Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
ACS Chem Biol ; 18(4): 884-896, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36947831

RESUMO

Soluble epoxide hydrolase (sEH) is a bifunctional enzyme responsible for lipid metabolism and is a promising drug target. Here, we report the first-in-class PROTAC small-molecule degraders of sEH. Our optimized PROTAC selectively targets the degradation of cytosolic but not peroxisomal sEH, resulting in exquisite spatiotemporal control. Remarkably, our sEH PROTAC molecule has higher potency in cellular assays compared to the parent sEH inhibitor as measured by the significantly reduced ER stress. Interestingly, our mechanistic data indicate that our PROTAC directs the degradation of cytosolic sEH via the lysosome, not through the proteasome. The molecules presented here are useful chemical probes to study the biology of sEH with the potential for therapeutic development. Broadly, our results represent a proof of concept for the superior cellular potency of sEH degradation over sEH enzymatic inhibition, as well as subcellular compartment-selective modulation of a protein by PROTACs.


Assuntos
Estresse do Retículo Endoplasmático , Epóxido Hidrolases , Quimera de Direcionamento de Proteólise , Citosol/metabolismo , Epóxido Hidrolases/química , Epóxido Hidrolases/metabolismo , Quimera de Direcionamento de Proteólise/farmacologia , Estresse do Retículo Endoplasmático/fisiologia
2.
J Adv Res ; 43: 163-174, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585106

RESUMO

INTRODUCTION: Although the physiological role of the C-terminal hydrolase domain of the soluble epoxide hydrolase (sEH-H) is well investigated, the function of its N-terminal phosphatase activity (sEH-P) remains unknown. OBJECTIVES: This study aimed to assess in vivo the physiological role of sEH-P. METHODS: CRISPR/Cas9 was used to generate a novel knock-in (KI) rat line lacking the sEH-P activity. RESULTS: The sEH-P KI rats has a decreased metabolism of lysophosphatidic acids to monoacyglycerols. KI rats grew almost normally but with less weight and fat mass gain while insulin sensitivity was increased compared to wild-type rats. This lean phenotype was more marked in males than in female KI rats and mainly due to decreased food consumption and enhanced energy expenditure. In fact, sEH-P KI rats had an increased lipolysis allowing to supply fatty acids as fuel to potentiate brown adipose thermogenesis under resting condition and upon cold exposure. The potentiation of thermogenesis was abolished when blocking PPARγ, a nuclear receptor activated by intracellular lysophosphatidic acids, but also when inhibiting simultaneously sEH-H, showing a functional interaction between the two domains. Furthermore, sEH-P KI rats fed a high-fat diet did not gain as much weight as the wild-type rats, did not have increased fat mass and did not develop insulin resistance or hepatic steatosis. In addition, sEH-P KI rats exhibited enhanced basal cardiac mitochondrial activity associated with an enhanced left ventricular contractility and were protected against cardiac ischemia-reperfusion injury. CONCLUSION: Our study reveals that sEH-P is a key player in energy and fat metabolism and contributes together with sEH-H to the regulation of cardiometabolic homeostasis. The development of pharmacological inhibitors of sEH-P appears of crucial importance to evaluate the interest of this promising therapeutic strategy in the management of obesity and cardiac ischemic complications.


Assuntos
Epóxido Hidrolases , Traumatismos Cardíacos , Obesidade , Animais , Feminino , Masculino , Ratos , Sistemas CRISPR-Cas , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/patologia , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Resistência à Insulina/genética , Lisofosfolipídeos , Obesidade/genética , Obesidade/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Traumatismo por Reperfusão/genética
3.
Food Control ; 1362022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35989708

RESUMO

The accurate analysis of chemical isomers plays an important role in the study of their different toxic effects and targeted detection of pollutant isomers in foods. The Alternaria mycotoxins tenuazonic acid (TeA) and iso-tenuazonic acid (ITeA) are two isomer mycotoxins with the lack of single analysis methods due to the similar structures. Antibody-based immunoassays exhibit high sensitivity and superior application in isomer-specific determination. Previously, various kinds of antibodies for TeA have been prepared in our group. Herein, highly specific nanobodies (Nbs) against ITeA mycotoxin were selected from immune nanobody phage display library, and one of Nbs, namely Nb(B3G3) exhibited excellent affinity, thermal stability as well as organic solvent tolerance. By molecular simulation and docking technology, it was found that stronger interaction between Nb(B3G3) and ITeA lead to higher affinity than that for its isomer TeA. Furthermore, a sensitive indirect competitive enzyme-linked immunosorbent assay (icELISA) was established with a limit of detection (LOD) of 0.09 ng/mL for ITeA mycotoxin. The recovery rate of ITeA in spiked samples was analyzed with 84.8%-89.5% for rice, 78.3%-96.3% for flour, and 79.5%-90.7% for bread. A conventional LC-MS/MS method was used to evaluate the accuracy of this proposed icELISA, which showed a satisfactory consistent correlation. Since the convenient strategy for nanobody generation by phage display technology, this study provide new biorecognition elements and sensitive immunoassay for analysis of ITeA in foods.

4.
PLoS One ; 17(4): e0266608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35443010

RESUMO

Asthma currently affects more than 339 million people worldwide. In the present preliminary study, we examined the efficacy of a new, inhalable soluble epoxide hydrolase inhibitor (sEHI), 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), to attenuate airway inflammation, mucin secretion, and hyper-responsiveness (AHR) in an ovalbumin (OVA)-sensitized murine model. Male BALB/c mice were divided into phosphate-buffered saline (PBS), OVA, and OVA+TPPU (2- or 6-h) exposure groups. On days 0 and 14, the mice were administered PBS or sensitized to OVA in PBS. From days 26-38, seven challenge exposures were performed with 30 min inhalation of filtered air or OVA alone. In the OVA+TPPU groups, a 2- or 6-h TPPU inhalation preceded each 30-min OVA exposure. On day 39, pulmonary function tests (PFTs) were performed, and biological samples were collected. Lung tissues were used to semi-quantitatively evaluate the severity of inflammation and airway constriction and the volume of stored intracellular mucosubstances. Bronchoalveolar lavage (BAL) and blood samples were used to analyze regulatory lipid mediator profiles. Significantly (p < 0.05) attenuated alveolar, bronchiolar, and pleural inflammation; airway resistance and constriction; mucosubstance volume; and inflammatory lipid mediator levels were observed with OVA+TPPU relative to OVA alone. Cumulative findings indicated TPPU inhalation effectively inhibited inflammation, suppressed AHR, and prevented mucosubstance accumulation in the murine asthmatic model. Future studies should determine the pharmacokinetics (i.e., absorption, distribution, metabolism, and excretion) and pharmacodynamics (i.e., concentration/dose responses) of inhaled TPPU to explore its potential as an asthma-preventative or -rescue treatment.


Assuntos
Asma , Hiper-Reatividade Brônquica , Aerossóis/uso terapêutico , Animais , Asma/tratamento farmacológico , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Epóxido Hidrolases , Humanos , Inflamação/tratamento farmacológico , Lipídeos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/uso terapêutico
5.
Proc Natl Acad Sci U S A ; 119(13): e2120691119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312372

RESUMO

Fatty acid composition in the Western diet has shifted from saturated to polyunsaturated fatty acids (PUFAs), and specifically to linoleic acid (LA, 18:2), which has gradually increased in the diet over the past 50 y to become the most abundant dietary fatty acid in human adipose tissue. PUFA-derived oxylipins regulate a variety of biological functions. The cytochrome P450 (CYP450)­formed epoxy fatty acid metabolites of LA (EpOMEs) are hydrolyzed by the soluble epoxide hydrolase enzyme (sEH) to dihydroxyoctadecenoic acids (DiHOMEs). DiHOMEs are considered cardioprotective at low concentrations but at higher levels have been implicated as vascular permeability and cytotoxic agents and are associated with acute respiratory distress syndrome in severe COVID-19 patients. High EpOME levels have also correlated with sepsis-related fatalities; however, those studies failed to monitor DiHOME levels. Considering the overlap of burn pathophysiology with these pathologies, the role of DiHOMEs in the immune response to burn injury was investigated. 12,13-DiHOME was found to facilitate the maturation and activation of stimulated neutrophils, while impeding monocyte and macrophage functionality and cytokine generation. In addition, DiHOME serum concentrations were significantly elevated in burn-injured mice and these increases were ablated by administration of 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), a sEH inhibitor. TPPU also reduced necrosis of innate and adaptive immune cells in burned mice, in a dose-dependent manner. The findings suggest DiHOMEs are a key driver of immune cell dysfunction in severe burn injury through hyperinflammatory neutrophilic and impaired monocytic actions, and inhibition of sEH might be a promising therapeutic strategy to mitigate deleterious outcomes in burn patients.


