RESUMO
KEY MESSAGE: The combination of a QTL on chromosome arm 4BL and Yr29 provides durable resistance with no significant yield penalty. Wheat stripe rust or yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst), causes substantial yield reductions globally, but losses can be minimized by using resistance genes. Chinese wheat cultivar Jing 411 (J411) has continued to display an acceptable level of adult-plant resistance (APR) to YR in varied field conditions since its release in the 1990s. A recombinant inbred line (RIL) population comprising 187 lines developed from a cross of J411 and Kenong 9204 (KN9204) was evaluated in multiple environments to identify genomic regions carrying genes for YR resistance. A total of five quantitative trait loci (QTL) on chromosome arm 1BL, 3BS, 4BL, 6BS, and 7BL from J411 and two QTL on 3DS and 7DL from KN9204 were detected using inclusive composite interval mapping with the wheat 660 K SNP array. QYr.nwafu-1BL.5 and QYr.nwafu-4BL.3 from J411 were robust and showed similar effects in all environments. QYr.nwafu-1BL.5 was likely the pleiotropic gene of Yr29/Lr46. QYr.nwafu-4BL.3 was located within a 1.0 cM interval delimited by KASP markers AX-111609222 and AX-89755491. Based on haplotype analysis, Yr29 and QYr.nwafu-4BL.3 were identified as genetic components of quantitative resistance in a number of wheat cultivars. Moreover, RILs with Yr29 and QYr.nwafu-4BL.3 individually or when combined showed higher resistance to YR in rust nurseries compared with RILs without them, and there was no negative effect of their presence on agronomic traits under rust-free conditions. These results suggest that effective polymerization strategy is important for breeding high yielding and durable resistance cultivars.
Assuntos
Mapeamento Cromossômico , Resistência à Doença , Fenótipo , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Cromossomos de Plantas/genética , Puccinia/patogenicidade , Melhoramento Vegetal , Genes de Plantas , Ligação Genética , Basidiomycota/patogenicidade , Basidiomycota/fisiologia , Marcadores GenéticosRESUMO
Stripe rust is a devastating disease of wheat worldwide. Chinese wheat cultivar Lanhangxuan 121 (LHX121), selected from an advanced line L92-47 population that had been subjected to space mutation breeding displayed a consistently higher level of resistance to stipe rust than its parent in multiple field environments. The aim of this research was to establish the number and types of resistance genes in parental lines L92-47 and LHX121 using separate segregating populations. The first population developed from a cross between LHX121 and susceptible cultivar Xinong 822 comprised 278 F2:3 lines. The second validation population comprised 301 F2:3 lines from a cross between L92-47 and susceptible cultivar Xinong 979. Lines of two population were evaluated for stripe rust response at three sites during the 2018-2020 cropping season. Affymetrix 660 K SNP arrays were used to genotype the lines and parents. Inclusive composite interval mapping detected QTL QYrLHX.nwafu-2BS, QYrLHX.nwafu-3BS, and QYrLHX.nwafu-5BS for resistance in all three environments. Based on previous studies and pedigree information, QYrLHX.nwafu-2BS and QYrLHX.nwafu-3BS were likely to be Yr27 and Yr30 that are present in the L92-47 parent. QYrLHX.nwafu-5BS (YrL121) detected only in LHX121 was mapped to a 7.60 cM interval and explained 10.67-22.57% of the phenotypic variation. Compared to stripe rust resistance genes previously mapped to chromosome 5B, YrL121 might be a new adult plant resistance QTL. Furthermore, there were a number of variations signals using 35 K SNP array and differentially expressed genes using RNA-seq between L92-47 and LHX121 in the YrL121 region, indicating that they probably impair the presence and/or function of YrL121. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01461-0.