RESUMO
Introduction: Five to eight percent of the world population currently suffers from at least one autoimmune disorder. Despite multiple immune modulatory therapies for autoimmune demyelinating diseases of the central nervous system, these treatments can be limiting for subsets of patients due to adverse effects and expense. To circumvent these barriers, we investigated a nutritional intervention in mice undergoing experimental autoimmune encephalomyelitis (EAE), a model of autoimmune-mediated demyelination that induces visual and motor pathologies similar to those experienced by people with multiple sclerosis (MS). Methods: EAE was induced in female and male mice and the impact of limiting dietary carbohydrates by feeding a ketogenic diet (KD) enriched in medium chain triglycerides (MCTs), alpha-linolenic acid (an omega-3 fatty acid), and fiber was evaluated in both a preventive regimen (prior to immunization with MOG antigen) and an interventional regimen (following the onset of symptoms). Motor scores were assigned daily and visual acuity was measured using optokinetic tracking. Immunohistochemical analyses of optic nerves were done to assess inflammatory infiltrates and myelination status. Fatty acid and cytokine profiling from blood were performed to evaluate systemic inflammatory status. Results: The KD was efficacious when fed as a preventive regimen as well as when initiated as an interventional regimen following symptom onset. The KD minimally impacted body weight during the experimental time course, increased circulating ketones, prevented motor and ocular deficits, preserved myelination of the optic nerve, and reduced infiltration of immune cells to optic nerves. The KD also increased anti-inflammatory-associated omega-3 fatty acids in the plasma and reduced select cytokines in the circulation associated with EAE-mediated pathological inflammation. Discussion: In light of ongoing clinical trials using dietary strategies to treat people with MS, these findings support that a KD enriched in MCTs, omega-3 fatty acids, and fiber promotes a systemic anti-inflammatory milieu and ameliorates autoimmune-induced demyelinating visual and motor deficits.
RESUMO
Neuronal oxidative stress has been implicated in aging and neurodegenerative disease. Here we investigated the impact of elevated oxidative stress induced in mouse spinal cord by deletion of Mn-Superoxide dismutase (MnSOD) using a neuron specific Cre recombinase in Sod2 floxed mice (i-mn-Sod2 KO). Sod2 deletion in spinal cord neurons was associated with mitochondrial alterations and peroxide generation. Phenotypically, i-mn-Sod2 KO mice experienced hindlimb paralysis and clasping behavior associated with extensive demyelination and reduced nerve conduction velocity, axonal degeneration, enhanced blood brain barrier permeability, elevated inflammatory cytokines, microglia activation, infiltration of neutrophils and necroptosis in spinal cord. In contrast, spinal cord motor neuron number, innervation of neuromuscular junctions, muscle mass, and contractile function were not altered. Overall, our findings show that loss of MnSOD in spinal cord promotes a phenotype of demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis.
Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Camundongos , Animais , Mitocôndrias , Superóxido Dismutase/genética , Neurônios Motores , Superóxido Dismutase-1/genética , Fenótipo , Paralisia/genética , Inflamação/genéticaRESUMO
Purpose: Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has therapeutic efficacy in numerous animal models of human disease, including mouse models of retinal degeneration. However, despite dozens of clinical trials, the compound remains to be tested as a clinical treatment for ocular disease. Numerous cellular activities of SFN have been identified, including the activation of Nrf2, a transcription factor that induces a battery of target gene products to neutralize oxidative and xenobiotic stresses. As Nrf2 expression and function reportedly decrease with aging, we tested whether the loss of the transcription factor limits the therapeutic efficacy of SFN against retinal degeneration. Methods: Six- to 8-month-old wild-type and Nrf2 knockout mice were treated with SFN beginning 1 month after ribozyme-mediated knockdown of superoxide dismutase 2 (SOD2) mRNA in the RPE. The impacts of MnSOD (the protein product of SOD2) knockdown and the efficacy of SFN were evaluated using a combination of electroretinography (ERG), spectral domain optical coherence tomography (SD-OCT), and postmortem histology. Results: SFN restored the ERG photopic b-wave suppressed by MnSOD loss in wild-type mice, but not in the Nrf2 knockout mice. In contrast, ERG scotopic a- and b-wave loss was not restored for either genotype. SFN significantly improved retinal thickness in the Nrf2 knockout mice with MnSOD knockdown, but this was not observed in the wild-type mice. In both genotypes, SFN treatment reduced morphological markers of RPE atrophy and degeneration, although these improvements did not correlate proportionally with functional recovery. Conclusions: These findings highlight the capacity of SFN to preserve cone function, as well as the potential challenges of using the compound as a standalone treatment for age-related retinal degeneration under conditions associated with reduced Nrf2 function.
Assuntos
Fator 2 Relacionado a NF-E2 , Degeneração Retiniana , Camundongos , Humanos , Animais , Lactente , Fator 2 Relacionado a NF-E2/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/metabolismo , Estresse Oxidativo , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo , Camundongos KnockoutRESUMO
BACKGROUND: Ecologic models are often recommended to promote physical activity, yet sparse data exist on their effectiveness. DESIGN: A quasi-experimental design examined changes in walking behavior in six rural intervention communities in the Missouri "bootheel" region and in six comparison communities in Arkansas and Tennessee. SETTING/ PARTICIPANTS: The communities ranged in population from 2399 to 17,642; interventions focused on adults aged >/=18 years. INTERVENTION: Interventions were developed with community input and included individually tailored newsletters, interpersonal activities that stressed social support, and community-wide events such as walk-a-thons. MAIN OUTCOME MEASURES: Primary outcomes were rates of walking-trail use, total number of minutes walked in the past week, and total minutes walked for exercise. RESULTS: Among persons who used trails at baseline (16.9% of the total population), 32.1% reported increases in physical activity since they began using the trail. From community-wide samples, two subgroups indicated a positive net change in rates of 7-day total walking: people with high school degrees or less and people living in households with annual incomes of <==$20,000. However, no studied group showed a statistically significant net intervention effect. CONCLUSIONS: Although there was an increase in the rate of walking-trail use, a community-wide change in walking rates in rural communities was not documented. Results of this study should provide guidance for future projects.