Assuntos
Queimaduras , Sepse , Animais , Epóxido Hidrolases/metabolismo , Humanos , Imunidade Inata , Inflamação/tratamento farmacológico , Ácido Linoleico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Compostos de Fenilureia/farmacologia , Piperidinas/farmacologia , Sepse/tratamento farmacológico
6.
Molecules ; 27(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35011515

RESUMO

Vicinal diols are important signaling metabolites of various inflammatory diseases, and some of them are potential biomarkers for some diseases. Utilizing the rapid reaction between diol and 6-bromo-3-pyridinylboronic acid (BPBA), a selective and sensitive approach was established to profile these vicinal diols using liquid chromatography-post column derivatization coupled with double precursor ion scan-mass spectrometry (LC-PCD-DPIS-MS). After derivatization, all BPBA-vicinal-diol esters gave a pair of characteristic isotope ions resulting from 79Br and 81Br. The unique isotope pattern generated two characteristic fragment ions of m/z 200 and 202. Compared to a traditional offline derivatization technique, the new LC-PCD-DPIS-MS method retained the capacity of LC separation. In addition, it is more sensitive and selective than a full scan MS method. As an application, an in vitro study of the metabolism of epoxy fatty acids by human soluble epoxide hydrolase was tested. These vicinal-diol metabolites of individual regioisomers from different types of polyunsaturated fatty acids were easily identified. The limit of detection (LOD) reached as low as 25 nM. The newly developed LC-PCD-DPIS-MS method shows significant advantages in improving the selectivity and therefore can be employed as a powerful tool for profiling vicinal-diol compounds from biological matrices.


Assuntos
Compostos de Epóxi/análise , Ácidos Graxos/análise , Biomarcadores , Cromatografia Líquida , Humanos , Espectrometria de Massas em Tandem
7.
Sci Rep ; 11(1): 16555, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400718

RESUMO

Oxylipins modulate the behavior of immune cells in inflammation. Soluble epoxide hydrolase (sEH) converts anti-inflammatory epoxyeicosatrienoic acid (EET) to dihydroxyeicosatrienoic acid (DHET). An sEH-inhibitor, TPPU, has been demonstrated to ameliorate lipopolysaccharide (LPS)- and sepsis-induced inflammation via EETs. The immunomodulatory role of DHET is not well characterized. We hypothesized that TPPU dampens inflammation and that sEH-derived DHET alters neutrophil functionality in burn induced inflammation. Outbred mice were treated with vehicle, TPPU or 14,15-DHET and immediately subjected to either sham or dorsal scald 28% total body surface area burn injury. After 6 and 24 h, interleukin 6 (IL-6) serum levels and neutrophil activation were analyzed. For in vitro analyses, bone marrow derived neutrophil functionality and mRNA expression were examined. In vivo, 14,15-DHET and IL-6 serum concentrations were decreased after burn injury with TPPU administration. In vitro, 14,15-DHET impaired neutrophil chemotaxis, acidification, CXCR1/CXCR2 expression and reactive oxygen species (ROS) production, the latter independent from p38MAPK and PI3K signaling. We conclude that TPPU administration decreases DHET post-burn. Furthermore, DHET downregulates key neutrophil immune functions and mRNA expression. Altogether, these data reveal that TPPU not only increases anti-inflammatory and inflammation resolving EET levels, but also prevents potential impairment of neutrophils by DHET in trauma.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Anti-Inflamatórios/uso terapêutico , Queimaduras/tratamento farmacológico , Neutrófilos/imunologia , Compostos de Fenilureia/uso terapêutico , Piperidinas/uso terapêutico , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Queimaduras/imunologia , Queimaduras/metabolismo , Queimaduras/patologia , Citocinas/sangue , Epóxido Hidrolases/antagonistas & inibidores , Feminino , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Neutrófilos/classificação , Neutrófilos/metabolismo , Fagocitose/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Fosfatidilinositol 3-Quinases/biossíntese , Fosfatidilinositol 3-Quinases/genética , Piperidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Quimiocinas/fisiologia , Explosão Respiratória/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/genética
8.
Anal Methods ; 13(14): 1757-1765, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33861243

RESUMO

As a major metabolite of pyrethroid pesticides, 3-phenoxybenzoic acid (3-PBA) can be an indicator of health risk and human exposure assessment. Based on nanobodies (Nbs), we have developed a rapid flow-through dot enzyme linked immunosorbent assay (dot ELISA) and gold nanoparticle (GNP) lateral-flow immunoassay for detecting 3-PBA. The limit of detection (LOD) values for detecting 3-PBA by flow-through dot ELISA and GNP lateral-flow immunoassay were 0.01 ng mL-1 and 0.1 ng mL-1, respectively. The samples (urine and lake water) with and without 3-PBA were detected by both nanobody-based flow-through dot ELISA and GNP lateral-flow immunoassay, as well as liquid chromatography-mass spectrometry (LC-MS) for validation. There was good consistency between the results of the immunoassays. This demonstrated that the two developed nanobody-based immunoassays are suitable for rapid detection of 3-PBA.


Assuntos
Ouro , Nanopartículas Metálicas , Benzoatos , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoensaio
9.
J Agric Food Chem ; 69(16): 4911-4917, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870684

RESUMO

The non-toxic immunoassay for mycotoxins is being paid more attention due to its advantages of higher safety and cost savings by using anti-idiotype antibodies to substitute toxins. In this study, with tenuazonic acid (TeA), a kind of highly toxic Alternaria mycotoxin as the target, an enhanced non-toxic immunoassay was developed based on the ferritin-displayed anti-idiotypic nanobody-nanoluciferase multimers. First, three specific ß-type anti-idiotype nanobodies (AId-Nbs) bearing the internal image of TeA mycotoxin were selected from an immune phage display library. Then, the AId-Nb 2D with the best performance was exploited to generate a nanoluciferase (Nluc)-functionalized fusion monomer, by which a one-step non-toxic immunodetection format for TeA was established and proven to be effective. To further improve the affinity of the monomer, a ferritin display strategy was used to prepare 2D-Nluc fusion multimers. Finally, an enhanced bioluminescent enzyme immunoassay (BLEIA) was established in which the half maximal inhibitory concentration (IC50) for TeA was 6.5 ng/mL with a 10.5-fold improvement of the 2D-based enzyme-linked immunosorbent assay (ELISA). The proposed assay exhibited high selectivities and good recoveries of 80.0-95.2%. The generated AId-Nb and ferritin-displayed AId-Nb-Nluc multimers were successfully extended to the application of TeA in food samples. This study brings a new strategy for production of multivalent AId-Nbs and non-toxic immunoassays for trace toxic contaminants.


Assuntos
Micotoxinas , Anticorpos de Domínio Único , Alternaria , Ensaio de Imunoadsorção Enzimática , Ferritinas , Anticorpos de Domínio Único/genética , Ácido Tenuazônico
10.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925035

RESUMO

Polyunsaturated fatty acids (PUFAs) are essential FAs for human health. Cytochrome P450 oxygenates PUFAs to produce anti-inflammatory and pain-resolving epoxy fatty acids (EpFAs) and other oxylipins whose epoxide ring is opened by the soluble epoxide hydrolase (sEH/Ephx2), resulting in the formation of toxic and pro-inflammatory vicinal diols (dihydroxy-FAs). Pharmacological inhibition of sEH is a promising strategy for the treatment of pain, inflammation, cardiovascular diseases, and other conditions. We tested the efficacy of a potent, selective sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Prophylactic TPPU treatment significantly ameliorated EAE without affecting circulating white blood cell counts. TPPU accumulated in the spinal cords (SCs), which was correlated with plasma TPPU concentration. Targeted lipidomics in EAE SCs and plasma identified that TPPU blocked production of dihydroxy-FAs efficiently and increased some EpFA species including 12(13)-epoxy-octadecenoic acid (12(13)-EpOME) and 17(18)-epoxy-eicosatrienoic acid (17(18)-EpETE). TPPU did not alter levels of cyclooxygenase (COX-1/2) metabolites, while it increased 12-hydroxyeicosatetraenoic acid (12-HETE) and other 12/15-lipoxygenase metabolites. These analytical results are consistent with sEH inhibitors that reduce neuroinflammation and accelerate anti-inflammatory responses, providing the possibility that sEH inhibitors could be used as a disease modifying therapy, as well as for MS-associated pain relief.


Assuntos
Encefalomielite Autoimune Experimental/prevenção & controle , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Compostos de Fenilureia/farmacologia , Piperidinas/farmacologia , Animais , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Ácidos Graxos/biossíntese , Ácidos Graxos/sangue , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica , Camundongos , Camundongos Endogâmicos C57BL , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia
11.
Anal Methods ; 13(15): 1795-1802, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885655

RESUMO

The natural mycotoxin tenuazonic acid (TeA) in foods is identified as the most toxic mycotoxin among the over 70 kinds of secondary toxic metabolites produced by Alternaria alternata. Some hapten-antibody-mediated immunoassays have been developed for TeA detection in food samples, but these methods show unsatisfactory sensitivity and specificity. In this study, a rationally designed hapten for TeA mycotoxin generated with computer-assisted modeling was prepared to produce a highly specific camel polyclonal antibody, and an indirect competitive chemiluminescence enzyme immunoassay (icCLEIA) was established with a limit of detection of 0.2 ng mL-1 under optimized conditions. The cross-reactivity results showed that several analogs and some common mycotoxins had negligible recognition by the anti-TeA polyclonal antibody. The average recoveries spiked in fruit juices were determined to be 92.7% with an acceptable coefficient of variation, and good correlations between icCLEIA and liquid chromatography tandem mass spectrometry (LC-MS/MS) results were obtained in spiked samples. This developed icCLEIA for TeA detection with significantly improved sensitivity and satisfactory specificity is a promising alternative for environmental monitoring and food safety.


Assuntos
Micotoxinas , Ácido Tenuazônico , Alternaria , Animais , Camelus , Cromatografia Líquida , Sucos de Frutas e Vegetais , Imunoensaio , Luminescência , Micotoxinas/análise , Espectrometria de Massas em Tandem , Ácido Tenuazônico/análise
12.
ACS Omega ; 6(10): 7165-7174, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33748630

RESUMO

Adrenic acid (AdA, 22:4) is an ω-6 polyunsaturated fatty acid (PUFA), derived from arachidonic acid. Like other PUFAs, it is metabolized by cytochrome P450s to a group of epoxy fatty acids (EpFAs), epoxydocosatrienoic acids (EDTs). EpFAs are lipid mediators with various beneficial bioactivities, including exertion of analgesia and reduction of endoplasmic reticulum (ER) stress, that are degraded to dihydroxy fatty acids by the soluble epoxide hydrolase (sEH). However, the biological characteristics and activities of EDTs are relatively unexplored, and, alongside dihydroxydocosatrienoic acids (DHDTs), they had not been detected in vivo. Herein, EDT and DHDT regioisomers were synthesized, purified, and used as standards for analysis with a selective and quantitative high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method. Biological verification in AdA-rich tissues suggests that basal metabolite levels are highest in the liver, with 16,17-EDT concentrations consistently being the greatest across the analyzed tissues. Enzyme hydrolysis assessment revealed that EDTs are sEH substrates, with greatest relative rate preference for the 13,14-EDT regioisomer. Pretreatment with an EDT methyl ester regioisomer mixture significantly reduced the onset of tunicamycin-stimulated ER stress in human embryonic kidney cells. Finally, administration of the regioisomeric mixture effectively alleviated carrageenan-induced inflammatory pain in rats. This study indicates that EDTs and DHDTs are naturally occurring lipids, and EDTs could be another therapeutically relevant group of EpFAs.

13.
Sci Total Environ ; 753: 141950, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32906044

RESUMO

2,4-dichlorophenoxyacetic acid (2,4-D), a widely used herbicide, is a small organic chemical pollutant in the environment. To develop a nanobody-based immunoassay for monitoring trace levels of 2,4-D, a step-wise strategy for the generation of nanobodies highly specific against this small chemical was employed. Firstly, we synthesized three novel haptens mimicking 2,4-D and assessed their influence on the sensitivity and specificity of the existing antibody-based assay. Polyclonal antibodies (pAb) from rabbits showed good sensitivity and moderate specificity for 2,4-D, pAb from llama based on selected haptens showed similar performance when compared to those from rabbits. Secondly, nanobodies derived from llama were generated for 2,4-D by an effective procedure, including serum monitoring and one-step library construction. One nanobody, NB3-9, exhibited good sensitivity against 2,4-D (IC50 = 29.2 ng/mL) had better specificity than the rabbit pAb#1518, with no cross-reactivities against the 2,4-D analogs tested. Thirdly, one-step fluorescent enzyme immunoassay (FLEIA) for 2,4-D based on a nanobody-alkaline phosphatase (AP) fusion was developed with IC50 of 1.9 ng/mL and a linear range of 0.4-8.6 ng/mL. Environmental water samples were analyzed by FLEIA and LC-MS/MS for comparison, and the results were consistent between both methods. Therefore, the proposed step-wise strategy from hapten design to nanobody-AP fusion production was successfully conducted, and the resulting nanobody based FLEIA was demonstrated as a convenient tool to monitor 2,4-D residuals in the environment.


Assuntos
Herbicidas , Água , Ácido 2,4-Diclorofenoxiacético , Animais , Cromatografia Líquida , Ensaio de Imunoadsorção Enzimática , Herbicidas/análise , Coelhos , Espectrometria de Massas em Tandem
14.
J Nat Prod ; 83(12): 3689-3697, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33320645

RESUMO

Lepidium meyenii (maca), a plant indigenous to the Peruvian Andes, recently has been utilized globally for claimed health or recreational benefits. The search for natural products that inhibit soluble epoxide hydrolase (sEH), with therapeutically relevant potencies and concentrations, led to the present study on bioactive amide secondary metabolites found in L. meyenii, the macamides. Based on known and suspected macamides, 19 possible macamides were synthesized and characterized. The majority of these amides displayed excellent inhibitory potency (IC50 ≈ 20-300 nM) toward the recombinant mouse, rat, and human sEH. Quantitative analysis of commercial maca products revealed that certain products contain known macamides (1-5, 8-12) at therapeutically relevant total concentrations (≥3.29 mg/g of root), while the inhibitory potency of L. meyenii extracts directly correlates with the sum of concentration/IC50 ratios of macamides present. Considering both its in vitro efficacy and high abundance in commercial products, N-benzyl-linoleamide (4) was identified as a particularly relevant macamide that can be utilized for in vivo studies. Following oral administration in the rat, compound 4 not only displayed acceptable pharmacokinetic characteristics but effectively reduced lipopolysaccharide-induced inflammatory pain. Inhibition of sEH by macamides provides a plausible biological mechanism of action to account for several beneficial effects previously observed with L. meyenii treatments.


Assuntos
Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Inflamação/complicações , Ácidos Linoleicos/química , Dor/prevenção & controle , Administração Oral , Analgesia , Animais , Humanos , Ácidos Linoleicos/administração & dosagem , Ácidos Linoleicos/farmacocinética , Ácidos Linoleicos/farmacologia , Camundongos , Dor/etiologia , Ratos
15.
Sci Transl Med ; 12(573)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298560

RESUMO

Neuroinflammation has been increasingly recognized to play a critical role in Alzheimer's disease (AD). The epoxy fatty acids (EpFAs) are derivatives of the arachidonic acid metabolism pathway and have anti-inflammatory activities. However, their efficacy is limited because of their rapid hydrolysis by the soluble epoxide hydrolase (sEH). We report that sEH is predominantly expressed in astrocytes and is elevated in postmortem brain tissue from patients with AD and in the 5xFAD ß amyloid mouse model of AD. The amount of sEH expressed in AD mouse brains correlated with a reduction in brain EpFA concentrations. Using a specific small-molecule sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), we report that TPPU treatment protected wild-type mice against LPS-induced inflammation in vivo. Long-term administration of TPPU to the 5xFAD mouse model via drinking water reversed microglia and astrocyte reactivity and immune pathway dysregulation. This was associated with reduced ß amyloid pathology and improved synaptic integrity and cognitive function on two behavioral tests. TPPU treatment correlated with an increase in EpFA concentrations in the brains of 5xFAD mice, demonstrating brain penetration and target engagement of this small molecule. These findings support further investigation of TPPU as a potential therapeutic agent for the treatment of AD.


Assuntos
Doença de Alzheimer , Epóxido Hidrolases , Doença de Alzheimer/tratamento farmacológico , Animais , Compostos de Epóxi , Humanos , Camundongos , Compostos de Fenilureia , Piperidinas
16.
Sci Rep ; 10(1): 16032, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994480

RESUMO

Emerging evidence demonstrates the importance of sufficient vitamin D (1α, 25-dihydroxyvitamin D3) levels during early life stage development with deficiencies associated with long-term effects into adulthood. While vitamin D has traditionally been associated with mineral ion homeostasis, accumulating evidence suggests non-calcemic roles for vitamin D including metabolic homeostasis. In this study, we examined the hypothesis that vitamin D deficiency (VDD) during early life stage development precedes metabolic disruption. Three dietary cohorts of zebrafish were placed on engineered diets including a standard laboratory control diet, a vitamin D null diet, and a vitamin D enriched diet. Zebrafish grown on a vitamin D null diet between 2-12 months post fertilization (mpf) exhibited diminished somatic growth and enhanced central adiposity associated with accumulation and enlargement of visceral and subcutaneous adipose depots indicative of both adipocyte hypertrophy and hyperplasia. VDD zebrafish exhibited elevated hepatic triglycerides, attenuated plasma free fatty acids and attenuated lipoprotein lipase activity consistent with hallmarks of dyslipidemia. VDD induced dysregulation of gene networks associated with growth hormone and insulin signaling, including induction of suppressor of cytokine signaling. These findings indicate that early developmental VDD impacts metabolic health by disrupting the balance between somatic growth and adipose accumulation.


Assuntos
Adiposidade/fisiologia , Deficiência de Vitamina D/metabolismo , Vitamina D/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta , Transtornos do Crescimento/metabolismo , Hiperplasia/etiologia , Hiperplasia/fisiopatologia , Fígado/metabolismo , Obesidade/metabolismo , Obesidade Abdominal/complicações , Deficiência de Vitamina D/fisiopatologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
17.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987880

RESUMO

Brown adipose tissue (BAT) is an important target for obesity treatment and prevention. Soluble epoxide hydrolase (sEH) converts bioactive epoxy fatty acids (EpFAs) into less active diols. sEH inhibitors (sEHI) are beneficial in many chronic diseases by stabilizing EpFAs. However, roles of sEH and sEHI in brown adipogenesis and BAT activity in treating diet-induced obesity (DIO) have not been reported. sEH expression was studied in in vitro models of brown adipogenesis and the fat tissues of DIO mice. The effects of the sEHI, trans-4-{4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy-benzoic acid (t-TUCB), were studied in vitro and in the obese mice via mini osmotic pump delivery. sEH expression was increased in brown adipogenesis and the BAT of the DIO mice. t-TUCB promoted brown adipogenesis in vitro. Although t-TCUB did not change body weight, fat pad weight, or glucose and insulin tolerance in the obese mice, it decreased serum triglycerides and increased protein expression of genes important for lipid metabolism in the BAT. Our results suggest that sEH may play a critical role in brown adipogenesis, and sEHI may be beneficial in improving BAT protein expression involved in lipid metabolism. Further studies using the sEHI combined with EpFA generating diets for obesity treatment and prevention are warranted.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Benzoatos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Epóxido Hidrolases/antagonistas & inibidores , Obesidade/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Adipócitos Marrons/patologia , Adipogenia/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/patologia , Animais , Linhagem Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Triglicerídeos/sangue , Triglicerídeos/metabolismo
18.
Anal Chem ; 92(17): 11935-11942, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32702970

RESUMO

The isolation of nanobodies (Nbs) from phage display libraries is an increasingly effective approach for the generation of new biorecognition elements, which can be used to develop immunoassays. In this study, highly specific Nbs against the Alternaria mycotoxin tenuazonic acid (TeA) were isolated from an immune nanobody phage display library using a stringent biopanning strategy. The obtained Nbs were characterized by classical enzyme-linked immunosorbent assay (ELISA), and the best one Nb-3F9 was fused with nanoluciferase to prepare an advanced bifunctional fusion named nanobody-nanoluciferase (Nb-Nluc). In order to improve the sensitivity and reduce the assay time, two different kinds of luminescent strategies including chemiluminescent enzyme immunoassay (CLEIA) and bioluminescent enzyme immunoassay (BLEIA) were established, respectively, on the basis of the single Nb and the fusion protein Nb-Nluc for TeA detection. The two-step CLEIA was developed on the basis of the same nanobody as ELISA, only with simple substrate replacement from 3,3',5,5'-tetramethylbenzidine (TMB) to luminol. In contrast with CLEIA, the novel BLEIA was conducted in one-step new strategy on the basis of Nb-Nluc and bioluminescent substrate coelenterazine-h (CTZ-h). Their half maximal inhibitory concentration (IC50) values were similar to 8.6 ng/mL for CLEIA and 9.3 ng/mL for BLEIA, which was a 6-fold improvement in sensitivity compared with that of ELISA (IC50 of 54.8 ng/mL). Both of the two assays provided satisfactory recoveries ranging from 80.1%-113.5% in real samples, which showed better selectivity for TeA analogues and other common mycotoxins. These results suggested that Nbs and Nb-Nluc could be used as useful reagents for immunodetection and that the developed CLEIA/BLEIA have great potential for TeA analysis.


Assuntos
Imunoensaio/métodos , Técnicas Imunoenzimáticas/métodos , Anticorpos de Domínio Único/imunologia , Ácido Tenuazônico/metabolismo , Humanos
19.
Anal Chem ; 92(14): 10083-10090, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32559059

RESUMO

Tetrabromobisphenol A (TBBPA) is a flame retardant and has become a widely concerning environmental pollutant. An ultrasensitive nanobody-based immunoassay was developed to monitor the exposure of TBBPA in sediment. First, the anti-TBBPA nanobody was fused with nanoluciferase, and then a one-step bioluminescent enzyme immunoassay (BLEIA) was developed with high sensitivity for TBBPA, with a maximum half inhibition concentration (IC50) at 187 pg/mL. Although approximately 10-fold higher sensitivity can be achieved by this developed BLEIA than by the classical two-step ELISA (IC50 at 1778 pg/mL), it is still a challenge to detect trace TBBPA in sediment samples reliably due to the relatively high matrix effect. To further improve the performance of this one-step BLEIA, a C4b-binding protein (C4BP) was inserted as a self-assembling linker between the nanobody and nanoluciferase. Therefore, a heptamer fusion containing seven binders and seven tracers was generated. This reagent improved the binding capacity and signal amplification. The one-step heptamer plus BLEIA based on this immune-reagent shows an additional 7-fold improvement of sensitivity, with the IC50 of 28.9 pg/mL and the limit of detection as low as 2.5 pg/mL. The proposed assay was further applied to determine the trace TBBPA in sediment, and the recovery was within 92-103%. Taking advantage of this heptamer fusion, one-step BLEIA can serve as a powerful tool for fast detection of trace TBBPA in the sediment samples.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Luciferases/química , Medições Luminescentes , Bifenil Polibromatos/análise , Anticorpos de Domínio Único/química , Técnicas Imunoenzimáticas , Luciferases/metabolismo
20.
Proc Natl Acad Sci U S A ; 117(15): 8431-8436, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32220957

RESUMO

Intestinal barrier dysfunction, which leads to translocation of bacteria or toxic bacterial products from the gut into bloodstream and results in systemic inflammation, is a key pathogenic factor in many human diseases. However, the molecular mechanisms leading to intestinal barrier defects are not well understood, and there are currently no available therapeutic approaches to target intestinal barrier function. Here we show that soluble epoxide hydrolase (sEH) is an endogenous regulator of obesity-induced intestinal barrier dysfunction. We find that sEH is overexpressed in the colons of obese mice. In addition, pharmacologic inhibition or genetic ablation of sEH abolishes obesity-induced gut leakage, translocation of endotoxin lipopolysaccharide or bacteria, and bacterial invasion-induced adipose inflammation. Furthermore, systematic treatment with sEH-produced lipid metabolites, dihydroxyeicosatrienoic acids, induces bacterial translocation and colonic inflammation in mice. The actions of sEH are mediated by gut bacteria-dependent mechanisms, since inhibition or genetic ablation of sEH fails to attenuate obesity-induced gut leakage and adipose inflammation in mice lacking gut bacteria. Overall, these results support that sEH is a potential therapeutic target for obesity-induced intestinal barrier dysfunction, and that sEH inhibitors, which have been evaluated in human clinical trials targeting other human disorders, could be promising agents for prevention and/or treatment.


Assuntos
Translocação Bacteriana , Epóxido Hidrolases/imunologia , Enteropatias/enzimologia , Intestinos/enzimologia , Obesidade/complicações , Tecido Adiposo/imunologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Epóxido Hidrolases/genética , Microbioma Gastrointestinal , Humanos , Enteropatias/etiologia , Enteropatias/imunologia , Enteropatias/microbiologia , Intestinos/imunologia , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/enzimologia , Obesidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA