


Assuntos
Plaquetas/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Doadores de Sangue , Plaquetas/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células HEK293 , Humanos , Ácido Okadáico/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/genética , Proteína Fosfatase 2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção
10.
Int J Mol Sci ; 21(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881809

RESUMO

The spleen tyrosine kinase (Syk) is essential for immunoreceptor tyrosine-based activation motif (ITAM)-dependent platelet activation, and it is stimulated by Src-family kinase (SFK)-/Syk-mediated phosphorylation of Y352 (interdomain-B) and Y525/526 (kinase domain). Additional sites for Syk phosphorylation and protein interactions are known but remain elusive. Since Syk S297 phosphorylation (interdomain-B) was detected in platelets, we hypothesized that this phosphorylation site regulates Syk activity via protein kinase C (PKC)-and cyclic adenosine monophosphate (cAMP)-dependent pathways. ADP, the GPVI-agonist convulxin, and the GPIbα-agonist echicetin beads (EB) were used to stimulate human platelets with/without effectors. Platelet aggregation and intracellular messengers were analyzed, along with phosphoproteins, by immunoblotting using phosphosite-specific antibodies or phos-tags. ADP, convulxin, and EB upregulated Syk S297 phosphorylation, which was inhibited by iloprost (cAMP pathway). Convulxin-stimulated Syk S297 phosphorylation was stoichiometric, transient, abolished by the PKC inhibitor GF109203X, and mimicked by the PKC activator PDBu. Convulxin/EB stimulated Syk S297, Y352, and Y525/526 phosphorylation, which was inhibited by SFK and Syk inhibitors. GFX and iloprost inhibited convulxin/EB-induced Syk S297 phosphorylation but enhanced Syk tyrosine (Y352/Y525/526) and substrate (linker adaptor for T cells (LAT), phospholipase γ2 (PLC γ2)) phosphorylation. GFX enhanced convulxin/EB-increases of inositol monophosphate/Ca2+. ITAM-activated Syk stimulates PKC-dependent Syk S297 phosphorylation, which is reduced by SFK/Syk/PKC inhibition and cAMP. Inhibition of Syk S297 phosphorylation coincides with enhanced Syk activation, suggesting that S297 phosphorylation represents a mechanism for feedback inhibition in human platelets.


Assuntos
Plaquetas/metabolismo , Proteína Quinase C/metabolismo , Quinase Syk/metabolismo , Difosfato de Adenosina/farmacologia , Plaquetas/citologia , Cálcio/metabolismo , Venenos de Crotalídeos/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Humanos , Indóis/farmacologia , Lectinas Tipo C , Maleimidas/farmacologia , Fosfolipase C gama/metabolismo , Fosforilação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/química , Quinase Syk/antagonistas & inibidores , Venenos de Víboras/farmacologia
11.
mBio ; 10(5)2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641089

RESUMO

Atherosclerotic plaque development depends on chronic inflammation of the arterial wall. A dysbiotic gut microbiota can cause low-grade inflammation, and microbiota composition was linked to cardiovascular disease risk. However, the role of this environmental factor in atherothrombosis remains undefined. To analyze the impact of gut microbiota on atherothrombosis, we rederived low-density lipoprotein receptor-deficient (Ldlr-/- ) mice as germfree (GF) and kept these mice for 16 weeks on an atherogenic high-fat Western diet (HFD) under GF isolator conditions and under conventionally raised specific-pathogen-free conditions (CONV-R). In spite of reduced diversity of the cecal gut microbiome, caused by atherogenic HFD, GF Ldlr-/- mice and CONV-R Ldlr-/- mice exhibited atherosclerotic lesions of comparable sizes in the common carotid artery. In contrast to HFD-fed mice, showing no difference in total cholesterol levels, CONV-R Ldlr-/- mice fed control diet (CD) had significantly reduced total plasma cholesterol, very-low-density lipoprotein (VLDL), and LDL levels compared with GF Ldlr-/- mice. Myeloid cell counts in blood as well as leukocyte adhesion to the vessel wall at the common carotid artery of GF Ldlr-/- mice on HFD were diminished compared to CONV-R Ldlr-/- controls. Plasma cytokine profiling revealed reduced levels of the proinflammatory chemokines CCL7 and CXCL1 in GF Ldlr-/- mice, whereas the T-cell-related interleukin 9 (IL-9) and IL-27 were elevated. In the atherothrombosis model of ultrasound-induced rupture of the common carotid artery plaque, thrombus area was significantly reduced in GF Ldlr-/- mice relative to CONV-R Ldlr-/- mice. Ex vivo, this atherothrombotic phenotype was explained by decreased adhesion-dependent platelet activation and thrombus growth of HFD-fed GF Ldlr-/- mice on type III collagen.IMPORTANCE Our results demonstrate a functional role for the commensal microbiota in atherothrombosis. In a ferric chloride injury model of the carotid artery, GF C57BL/6J mice had increased occlusion times compared to colonized controls. Interestingly, in late atherosclerosis, HFD-fed GF Ldlr-/- mice had reduced plaque rupture-induced thrombus growth in the carotid artery and diminished ex vivo thrombus formation under arterial flow conditions.


Assuntos
Microbiota/fisiologia , Placa Aterosclerótica/metabolismo , Receptores de LDL/deficiência , Animais , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Masculino , Camundongos , Camundongos Mutantes , Microbiota/genética , Placa Aterosclerótica/genética , Receptores de LDL/genética
12.
Cell Commun Signal ; 17(1): 122, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519182

RESUMO

BACKGROUND: The glycoprotein (GP) Ib-IX-V complex is a unique platelet plasma membrane receptor, which is essential for platelet adhesion and thrombus formation. GPIbα, part of the GPIb-IX-V complex, has several physiological ligands such as von Willebrand factor (vWF), thrombospondin and distinct coagulation factors, which trigger platelet activation. Despite having an important role, intracellular GPIb-IX-V signaling and its regulation by other pathways are not well defined. Our aim was to establish the intracellular signaling response of selective GPIbα activation in human platelets, in particular the role of the tyrosine kinase Syk and its regulation by cAMP/PKA and cGMP/PKG pathways, respectively. We addressed this using echicetin beads (EB), which selectively bind to GPIbα and induce platelet aggregation. METHODS: Purified echicetin from snake Echis carinatus venom was validated by mass spectrometry. Washed human platelets were incubated with EB, in the presence or absence of echicetin monomers (EM), Src family kinase (SFK) inhibitors, Syk inhibitors and the cAMP- and cGMP-elevating agents iloprost and riociguat, respectively. Platelet aggregation was analyzed by light transmission aggregometry, protein phosphorylation by immunoblotting. Intracellular messengers inositolmonophosphate (InsP1) and Ca2+i were measured by ELISA and Fluo-3 AM/FACS, respectively. RESULTS: EB-induced platelet aggregation was dependent on integrin αIIbß3 and secondary mediators ADP and TxA2, and was antagonized by EM. EB stimulated Syk tyrosine phosphorylation at Y352, which was SFK-dependent and Syk-independent, whereas Y525/526 phosphorylation was SFK-dependent and partially Syk-dependent. Furthermore, phosphorylation of both Syk Y352 and Y525/526 was completely integrin αIIbß3-independent but, in the case of Y525/526, was partially ADP/TxA2-dependent. Syk activation, observed as Y352/ Y525/Y526 phosphorylation, led to the phosphorylation of direct substrates (LAT Y191, PLCγ2 Y759) and additional targets (Akt S473). PKA/PKG pathways inhibited EB-induced platelet aggregation and Akt phosphorylation but, surprisingly, enhanced Syk and LAT/PLCγ2 tyrosine phosphorylation. A similar PKA/PKG effect was confirmed with convulxin-/GPVI-stimulated platelets. EB-induced InsP1 accumulation/InsP3 production and Ca2+-release were Syk-dependent, but only partially inhibited by PKA/PKG pathways. CONCLUSION: EB and EM are specific agonists and antagonists, respectively, of GPIbα-mediated Syk activation leading to platelet aggregation. The cAMP/PKA and cGMP/PKG pathways do not inhibit but enhance GPIbα-/GPVI-initiated, SFK-dependent Syk activation, but strongly inhibit further downstream responses including aggregation. These data establish an important intracellular regulatory network induced by GPIbα.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Quinase Syk/metabolismo , Difosfato de Adenosina/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Iloprosta/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Fosforilação/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia
13.
Thromb Haemost ; 119(6): 916-929, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31005062

RESUMO

The direct thrombin inhibitor (DTI) dabigatran is a non-vitamin K antagonist oral anticoagulant for the prevention of stroke and systemic embolism in patients with non-valvular atrial fibrillation. In addition to its anti-thrombotic efficacy, dabigatran has been suggested to exert some pro-thrombotic effect due to fostering the ligation of thrombin to its high affinity platelet receptor glycoprotein (GP) Ibα in patients with atrial fibrillation. On the other hand, we provided evidence that a member of another class of DTIs, lepirudin, stimulates the inhibitory cyclic guanosine monophosphate (cGMP)/soluble guanylate cyclase pathway in human platelets. Here, we investigated the effect of lepirudin and dabigatran spiked to platelets from healthy volunteers on GPIbα-mediated platelet aggregation and agglutination. Ristocetin/von Willebrand factor (vWF)-induced aggregation of platelets in the presence or absence of plasma was significantly inhibited by lepirudin, dabigatran and D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone (PPACK). However, ristocetin/vWF-mediated platelet agglutination and binding of vWF to platelets were not affected by the DTIs. The anti-aggregatory effect was confirmed by using the GPIbα-specific agonist echicetin beads for human and murine platelets. DTIs diminished echicetin beads-induced Syk Y352 phosphorylation (used here as readout for an early signal occurring during echicetin-induced platelet aggregation), but did not inhibit adenosine diphosphate- or thromboxane A2-induced platelet aggregation. Thrombin was not generated in response to ristocetin/vWF or echicetin beads and therefore did not explain the inhibitory effect of the DTIs. Therapeutic concentration of lepirudin and dabigatran did not affect significantly platelet vasodilator-stimulated phosphoprotein S239 phosphorylation or cGMP and cyclic adenosine monophosphate levels. These data suggest that the DTIs, lepirudin and dabigatran, impair platelet activation measured during platelet aggregation induced by ristocetin/vWF or echicetin beads.


Assuntos
Antitrombinas/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Plaquetas/fisiologia , Dabigatrana/uso terapêutico , Agregação Plaquetária/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Hirudinas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ligação Proteica , Proteínas Recombinantes/uso terapêutico , Ristocetina/farmacologia , Fator de von Willebrand/metabolismo
14.
Hamostaseologie ; 39(2): 140-151, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30453341

RESUMO

As circulating sentinels of vascular integrity, platelets act as crucial haemostatic cells as well as important inflammatory and immune cells, whereas under pathological conditions platelets drive thrombotic as well as non-thrombotic diseases related to chronic inflammation. In addition, platelets serve as an important cellular model to study the biology and pharmacology of signal transduction pathways. Platelet inhibition and activation responses are mediated by multiple signalling networks, which are tightly regulated by balanced catalysis of protein phosphorylation and dephosphorylation through protein kinases and protein phosphatases, respectively. However, we are only at the beginning of understanding the complexity of interacting signalling pathways and their impact on platelet function. Here, we review current functional and proteomic approaches that lead to novel concepts of understanding the proteome, kinome and phosphatome of human platelets. A more in-depth understanding of both protein kinases and protein phosphatases using human platelets will contribute to evaluate their further diagnostic and therapeutic potential in inflammation- and immune-mediated diseases.


Assuntos
Plaquetas/citologia , Proteômica/métodos , Transdução de Sinais , Plaquetas/metabolismo , Plaquetas/fisiologia , Humanos , Fosfoproteínas/metabolismo , Ativação Plaquetária , Proteínas Quinases/metabolismo
15.
Biol Open ; 8(1)2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30498015

RESUMO

The prototypic protein disulfide isomerase (PDI), encoded by the P4HB gene, has been described as a survival factor in ischemic cardiomyopathy. However, the role of protein disulfide isomerase associated 6 (PDIA6) under hypoxic conditions in the myocardium remains enigmatic, and it is unknown whether the gut microbiota influences the expression of PDI and PDIA6 under conditions of acute myocardial infarction. Here, we revealed that, in addition to the prototypic PDI, the PDI family member PDIA6, a regulator of the unfolded protein response, is upregulated in the mouse cardiomyocyte cell line HL-1 when cultured under hypoxia. In vivo, in the left anterior descending artery (LAD) ligation mouse model of acute myocardial infarction, similar to PDI, PDIA6 protein expression was enhanced in the infarcted area (LAD+) relative to uninfarcted sham tissue or the neighbouring area at risk (LAD-) of C57BL/6J mice. Interestingly, we found that ex-germ-free (ex-GF) mice subjected to the LAD ligation model for 24 h had a reduced ejection fraction compared with their conventionally raised (CONV-R) SPF controls. Furthermore, the LAD+ area in the infarcted heart of ex-GF mice showed reduced PDIA6 expression relative to CONV-R controls, suggesting that the presence of a gut microbiota enhanced LAD ligation-triggered PDIA6 expression. Collectively, our results demonstrate that PDIA6 is upregulated in cardiomyocytes as a consequence of hypoxia. In the LAD mouse model, PDIA6 was also increased in the infarcted area under in vivo conditions, but this increase was suppressed in ex-GF mice relative to CONV-R controls.This article has an associated First Person interview with the first author of the paper.

16.
Nitric Oxide ; 76: 71-80, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29550521

RESUMO

Platelets are circulating sentinels of vascular integrity and are activated, inhibited, or modulated by multiple hormones, vasoactive substances or drugs. Endothelium- or drug-derived NO strongly inhibits platelet activation via activation of the soluble guanylate cyclase (sGC) and cGMP elevation, often in synergy with cAMP-elevation by prostacyclin. However, the molecular mechanisms and diversity of cGMP effects in platelets are poorly understood and sometimes controversial. Recently, we established the quantitative human platelet proteome, the iloprost/prostacyclin/cAMP/protein kinase A (PKA)-regulated phosphoproteome, and the interactions of the ADP- and iloprost/prostacyclin-affected phosphoproteome. We also showed that the sGC stimulator riociguat is in vitro a highly specific inhibitor, via cGMP, of various functions of human platelets. Here, we review the regulatory role of the cGMP/protein kinase G (PKG) system in human platelet function, and our current approaches to establish and analyze the phosphoproteome after selective stimulation of the sGC/cGMP pathway by NO donors and riociguat. Present data indicate an extensive and diverse NO/riociguat/cGMP phosphoproteome, which has to be compared with the cAMP phosphoproteome. In particular, sGC/cGMP-regulated phosphorylation of many membrane proteins, G-proteins and their regulators, signaling molecules, protein kinases, and proteins involved in Ca2+ regulation, suggests that the sGC/cGMP system targets multiple signaling networks rather than a limited number of PKG substrate proteins.


Assuntos
Plaquetas/metabolismo , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Humanos , Ativação Plaquetária
17.
Sci Rep ; 8(1): 3013, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445199

RESUMO

The role of leukocytes in deep vein thrombosis (DVT) resolution is incompletely understood. We determined how depletion of lysozyme positive (LysM+) cells and a switched-off type 1 immune response influences thrombus resolution. DVT was induced in 12-week-old male mice by inferior vena cava (IVC) stenosis. Toxin mediated depletion of myeloid cells improved thrombus resolution in mice with Cre-inducible expression of the diphtheria toxin receptor in LysM+ cells. This correlated with decreased CD45+ cells, a population shift of Gr-1+ to Gr-1- CD11b+ myelomonocytic cells (flow cytometry) and an increase in CC-chemokine ligand 2, interleukin-4 and interleukin-10 mRNA expressions. Tbx21-/- mice (lacking transcription factor T-bet and marked by an attenuated type 1 immune response) with DVT had faster thrombus resolution, a reduction of pro-inflammatory Ly6Chi monocytes in thrombi and decreased interleukin-12p40 mRNA expression than control mice resulting in increased vascular endothelial growth factor mRNA expression and improved neovascularization of thrombotic veins. Transfer of Tbx21-/- bone marrow into irradiated Tbx21+/+ recipients lead to accelerated thrombus resolution with lower T-bet-dependent interleukin-12p40 mRNA levels following IVC-stenosis. We conclude that inhibition of Tbet+ interleukin-12 forming myelomonocytic cells accelerated thrombus resolution. Modulating the inflammatory immune response might be an approach to improve therapy of DVT.


Assuntos
Subunidade p40 da Interleucina-12/metabolismo , Monócitos/fisiologia , Proteínas com Domínio T/metabolismo , Trombose Venosa/imunologia , Animais , Antígenos Ly/metabolismo , Toxina Diftérica/genética , Modelos Animais de Doenças , Humanos , Subunidade p40 da Interleucina-12/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neovascularização Fisiológica , Proteínas com Domínio T/genética , Quimeras de Transplante , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Veia Cava Inferior/cirurgia
18.
Artigo em Alemão | MEDLINE | ID: mdl-29189872

RESUMO

BACKGROUND: Primary care physicians (PCPs) play a crucial role for guideline-oriented intervention in patients with depression. OBJECTIVES: Based on a diagnostic screening questionnaire, this study investigates the sensitivity of PCPs to recognize patients with depression as well as the factors facilitating recognition and concordant diagnostic decisions. METHOD: In a cross-sectional epidemiological study in six regions of Germany, 3563 unselected patients filled in questionnaires on mental and physical complaints and were diagnostically evaluated by their PCP (N = 253). The patient reports on an established Depression-Screening-Questionnaire (DSQ), which allows the approximate derivation of an ICD-10 depression diagnosis, were compared with the physician diagnosis (N = 3211). In a subsample of discordant cases a comprehensive standardized clinical-diagnostic interview (DIA-X/CIDI) was applied. RESULTS: On the study day, the prevalence of ICD-10 depression was 14.3% according to the DSQ and 10.7% according to the physician diagnosis. Half of the patients identified by DSQ were diagnosed with depression by their physician and two thirds were recognized as mental disorder cases. More severe depression symptomatology and the persistent presence of main depression symptoms were related to better recognition and concordant diagnostic decisions. Diagnostic validation interviews confirmed the DSQ diagnosis in the majority of the false-negative cases. Indications for at least a previous history of depression were found in up to 70% of false-positive cases. CONCLUSION: Given the high prevalence of depression in primary care patients, there is continued need to improve the recognition and diagnosis of these patients to assure guideline-oriented treatment.


Assuntos
Transtorno Depressivo/epidemiologia , Medicina Geral/estatística & dados numéricos , Atenção Primária à Saúde/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Transtorno Depressivo/diagnóstico , Feminino , Alemanha , Humanos , Entrevista Psicológica , Masculino , Programas de Rastreamento/estatística & dados numéricos , Pessoa de Meia-Idade , Psicometria/estatística & dados numéricos , Sensibilidade e Especificidade , Inquéritos e Questionários , Adulto Jovem
19.
PLoS One ; 12(12): e0187798, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29216204

RESUMO

In this paper, we analyze the trajectory and body attitude data of Felix Baumgartner's supersonic free fall through the atmosphere on October 14, 2012. As one of us (UW) was scientific advisor to the Red Bull Stratos team, the analysis is based on true body data (body mass, wetted pressure suit surface area) and actual atmospheric data from weather balloon measurements. We also present a fully developed theoretical analysis and solution of atmospheric free fall. By matching the flight data against this solution, we are able to derive and track the drag coefficient CD from the subsonic to the transonic and supersonic regime, and back again. Although the subsonic drag coefficient is the expected CD = 0.60 ± 0.05, surprisingly the transonic compressibility drag coefficient is only 19% of the expected value. We provide a plausible explanation for this unexpected result.


Assuntos
Aceleração , Modelos Teóricos , Movimento , Adulto , Altitude , Atmosfera , Humanos , Masculino , Roupa de Proteção , Incerteza
20.
Sci Rep ; 7(1): 7621, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790378

RESUMO

Under ischemic conditions, tissues are exposed to hypoxia. Although human physiology, to a certain extent, can adapt to hypoxic conditions, the impact of low oxygen levels on platelet function is unresolved. Therefore, we explored how reduction of atmospheric oxygen levels to 1% might affect agonist-induced aggregation and static adhesion of isolated human platelets. We uncovered that isolated, washed human platelets exposed to hypoxic conditions show reduced thrombin receptor-activating peptide-6 (TRAP-6) and convulxin-induced aggregation. Of note, this hypoxia-triggered effect was not observed in platelet-rich plasma. Independent of the agonist used (TRAP-6, ADP), activation of the platelet fibrinogen receptor integrin αIIbß3 (GPIIbIIIa, CD41/CD61) was strongly reduced at 1% and 8% oxygen. The difference in agonist-induced integrin αIIbß3 activation was apparent within 5 minutes of stimulation. Following hypoxia, re-oxygenation resulted in the recovery of integrin αIIbß3 activation. Importantly, platelet secretion was not impaired by hypoxia. Static adhesion experiments revealed decreased platelet deposition to fibrinogen coatings, but not to collagen or vitronectin coatings, indicating that specifically the function of the integrin subunit αIIb is impaired by exposure of platelets to reduced oxygen levels. Our results reveal an unexpected effect of oxygen deprivation on platelet aggregation mediated by the fibrinogen receptor integrin αIIbß3.


Assuntos
Plaquetas/efeitos dos fármacos , Oxigênio/farmacologia , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Difosfato de Adenosina/farmacologia , Plaquetas/citologia , Plaquetas/metabolismo , Hipóxia Celular , Colágeno/química , Colágeno/metabolismo , Venenos de Crotalídeos/farmacologia , Fibrinogênio/química , Fibrinogênio/metabolismo , Expressão Gênica , Humanos , Lectinas Tipo C , Fragmentos de Peptídeos/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Plasma Rico em Plaquetas/efeitos dos fármacos , Cultura Primária de Células , Vitronectina/química , Vitronectina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA