Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Cell ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38838667

RESUMO

Telomere maintenance requires the extension of the G-rich telomeric repeat strand by telomerase and the fill-in synthesis of the C-rich strand by Polα/primase. At telomeres, Polα/primase is bound to Ctc1/Stn1/Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Our findings suggest that POT1 hinge phosphorylation is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/primase in an inactive, autoinhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/primase into an active state that completes telomere replication through fill-in synthesis.

2.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37662363

RESUMO

The T-cell receptor (TCR) is central to the ligand-dependent activation of T lymphocytes and as such orchestrates both adaptive and pathologic immune processes 1 . However, major questions remain regarding the structure and function of the human TCR 2-4 . Here, we present cryogenic electron microscopy structures for the unliganded human TCR-CD3 complex in a native-like lipid bilayer, revealing two related conformations that are distinct from its structure in detergent. These new "closed and compacted" conformations afford insights into the interactions between the TCR-CD3 and the membrane, including conserved surface patches that make extensive outer leaflet contact, and suggest novel conformational regulation by glycans. We show that the closed/compacted conformations, not the extended one previously reported in detergent 5-8 , represent the unliganded resting state for the TCR-CD3 in vivo , underscoring the importance of structural interrogation of membrane proteins in native-like environments. We use conformation-locking disulfide mutants to show that ectodomain opening is necessary for maximal ligand-dependent TCR-CD3 activation, demonstrating that TCR-intrinsic conformational change is necessary for full TCR-CD3 activation and opening numerous avenues for immunoreceptor engineering.

3.
Nat Commun ; 14(1): 7218, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940661

RESUMO

Broadly neutralizing antibodies (bnAbs) against HIV-1 target conserved envelope (Env) epitopes to block viral replication. Here, using structural analyses, we provide evidence to explain why a vaccine targeting the membrane-proximal external region (MPER) of HIV-1 elicits antibodies with human bnAb-like paratopes paradoxically unable to bind HIV-1. Unlike in natural infection, vaccination with MPER/liposomes lacks a necessary structure-based constraint to select for antibodies with an adequate approach angle. Consequently, the resulting Abs cannot physically access the MPER crawlspace on the virion surface. By studying naturally arising Abs, we further reveal that flexibility of the human IgG3 hinge mitigates the epitope inaccessibility and additionally facilitates Env spike protein crosslinking. Our results suggest that generation of IgG3 subtype class-switched B cells is a strategy for anti-MPER bnAb induction. Moreover, the findings illustrate the need to incorporate topological features of the target epitope in immunogen design.


Assuntos
Infecções por HIV , HIV-1 , Vacinas , Humanos , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Sítios de Ligação de Anticorpos , Epitopos , Imunoglobulina G , Proteína gp41 do Envelope de HIV/química
4.
J Biomol Struct Dyn ; : 1-10, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787617

RESUMO

Multidrug efflux is a well-established mechanism of drug resistance in bacterial pathogens like Salmonella Typhi. styMdtM (locus name; STY4874) is a multidrug efflux transporter of the major facilitator superfamily expressed in S. Typhi. Functional assays identified several residues important for its transport activity. Here, we used an AlphaFold model to identify additional residues for analysis by mutagenesis. Mutation of peripheral residue Cys185 had no effect on the structure or function of the transporter. However, substitution of channel-lining residues Tyr29 and Tyr231 completely abolished transport function. Finally, mutation of Gln294, which faces peripheral helices of the transporter, resulted in the loss of transport of some substrates. Crystallization studies yielded diffraction data for the wild-type protein at 4.5 Å resolution and allowed the unit cell parameters to be established as a = b = 64.3 Å, c = 245.4 Å, α = ß = γ = 90°, in space group P4. Our studies represent a further stepping stone towards a mechanistic understanding of the clinically important multidrug transporter styMdtM.Communicated by Ramaswamy H. Sarma.

5.
bioRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425731

RESUMO

Broadly neutralizing antibodies (bnAbs) against HIV-1 target conserved epitopes, thereby inhibiting viral entry. Yet surprisingly, those recognizing linear epitopes in the HIV-1 gp41 membrane proximal external region (MPER) are elicited neither by peptide nor protein scaffold vaccines. Here, we observe that while Abs generated by MPER/liposome vaccines may exhibit human bnAb-like paratopes, B-cell programming without constraints imposed by the gp160 ectodomain selects Abs unable to access the MPER within its native "crawlspace". During natural infection, the flexible hinge of IgG3 partially mitigates steric occlusion of less pliable IgG1 subclass Abs with identical MPER specificity, until affinity maturation refines entry mechanisms. The IgG3 subclass maintains B-cell competitiveness, exploiting bivalent ligation resulting from greater intramolecular Fab arm length, offsetting weak antibody affinity. These findings suggest future immunization strategies.

6.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37292626

RESUMO

Aquaporin-0 (AQP0) tetramers form square arrays in lens membranes through a yet unknown mechanism, but lens membranes are enriched in sphingomyelin and cholesterol. Here, we determined electron crystallographic structures of AQP0 in sphingomyelin/ cholesterol membranes and performed molecular dynamics (MD) simulations to establish that the observed cholesterol positions represent those seen around an isolated AQP0 tetramer and that the AQP0 tetramer largely defines the location and orientation of most of its associated cholesterol molecules. At a high concentration, cholesterol increases the hydrophobic thickness of the annular lipid shell around AQP0 tetramers, which may thus cluster to mitigate the resulting hydrophobic mismatch. Moreover, neighboring AQP0 tetramers sandwich a cholesterol deep in the center of the membrane. MD simulations show that the association of two AQP0 tetramers is necessary to maintain the deep cholesterol in its position and that the deep cholesterol increases the force required to laterally detach two AQP0 tetramers, not only due to protein-protein contacts but also due to increased lipid-protein complementarity. Since each tetramer interacts with four such 'glue' cholesterols, avidity effects may stabilize larger arrays. The principles proposed to drive AQP0 array formation could also underlie protein clustering in lipid rafts.

7.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37215005

RESUMO

Telomere maintenance requires extension of the G-rich telomeric repeat strand by telomerase and fill-in synthesis of the C-rich strand by Polα/Primase. Telomeric Polα/Primase is bound to Ctc1-Stn1-Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/Primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Phosphorylation of POT1 is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/Primase in an inactive auto-inhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/Primase into an active state that completes telomere replication through fill-in synthesis.

8.
J Chem Inf Model ; 62(22): 5607-5621, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36279366

RESUMO

Inhibitors of integrin αVß3 have therapeutic promise for a variety of diseases. Most αVß3-targeting small molecules patterned after the RGD motif are partial agonists because they induce a high-affinity, ligand-binding conformation and prime the receptor to bind the ligand without an activating stimulus, in part via a charge-charge interaction between their aspartic acid carboxyl group and the metal ion in the metal-ion-dependent adhesion site (MIDAS). Building upon our previous studies on the related integrin αIIbß3, we searched for pure αVß3 antagonists that lack this typical aspartic acid carboxyl group and instead engage through direct binding to one of the coordinating residues of the MIDAS metal ion, specifically ß3 E220. By in silico screening of two large chemical libraries for compounds interacting with ß3 E220, we indeed discovered a novel molecule that does not contain an acidic carboxyl group and does not induce the high-affinity, ligand-binding state of the receptor. Functional and structural characterization of a chemically optimized version of this compound led to the discovery of a novel small-molecule pure αVß3 antagonist that (i) does not prime the receptor to bind the ligand and does not induce hybrid domain swing-out or receptor extension as judged by antibody binding and negative-stain electron microscopy, (ii) binds at the RGD-binding site as predicted by metadynamics rescoring of induced-fit docking poses and confirmed by a cryo-electron microscopy structure of the compound-bound integrin, and (iii) coordinates the MIDAS metal ion via a quinoline moiety instead of an acidic carboxyl group.


Assuntos
Ácido Aspártico , Integrina alfaVbeta3 , Integrina alfaVbeta3/química , Ligantes , Ácido Aspártico/metabolismo , Microscopia Crioeletrônica , Metais/metabolismo , Oligopeptídeos/farmacologia
9.
Nat Commun ; 13(1): 6393, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302771

RESUMO

Vaccines targeting HIV-1's gp160 spike protein are stymied by high viral mutation rates and structural chicanery. gp160's membrane-proximal external region (MPER) is the target of naturally arising broadly neutralizing antibodies (bnAbs), yet MPER-based vaccines fail to generate bnAbs. Here, nanodisc-embedded spike protein was investigated by cryo-electron microscopy and molecular-dynamics simulations, revealing spontaneous ectodomain tilting that creates vulnerability for HIV-1. While each MPER protomer radiates centrally towards the three-fold axis contributing to a membrane-associated tripod structure that is occluded in the upright spike, tilting provides access to the opposing MPER. Structures of spike proteins with bound 4E10 bnAb Fabs reveal that the antibody binds exposed MPER, thereby altering MPER dynamics, modifying average ectodomain tilt, and imposing strain on the viral membrane and the spike's transmembrane segments, resulting in the abrogation of membrane fusion and informing future vaccine development.


Assuntos
Vacinas contra a AIDS , HIV-1 , HIV-1/genética , Proteína gp41 do Envelope de HIV/metabolismo , Anticorpos Anti-HIV , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes
10.
Proc Natl Acad Sci U S A ; 119(31): e2201662119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881804

RESUMO

Human shelterin is a six-subunit complex-composed of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-that binds telomeres, protects them from the DNA-damage response, and regulates the maintenance of telomeric DNA. Although high-resolution structures have been generated of the individual structured domains within shelterin, the architecture and stoichiometry of the full complex are currently unknown. Here, we report the purification of shelterin subcomplexes and reconstitution of the entire complex using full-length, recombinant subunits. By combining negative-stain electron microscopy (EM), cross-linking mass spectrometry (XLMS), AlphaFold modeling, mass photometry, and native mass spectrometry (MS), we obtain stoichiometries as well as domain-scale architectures of shelterin subcomplexes and determine that they feature extensive conformational heterogeneity. For POT1/TPP1 and POT1/TPP1/TIN2, we observe high variability in the positioning of the POT1 DNA-binding domain, the TPP1 oligonucleotide/oligosaccharide-binding (OB) fold, and the TIN2 TRFH domain with respect to the C-terminal domains of POT1. Truncation of unstructured linker regions in TIN2, TPP1, and POT1 did not reduce the conformational variability of the heterotrimer. Shelterin and TRF1-containing subcomplexes form fully dimeric stoichiometries, even in the absence of DNA substrates. Shelterin and its subcomplexes showed extensive conformational variability, regardless of the presence of DNA substrates. We conclude that shelterin adopts a multitude of conformations and argue that its unusual architectural variability is beneficial for its many functions at telomeres.


Assuntos
Complexo Shelterina , Humanos , Espectrometria de Massas , Microscopia Eletrônica , Domínios Proteicos , Complexo Shelterina/química
11.
Nat Struct Mol Biol ; 29(8): 813-819, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35578024

RESUMO

The CST-Polα/primase complex is essential for telomere maintenance and functions to counteract resection at double-strand breaks. We report a 4.6-Å resolution cryo-EM structure of human CST-Polα/primase, captured prior to catalysis in a recruitment state stabilized by chemical cross-linking. Our structure reveals an evolutionarily conserved interaction between the C-terminal domain of the catalytic POLA1 subunit and an N-terminal expansion in metazoan CTC1. Cross-linking mass spectrometry and negative-stain EM analysis provide insight into CST binding by the flexible POLA1 N-terminus. Finally, Coats plus syndrome disease mutations previously characterized to disrupt formation of the CST-Polα/primase complex map to protein-protein interfaces observed in the recruitment state. Together, our results shed light on the architecture and stoichiometry of the metazoan fill-in machinery.


Assuntos
DNA Primase , Proteínas de Ligação a Telômeros , Animais , Microscopia Crioeletrônica , DNA Primase/genética , DNA Primase/metabolismo , Humanos , Complexo Shelterina , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
12.
Trends Biochem Sci ; 47(7): 561-569, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35331611

RESUMO

Advances in cryogenic electron microscopy (cryo-EM) enabled routine near-atomic structure determination of membrane proteins, while nanodisc technology has provided a way to provide membrane proteins with a native or native-like lipid environment. After giving a brief history of membrane mimetics, we present example structures of membrane proteins in nanodiscs that revealed information not provided by structures obtained in detergent. We describe how the lipid environment surrounding the membrane protein can be custom designed during nanodisc assembly and how it can be modified after assembly to test functional hypotheses. Because nanodiscs most closely replicate the physiologic environment of membrane proteins and often afford novel mechanistic insights, we propose that nanodiscs ought to become the standard for structural studies on membrane proteins.


Assuntos
Proteínas de Membrana , Nanoestruturas , Bicamadas Lipídicas/química , Lipídeos , Proteínas de Membrana/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Nanoestruturas/química
13.
Antibiotics (Basel) ; 10(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34943668

RESUMO

Quinolone resistance in bacterial pathogens has primarily been associated with mutations in the quinolone resistance-determining regions (QRDRs) of bacterial type-II topoisomerases, which are DNA gyrase and topoisomerase IV. Depending on the position and type of the mutation (s) in the QRDRs, bacteria either become partially or completely resistant to quinolone. QRDR mutations have been identified and characterized in Salmonella enterica isolates from around the globe, particularly during the last decade, and efforts have been made to understand the propensity of different serovars to carry such mutations. Because there is currently no thorough analysis of the available literature on QRDR mutations in different Salmonella serovars, this review aims to provide a comprehensive picture of the mutational diversity in QRDRs of Salmonella serovars, summarizing the literature related to both typhoidal and non-typhoidal Salmonella serovars with a special emphasis on recent findings. This review will also discuss plasmid-mediated quinolone-resistance determinants with respect to their additive or synergistic contributions with QRDR mutations in imparting elevated quinolone resistance. Finally, the review will assess the contribution of membrane transporter-mediated quinolone efflux to quinolone resistance in strains carrying QRDR mutations. This information should be helpful to guide the routine surveillance of foodborne Salmonella serovars, especially with respect to their spread across countries, as well as to improve laboratory diagnosis of quinolone-resistant Salmonella strains.

14.
J Struct Biol X ; 5: 100053, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34816118

RESUMO

Mechanosensitive (MS) channels that are activated by the 'force-from-lipids' (FFL) principle rest in the membrane in a closed state but open a transmembrane pore in response to changes in the transmembrane pressure profile. The molecular implementations of the FFL principle vary widely between different MS channel families. The function of MS channels is often studied by patch-clamp electrophysiology, in which mechanical force or amphipathic molecules are used to activate the channels. Structural studies of MS channels in states other than the closed resting state typically relied on the use of mutant channels. Cyclodextrins (CDs) were recently introduced as a relatively easy and convenient approach to generate membrane tension. The principle is that CDs chelate hydrophobic molecules and can remove lipids from membranes, thus forcing the remaining lipids to cover more surface area and creating tension for membrane proteins residing in the membranes. CDs can be used to study the structure of MS channels in a membrane under tension by using single-particle cryo-electron microscopy to image the channels in nanodiscs after incubation with CDs as well as to characterize the function of MS channels by using patch-clamp electrophysiology to record the effect of CDs on channels inserted into membrane patches excised from proteoliposomes. Importantly, because incubation of membrane patches with CDs results in the activation of MscL, an MS channel that opens only shortly before membrane rupture, CD-mediated lipid removal appears to generate sufficient force to open most if not all types of MS channels that follow the FFL principle.

15.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34475213

RESUMO

The bacterial mechanosensitive channel of small conductance (MscS) has been extensively studied to understand how mechanical forces are converted into the conformational changes that underlie mechanosensitive (MS) channel gating. We showed that lipid removal by ß-cyclodextrin can mimic membrane tension. Here, we show that all cyclodextrins (CDs) can activate reconstituted Escherichia coli MscS, that MscS activation by CDs depends on CD-mediated lipid removal, and that the CD amount required to gate MscS scales with the channel's sensitivity to membrane tension. Importantly, cholesterol-loaded CDs do not activate MscS. CD-mediated lipid removal ultimately causes MscS desensitization, which we show is affected by the lipid environment. While many MS channels respond to membrane forces, generalized by the "force-from-lipids" principle, their different molecular architectures suggest that they use unique ways to convert mechanical forces into conformational changes. To test whether CDs can also be used to activate other MS channels, we chose to investigate the mechanosensitive channel of large conductance (MscL) and demonstrate that CDs can also activate this structurally unrelated channel. Since CDs can open the least tension-sensitive MS channel, MscL, they should be able to open any MS channel that responds to membrane tension. Thus, CDs emerge as a universal tool for the structural and functional characterization of unrelated MS channels.


Assuntos
Ciclodextrinas/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Membrana Celular/fisiologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Bicamadas Lipídicas , Tensão Superficial
16.
Proteins ; 89(9): 1193-1204, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33983672

RESUMO

Salmonellae are foodborne pathogens and the major cause of gastroenteritis in humans. Salmonellae express multidrug efflux transporters that play a key role in their drug resistance, which is becoming an increasing problem for therapeutic intervention. Despite their biomedical importance, the mechanisms underlying substrate transport by multidrug efflux transporters remain poorly understood. Here, we describe the first characterization of a multidrug transporter belonging to the major facilitator superfamily from the genus Salmonella. We show that several clinical Salmonella Typhi (S. Typhi) isolates constitutively express the styMdtM (STY4874) gene, which encodes a known multidrug-resistance (MDR) transporter. Guided by the structure of the Escherichia coli (E. coli) homolog, we studied two residues critical for substrate transport, Asp25 and Arg111. Mutation of Asp25 to glutamate did not affect the transport function of styMdtM, whereas mutation to alanine reduced its transport activity, suggesting that a negative charge at this position is critical for substrate translocation across the membrane. Substrate-affinity measurements by intrinsic fluorescence spectroscopy showed that the Asp25Ala mutant retained its capacity to bind substrate, albeit at a lower level. Mutation of Arg111 to alanine resulted in a decrease in secondary structure content of the transporter, and mutation to lysine completely destabilized the structure of the transporter. A homology model of styMdtM suggests that Arg111 is important for stabilizing the transmembrane domain by mediating necessary interactions between neighboring helices. Together, our studies provide new structural and mechanistic insights into the Salmonella MDR transporter styMdtM.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Cloranfenicol/química , Farmacorresistência Bacteriana/genética , Proteínas de Transporte de Monossacarídeos/química , Mutação , Substituição de Aminoácidos , Antibacterianos/farmacologia , Arginina/química , Arginina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transporte Biológico , Cloranfenicol/farmacologia , Expressão Gênica , Humanos , Cinética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/genética , Salmonella typhi/isolamento & purificação , Salmonella typhi/metabolismo , Especificidade por Substrato , Termodinâmica , Febre Tifoide/microbiologia
17.
Blood Adv ; 5(7): 1781-1790, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33760023

RESUMO

The murine monoclonal antibody (mAb) PT25-2 induces αIIbß3 to bind ligand and initiate platelet aggregation. The underlying mechanism is unclear, because previous mutagenesis studies suggested that PT25-2 binds to the αIIb ß propeller, a site distant from the Arg-Gly-Asp-binding pocket. To elucidate the mechanism, we studied the αIIbß3-PT25-2 Fab complex by negative-stain and cryo-electron microscopy (EM). We found that PT25-2 binding results in αIIbß3 partially exposing multiple ligand-induced binding site epitopes and adopting extended conformations without swing-out of the ß3 hybrid domain. The cryo-EM structure showed PT25-2 binding to the αIIb residues identified by mutagenesis but also to 2 additional regions. Overlay of the cryo-EM structure with the bent αIIbß3 crystal structure showed that binding of PT25-2 creates clashes with the αIIb calf-1/calf-2 domains, suggesting that PT25-2 selectively binds to partially or fully extended receptor conformations and prevents a return to its bent conformation. Kinetic studies of the binding of PT25-2 compared with mAbs 10E5 and 7E3 support this hypothesis. We conclude that PT25-2 induces αIIbß3 ligand binding by binding to extended conformations and by preventing the interactions between the αIIb and ß3 leg domains and subsequently the ßI and ß3 leg domains required for the bent-closed conformation.


Assuntos
Anticorpos Monoclonais , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Animais , Microscopia Crioeletrônica , Cinética , Ligantes , Camundongos
18.
Nature ; 590(7846): 509-514, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568813

RESUMO

Mechanosensitive channels sense mechanical forces in cell membranes and underlie many biological sensing processes1-3. However, how exactly they sense mechanical force remains under investigation4. The bacterial mechanosensitive channel of small conductance, MscS, is one of the most extensively studied mechanosensitive channels4-8, but how it is regulated by membrane tension remains unclear, even though the structures are known for its open and closed states9-11. Here we used cryo-electron microscopy to determine the structure of MscS in different membrane environments, including one that mimics a membrane under tension. We present the structures of MscS in the subconducting and desensitized states, and demonstrate that the conformation of MscS in a lipid bilayer in the open state is dynamic. Several associated lipids have distinct roles in MscS mechanosensation. Pore lipids are necessary to prevent ion conduction in the closed state. Gatekeeper lipids stabilize the closed conformation and dissociate with membrane tension, allowing the channel to open. Pocket lipids in a solvent-exposed pocket between subunits are pulled out under sustained tension, allowing the channel to transition to the subconducting state and then to the desensitized state. Our results provide a mechanistic underpinning and expand on the 'force-from-lipids' model for MscS mechanosensation4,11.


Assuntos
Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/química , Canais Iônicos/metabolismo , Canais Iônicos/ultraestrutura , Membranas Artificiais , Fosfatidilcolinas/metabolismo , Detergentes/farmacologia , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos/química , Canais Iônicos/genética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Modelos Moleculares , Mutação , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacologia , Conformação Proteica/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
19.
Nat Commun ; 12(1): 714, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514705

RESUMO

Polycomb repressive complex 2 (PRC2) is a histone methyltransferase critical for maintaining gene silencing during eukaryotic development. In mammals, PRC2 activity is regulated in part by the selective incorporation of one of two paralogs of the catalytic subunit, EZH1 or EZH2. Each of these enzymes has specialized biological functions that may be partially explained by differences in the multivalent interactions they mediate with chromatin. Here, we present two cryo-EM structures of PRC2:EZH1, one as a monomer and a second one as a dimer bound to a nucleosome. When bound to nucleosome substrate, the PRC2:EZH1 dimer undergoes a dramatic conformational change. We demonstrate that mutation of a divergent EZH1/2 loop abrogates the nucleosome-binding and methyltransferase activities of PRC2:EZH1. Finally, we show that PRC2:EZH1 dimers are more effective than monomers at promoting chromatin compaction, and the divergent EZH1/2 loop is essential for this function, thereby tying together the methyltransferase, nucleosome-binding, and chromatin-compaction activities of PRC2:EZH1. We speculate that the conformational flexibility and the ability to dimerize enable PRC2 to act on the varied chromatin substrates it encounters in the cell.


Assuntos
Cromatina/metabolismo , Inativação Gênica , Complexo Repressor Polycomb 2/ultraestrutura , Animais , Linhagem Celular , Histonas/genética , Histonas/metabolismo , Modelos Moleculares , Mutação , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Multimerização Proteica , Células Sf9 , Spodoptera , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
20.
Mol Cell ; 81(2): 281-292.e8, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33296676

RESUMO

Rho is a general transcription termination factor playing essential roles in RNA polymerase (RNAP) recycling, gene regulation, and genomic stability in most bacteria. Traditional models of transcription termination postulate that hexameric Rho loads onto RNA prior to contacting RNAP and then translocates along the transcript in pursuit of the moving RNAP to pull RNA from it. Here, we report the cryoelectron microscopy (cryo-EM) structures of two termination process intermediates. Prior to interacting with RNA, Rho forms a specific "pre-termination complex" (PTC) with RNAP and elongation factors NusA and NusG, which stabilize the PTC. RNA exiting RNAP interacts with NusA before entering the central channel of Rho from the distal C-terminal side of the ring. We map the principal interactions in the PTC and demonstrate their critical role in termination. Our results support a mechanism in which the formation of a persistent PTC is a prerequisite for termination.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fatores de Alongamento de Peptídeos/química , Fatores de Transcrição/química , Terminação da Transcrição Genética , Fatores de Elongação da Transcrição/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA