Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(39): E8284-E8293, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28900002

RESUMO

Although a causative role of α-synuclein (α-syn) is well established in Parkinson's disease pathogenesis, available animal models of synucleinopathy do not replicate the full range of cellular and behavioral changes characteristic of the human disease. This study was designed to generate a more faithful model of Parkinson's disease by injecting human α-syn fibril seeds into the rat substantia nigra (SN), in combination with adenoassociated virus (AAV)-mediated overexpression of human α-syn, at levels that, by themselves, are unable to induce acute dopamine (DA) neurodegeneration. We show that the ability of human α-syn fibrils to trigger Lewy-like α-synuclein pathology in the affected DA neurons is dramatically enhanced in the presence of elevated levels of human α-syn. This synucleinopathy was fully developed already 10 days after fibril injection, accompanied by progressive degeneration of dopaminergic neurons in SN, neuritic swelling, reduced striatal DA release, and impaired motor behavior. Moreover, a prominent inflammatory response involving both activation of resident microglia and infiltration of CD4+ and CD8+ T lymphocytes was observed. Hypertrophic microglia were found to enclose or engulf cells and processes containing Lewy-like α-syn aggregates. α-Syn aggregates were also observed inside these cells, suggesting transfer of phosphorylated α-syn from the affected nigral neurons. The nigral pathology triggered by fibrils in combination with AAV-mediated overexpression of α-syn reproduced many of the cardinal features of the human disease. The short time span and the distinct sequence of pathological and degenerative changes make this combined approach attractive as an experimental model for the assessment of neuroprotective and disease-modifying strategies.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Microglia/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , alfa-Sinucleína/toxicidade , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Humanos , Microglia/patologia , Doença de Parkinson/patologia , Ratos , Substância Negra/patologia
2.
Sci Rep ; 6: 26285, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27211987

RESUMO

We studied the impact of α-synuclein overexpression in brainstem serotonin neurons using a novel vector construct where the expression of human wildtype α-synuclein is driven by the tryptophan hydroxylase promoter, allowing expression of α-synuclein at elevated levels, and with high selectivity, in serotonergic neurons. α-Synuclein induced degenerative changes in axons and dendrites, displaying a distorted appearance, suggesting accumulation and aggregation of α-synuclein as a result of impaired axonal transport, accompanied by a 40% loss of terminals, as assessed in the hippocampus. Tissue levels of serotonin and its major metabolite 5-HIAA remained largely unaltered, and the performance of the α-synuclein overexpressing rats in tests of spatial learning (water maze), anxiety related behavior (elevated plus maze) and depressive-like behavior (forced swim test) was not different from control, suggesting that the impact of the developing axonal pathology on serotonin neurotransmission was relatively mild. Overexpression of α-synuclein in the raphe nuclei, combined with overexpression in basal forebrain cholinergic neurons, resulted in more pronounced axonal pathology and significant impairment in the elevated plus maze. We conclude that α-synuclein pathology in serotonergic or cholinergic neurons alone is not sufficient to impair non-motor behaviors, but that it is their simultaneous involvement that determines severity of such symptoms.


Assuntos
Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animais , Comportamento Animal , Tronco Encefálico/fisiopatologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Dependovirus/genética , Feminino , Vetores Genéticos , Humanos , Aprendizagem em Labirinto , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Regiões Promotoras Genéticas , Núcleos da Rafe/metabolismo , Núcleos da Rafe/patologia , Núcleos da Rafe/fisiopatologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triptofano Hidroxilase/genética , Regulação para Cima
3.
Apoptosis ; 20(4): 491-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25578648

RESUMO

X-linked inhibitor of apoptosis (XIAP) is a protein that possesses anti-apoptotic function and dysregulation of it has been linked to a number human disease such as cancers and neurodegenerative disorders. In our previous study, we have found that nitric oxide (NO) can modulate the anti-apoptotic function of XIAP and found that this can contribute to the pathogenesis of Parkinson's disease. Specifically, we found that modification of baculoviral IAP repeat 2 of XIAP by S-nitrosylation can compromise XIAP's anti-caspase 3 and anti-apoptotic function. In this study, we report that cysteine (Cys) 90, Cys 213 and Cys 327 can be specifically S-nitrosylated by NO. We found that mutations of Cys 90 and Cys 327 affect the normal structure of XIAP. More importantly, we found that S-nitrosylation of XIAP Cys 213 impairs the anti-caspase 3 and anti-apoptotic function of XIAP that we observed in our previous study.


Assuntos
Apoptose , Caspase 3/metabolismo , Cisteína/metabolismo , Óxido Nítrico/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Linhagem Celular , Humanos , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
4.
PLoS One ; 7(6): e38545, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701661

RESUMO

α-Synuclein (α-syn) is a synaptic protein in which four mutations (A53T, A30P, E46K and gene triplication) have been found to cause an autosomal dominant form of Parkinson's disease (PD). It is also the major component of intraneuronal protein aggregates, designated as Lewy bodies (LBs), a prominent pathological hallmark of PD. How α-syn contributes to LB formation and PD is still not well-understood. It has been proposed that aggregation of α-syn contributes to the formation of LBs, which then leads to neurodegeneration in PD. However, studies have also suggested that aggregates formation is a protective mechanism against more toxic α-syn oligomers. In this study, we have generated α-syn mutants that have increased propensity to form aggregates by attaching a CL1 peptide to the C-terminal of α-syn. Data from our cellular study suggest an inverse correlation between cell viability and the amount of α-syn aggregates formed in the cells. In addition, our animal model of PD indicates that attachment of CL1 to α-syn enhanced its toxicity to dopaminergic neurons in an age-dependent manner and induced the formation of Lewy body-like α-syn aggregates in the substantia nigra. These results provide new insights into how α-syn-induced toxicity is related to its aggregation.


Assuntos
Corpos de Lewy/genética , Modelos Animais , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Análise de Variância , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular/genética , Cromatografia em Gel , Humanos , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Mutação/genética , Peptídeos/metabolismo , Plasmídeos/genética , Polimerização , Substância Negra/metabolismo
5.
Biochim Biophys Acta ; 1802(11): 935-41, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20674742

RESUMO

Parkinson's disease (PD) is a common neurodegenerative movement disorder that affects increasing number of elderly in the world population. The disease is caused by a selective degeneration of dopaminergic neurons in the substantia nigra pars compacta with the molecular mechanism underlying this neurodegeneration still not fully understood. However, various studies have shown that mitochondrial dysfunction and abnormal protein aggregation are two of the major contributors for PD. In fact this notion has been supported by recent studies on genes that are linked to familial PD (FPD). For instance, FPD linked gene products such as PINK1 and parkin have been shown to play critical roles in the quality control of mitochondria, whereas α-synuclein has been found to be the major protein aggregates accumulated in PD patients. These findings suggest that further understanding of how dysfunction of these pathways in PD will help develop new approaches for the treatment of this neurodegenerative disorder.


Assuntos
Mitocôndrias/fisiologia , Doença de Parkinson/fisiopatologia , Proteínas/fisiologia , Animais , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação , Doença de Parkinson/genética , Conformação Proteica , Proteínas/química , Proteínas/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/fisiologia , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/fisiologia
6.
J Neurochem ; 110(1): 208-19, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19457126

RESUMO

Parkinson's disease (PD) is a common movement disorder marked by the loss of dopaminergic (DA) neurons in the brain stem and the presence of intraneuronal inclusions designated as Lewy bodies (LB). The cause of neurodegeneration in PD is not clear, but it has been suggested that protein misfolding and aggregation contribute significantly to the development of the disease. Misfolded and aggregated proteins are cleared by ubiquitin proteasomal system (UPS) and autophagy lysosomal pathway (ALP). Recent studies suggested that different types of ubiquitin linkages can modulate these two pathways in the process of protein degradation. In this study, we found that co-expression of ubiquitin can rescue neurons from alpha-syn-induced neurotoxicity in a Drosophila model of PD. This neuroprotection is dependent on the formation of lysine 48 polyubiquitin linkage which is known to target protein degradation via the proteasome. Consistent with our results that we observed in vivo, we found that ubiquitin co-expression in the cell can facilitate cellular protein degradation by the proteasome in a lysine 48 polyubiquitin-dependent manner. Taken together, these results suggest that facilitation of proteasomal protein degradation can be a potential therapeutic approach for PD.


Assuntos
Drosophila melanogaster/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Citoproteção/efeitos dos fármacos , Citoproteção/fisiologia , Modelos Animais de Doenças , Drosophila melanogaster/genética , Humanos , Corpos de Lewy/genética , Corpos de Lewy/metabolismo , Lisina/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Polímeros/química , Polímeros/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Substância Negra/metabolismo , Ubiquitina/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA