Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
2.
ACS Appl Mater Interfaces ; 15(40): 46639-46654, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37787379

RESUMO

Bone retention is a usual clinical problem existing in a lot of maxillofacial surgeries involving bone reconstruction and bone transplantation, which puts forward the requirements for bone adhesives that are stable, durable, biosafe, and biodegradable in wet environment. To relieve the suffering of patients during maxillofacial surgery with one-step operation and satisfying repair, herein, we developed a double-cross-linked A-O hydrogel named by its two components: [(3-Aminopropyl) methacrylamide]-co-{[Tris(hydroxymethyl) methyl] acrylamide} and oxidated methylcellulose. With excellent bone adhesion ability, it can maintain long-lasting stable underwater bone adhesion for over 14 days, holding a maximum adhesion strength of 2.32 MPa. Schiff-base reaction and high-density hydrogen bonds endow the hydrogel with strong cohesion and adhesion performance as well as maneuverable properties such as easy formation and injectability. A-O hydrogel not only presents rarely reported long-lasting underwater adhesion of hard tissue but also owns inherent biocompatibility and biodegradation properties with a porous structure that facilitates the survival of bone graft. Compared to the commercial cyanoacrylate adhesive (3 M Vetbond Tissue Adhesive), the A-O hydrogel is confirmed to be safer, more stable, and more effective in calvarial in situ bone retention model and onlay bone retention model of rat, providing a practical solution for the everyday scenario of clinical bone retention.


Assuntos
Hidrogéis , Adesivos Teciduais , Humanos , Ratos , Animais , Hidrogéis/química , Adesivos/química , Adesivos Teciduais/farmacologia , Adesivos Teciduais/química , Aderências Teciduais , Cianoacrilatos
3.
J Mater Chem B ; 11(41): 9933-9949, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37822156

RESUMO

Following the introduction of osteo-immunomodulation as a new and important strategy to enhance material osseointegration, achieving an appropriate immune response after biomaterial implantation has become a significant challenge for efficient bone repair. In this study, a nanosilicate-reinforced sodium alginate (SA) hydrogel was fabricated by introducing montmorillonite (MMT) nanoparticles. Meanwhile, an immunogenically bioactive agent, harmine (HM), was loaded and released to induce macrophage differentiation into the M2 type. The fabricated SA/MMT/HM (SMH) hydrogel exhibited improved mechanical stiffness and stability, which also efficiently promoted macrophage anti-inflammatory M2 phenotype polarization and enhanced the secretion of pro-tissue healing cytokines for inducing a favorable immunomodulatory microenvironment for the osteogenic differentiation of bone marrow stromal cells (BMSCs). Furthermore, a rat air-pouch model and a critical-size bone defect model were used and the results showed that the SMH hydrogel increased the proportion of M2 macrophages and markedly reduced local inflammation, while enhancing desirable new bone formation. Transcriptomic analysis revealed that the SMH hydrogel accelerated the M1-to-M2 transition of macrophages by inhibiting relevant inflammatory signaling pathways and activating the PI3K-AKT1 signaling pathway. Taken together, this high-intensity immunomodulatory hydrogel may be a promising biomaterial for bone regeneration and provide a valuable base and positive enlightenment for massive bone defect repair.


Assuntos
Hidrogéis , Osseointegração , Ratos , Animais , Hidrogéis/farmacologia , Osteogênese , Ratos Sprague-Dawley , Materiais Biocompatíveis/farmacologia
4.
ACS Appl Mater Interfaces ; 15(37): 43524-43540, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37695676

RESUMO

The treatment of wounds that develop on moving parts of the body, such as joints, is considered a challenge due to poor mechanical matching and secondary injury caused by continuous motion and inflammation. Herein, a stretchable, multifunctional hydrogel dressing utilizing the dual cross-linking of chitosan (CS) and acrylic acid (AA) and modified with caffeic acid (CA) and aloin (Alo) was developed. Mechanical testing demonstrated that the hydrogel possessed excellent stretching capability (of approximately 869%) combined with outstanding adhesion (about 56 kPa), contributing to its compatibility with moving parts and allowing complete coverage of wound sites without limiting joint and organ motion. Bioinformatics analysis confirmed that use of the hydrogel resulted in upregulated expression of multiple genes related to angiogenesis and cell proliferation. Furthermore, antibacterial testing indicated that the dressing suppressed the growth of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA), providing a better microenvironment for wound healing. An in vivo wound defect model on movable skin verified that the wound healing observed with the hydrogel dressing was superior to that observed with a commercially available dressing. Taken together, the results suggest that a stretchable multifunctional hydrogel dressing represents a promising alternative wound dressing with therapeutic potential for superior healing, especially for moving parts of the body.


Assuntos
Hidrogéis , Staphylococcus aureus Resistente à Meticilina , Hidrogéis/farmacologia , Antioxidantes/farmacologia , Cicatrização , Antibacterianos/farmacologia , Escherichia coli
5.
J Dent ; 138: 104695, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37714450

RESUMO

OBJECTIVES: Dental pulp tissue is highly vascularized. However, age-related vascular changes of the dental pulp in mice and humans remain poorly understood. We modified a novel tissue clearing method, mapped the vasculature, pericytes, and perivascular matrix in the dental pulp via high-resolution 3D imaging. METHODS: We isolated young and aged pulps from mouse teeth, and mapped vasculature through a high-resolution thick frozen sections imaging method and a modified tissue clearing method. Human dental pulps were also mapped for vasculature studying. Furthermore, young and aged human dental pulps were collected and were compared with mouse pulps through RNA- sequencing. RESULTS: Five vascular subtypes of blood vessels were found in the mouse dental pulp, which constituted the arterioles-capillaries-venules network. The density of capillaries and venules of molars declined obviously in aged mice. Among the age-dependent changes in the perivascular pulp matrix, the perivascular macrophages remarkably increased, lymphatic capillaries increased, while the nerves and extracellular matrix remained unchanged. Furthermore, the vascular patterns of human formed a complex vascular network. Both mouse and human dental pulps exhibited an inflammaging state. TNF pathway and Rap1 pathway might become promising targets for combating inflammaging and promoting angiogenesis. CONCLUSIONS: Five subtypes of blood vessels were identified within the dental pulp of mice. Notably, the density of capillaries and venules in pulps of aged mice was reduced. Furthermore, partial similarities were observed in the vascular patterns between the dental pulps of humans and mice. RNA-sequencing analysis revealed that both mouse and human dental pulps exhibit indications of an inflammaging state. CLINICAL SIGNIFICANCE: This study may contribute to unraveling potential therapeutic targets in the pulp regeneration and treatment of relevant diseases in the elderly.


Assuntos
Polpa Dentária , Vasos Linfáticos , Idoso , Humanos , Camundongos , Animais , Regeneração , RNA
6.
Sci Adv ; 9(25): eadh2213, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37343097

RESUMO

Intratissue topical medication is important for the treatment of cutaneous, mucosal or splanchnic diseases. However, penetrating surface barriers to providing adequate and controllable drug delivery while guaranteeing adhesion in bodily fluids remains challenging. Here, the predatory behavior of the blue-ringed octopus inspired us with a strategy to improve topical medication. For effective intratissue drug delivery, the active injection microneedles were prepared in a manner inspired by the teeth and venom secretion of blue-ringed octopus. With on demand release function guided by temperature-sensitive hydrophobic and shrinkage variations, these microneedles can supply adequate drug delivery at an early stage and then achieve the long-term release stage. Meanwhile, the bionic suction cups were developed to facilitate microneedles to stay firmly in place (>10 kilopascal) when wet. With wet bonding ability and multiple delivery mode, this microneedle patch achieved satisfactory efficacy, such as accelerating the ulcers' healing speed or halting early tumor progression.


Assuntos
Octopodiformes , Animais , Sistemas de Liberação de Medicamentos , Pele , Administração Cutânea , Fenômenos Físicos
7.
ACS Appl Mater Interfaces ; 15(14): 17543-17561, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010447

RESUMO

It has been confirmed that substantial vascularization is an effective strategy to heal large-scale bone defects in the field of bone tissue engineering. The local application of deferoxamine (DFO) is among the most common and effective methods for promoting the formation of blood vessels, although its short half-life in plasma, rapid clearance, and poor biocompatibility limit its therapeutic suitability. Herein, zeolitic imidazolate framework-8 (ZIF-8) was selected as a vehicle to extend the half-life of DFO. In the present study, a nano DFO-loaded ZIF-8 (DFO@ZIF-8) drug delivery system was established to promote angiogenesis-osteogenesis coupling. The nanoparticles were characterized, and their drug loading efficiency was examined to confirm the successful synthesis of nano DFO@ZIF-8. Additionally, due to the sustained release of DFO and Zn2+, DFO@ZIF-8 NPs were able to promote angiogenesis in human umbilical vein endothelial cells (HUVECs) culture and osteogenesis in bone marrow stem cells (BMSCs) in vitro. Furthermore, the DFO@ZIF-8 NPs promoted vascularization by enhancing the expression of type H vessels and a vascular network. The DFO@ZIF-8 NPs promoted bone regeneration in vivo by increasing the expression of OCN and BMP-2. RNA sequencing analysis revealed that the PI3K-AKT-MMP-2/9 and HIF-1α pathways were upregulated by DFO@ZIF-8 NPs in HUVECs, ultimately leading to the formation of new blood vessels. In addition, the mechanism by which DFO@ZIF-8 NPs promoted bone regeneration was potentially related to the synergistic effect of angiogenesis-osteogenesis coupling and Zn2+-mediation of the MAPK pathway. Taken together, DFO@ZIF-8 NPs, which were demonstrated to have low cytotoxicity and excellent coupling of angiogenesis and osteogenesis, represent a promising strategy for the reconstruction of critical-sized bone defects.


Assuntos
Osteogênese , Fosfatidilinositol 3-Quinases , Humanos , Neovascularização Fisiológica , Regeneração Óssea , Células Endoteliais da Veia Umbilical Humana , Sistemas de Liberação de Medicamentos , Neovascularização Patológica
8.
J Funct Biomater ; 14(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37103284

RESUMO

Hyperlipidemia refers to the abnormal increase in plasma lipid level exceeding the normal range. At present, a large number of patients require dental implantation. However, hyperlipidemia affects bone metabolism, promotes bone loss, and inhibits the osseointegration of dental implants through the mutual regulation of adipocytes, osteoblasts, and osteoclasts. This review summarized the effects of hyperlipidemia on dental implants and addressed the potential strategies of dental implants to promote osseointegration in a hyperlipidemic environment and to improve the success rate of dental implants in patients with hyperlipidemia. We summarized topical drug delivery methods to solve the interference of hyperlipidemia in osseointegration, which were local drug injection, implant surface modification and bone-grafting material modification. Statins are the most effective drugs in the treatment of hyperlipidemia, and they also encourage bone formation. Statins have been used in these three methods and have been found to be positive in promoting osseointegration. Directly coating simvastatin on the rough surface of the implant can effectively promote osseointegration of the implant in a hyperlipidemic environment. However, the delivery method of this drug is not efficient. Recently, a variety of efficient methods of simvastatin delivery, such as hydrogels and nanoparticles, have been developed to boost bone formation, but few of them were applied to dental implants. Applicating these drug delivery systems using the three aforementioned ways, according to the mechanical and biological properties of materials, could be promising ways to promote osseointegration under hyperlipidemic conditions. However, more research is needed to confirm.

9.
J Biomed Mater Res B Appl Biomater ; 111(7): 1434-1446, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36880538

RESUMO

One specific capillary subtype, termed type H vessel, has been found with unique functional characteristics in coupling angiogenesis with osteogenesis. Researchers have fabricated a variety of tissue engineering scaffolds to enhance bone healing and regeneration through the accumulation of type H vessels. However, only a limited number of reviews discussed the tissue engineering strategies for type H vessel regulation. The object of this review is to summary the current utilizes of bone tissue engineering to regulate type H vessels through various signal pathways including Notch, PDGF-BB, Slit3, HIF-1α, and VEGF signaling. Moreover, we give an insightful overview of recent research progress about the morphological, spatial and age-dependent characteristics of type H blood vessels. Their unique role in tying angiogenesis and osteogenesis together via blood flow, cellular microenvironment, immune system and nervous system are also summarized. This review article would provide an insight into the combination of tissue engineering scaffolds with type H vessels and identify future perspectives for vasculized tissue engineering research.


Assuntos
Osteogênese , Engenharia Tecidual , Humanos , Animais , Osso e Ossos/irrigação sanguínea , Engenharia Tecidual/métodos , Neovascularização Fisiológica , Transdução de Sinais
10.
J Prosthet Dent ; 129(3): 447.e1-447.e10, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36737356

RESUMO

STATEMENT OF PROBLEM: The clinical application of short implants has been increasing. However, studies on the marginal bone loss of short implants are sparse, and clinicians often choose short implants based on their own experience rather than on scientific information. PURPOSE: The purpose of this finite element analysis study was to evaluate the microstrain-stress distribution in the peri-implant bone and implant components for 4 types of short implants at different placement depths of platform switching. MATERIAL AND METHODS: By using short implants as prototypes, 4 short implant models were 1:1 modeled. The diameter and length of the implants were 5×5, 5×6, 6×5, and 6×6 mm. The restoration was identical for all implants. Three different depths of implant platform switching were set: equicrestal, 0.5-mm subcrestal, and 1-mm subcrestal. The models were then assembled and assigned an occlusal force of 200 N (vertical or 30-degree oblique). A finite element analysis was carried out to evaluate the maximum equivalent elastic strain and von Mises stress in the bone and the stress distribution in the implant components. RESULTS: The 5×5 implant group showed the largest intraosseous strain (21.921×103 µÎµ). A 1-mm increase in implant diameter resulted in a 17.1% to 37.4% reduction in maximum intraosseous strain when loaded with oblique forces. The strain in the bone tended to be much smaller than the placement depth at the equicrestal and 0.5-mm subcrestal positions than that at the 1-mm subcrestal position, especially under oblique force loading, with an increase of approximately 37.4% to 81.8%. In addition, when the cortical bone thickness was less than 4 mm, 5×6 implants caused significantly higher intraosseous stresses than 6×6 implants. CONCLUSIONS: Large implant diameters, rather than long implants, led to reduced intraosseous strain, especially under oblique loading. Regarding the implant platform switching depth, the short implant showed small intraosseous strains when the platform switching depth was equicrestal or 0.5-mm subcrestal.


Assuntos
Implantes Dentários , Análise de Elementos Finitos , Estresse Mecânico , Fenômenos Biomecânicos , Força de Mordida , Análise do Estresse Dentário/métodos , Simulação por Computador , Planejamento de Prótese Dentária
11.
J Mater Chem B ; 11(11): 2307-2333, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36809480

RESUMO

Bone defects are a common bone disease, which are usually caused by accidents, trauma and tumors. However, the treatment of bone defects is still a great clinical challenge. In recent years, research on bone repair materials has continued with great success, but there are few reports on the repair of bone defects at a high lipid level. Hyperlipidemia is a risk factor in the process of bone defect repair, which has a negative impact on the process of osteogenesis, increasing the difficulty of bone defect repair. Therefore, it is necessary to find materials that can promote bone defect repair under the condition of hyperlipidemia. Gold nanoparticles (AuNPs) have been applied in the fields of biology and clinical medicine for many years and developed to modulate osteogenic differentiation and adipogenic differentiation. In vitro and vivo studies displayed that they promoted bone formation and inhibited fat accumulation. Further, the metabolism and mechanisms of AuNPs acting on osteogenesis/adipogenesis were partially revealed by researchers. This review further clarifies the role of AuNPs in osteogenic/adipogenic regulation during the process of osteogenesis and bone regeneration by summarizing the related in vitro and in vivo research, discussing the advantages and challenges of AuNPs and highlighting several possible directions for future research, with the aim to provide a new strategy for dealing with bone defects in hyperlipidemic patients.


Assuntos
Nanopartículas Metálicas , Osteogênese , Humanos , Adipogenia , Ouro/farmacologia , Materiais Biocompatíveis/farmacologia
12.
Int J Biol Macromol ; 230: 123246, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649862

RESUMO

Many studies in the bone tissue engineering field have focused on the interactions between materials and bone marrow stem cells. With the development of osteoimmunology, the immune cells' essential role in biomaterial-mediated osteogenesis has increasingly been recognized. As a promising therapeutic candidate for bone defects due to their prominent biocompatibility, tuneability, and versatility, it is necessary to develop alginate-based biomaterials that can regulate immune cells, especially macrophages. Moreover, modified alginate-based biomaterials may facilitate better regulation of macrophage phenotypes by the newly endowed physicochemical properties, including stiffness, porosity, hydrophilicity, and electrical properties. This review summarizes the role of macrophages in bone regeneration and the recent research progress related to the effects of alginate-based biomaterials on macrophages applied in bone tissue engineering. This review also emphasizes the strategies adopted by material design to regulate macrophage phenotypes, the corresponding macrophage responses, and their contribution to osteogenesis.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Materiais Biocompatíveis/química , Alginatos/farmacologia , Osso e Ossos , Macrófagos , Osteogênese , Regeneração Óssea
13.
Small ; 19(14): e2205941, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36587967

RESUMO

Drug-resistant bacterial infection impairs tissue regeneration and is a challenging clinical problem. Metal-organic frameworks (MOFs)-based photodynamic therapy (PDT) opens up a new era for antibiotic-free infection treatment. However, the MOF-based PDT normally encounters limited photon absorbance under visible light and notorious recombination of photogenerated holes and electrons, which significantly impede their applications. Herein, a MOFs-based nanosystem (AgNPs@MOFs) with enhanced visible light response and charge carrier separation is developed by modifying MOFs with silver nanoparticles (AgNPs) to improve PDT efficiency. The AgNPs@MOFs with enhanced photodynamic performance under visible light irradiation mainly disrupt bacteria translation process and the metabolism of purine and pyrimidine. In addition, the introduction of AgNPs endows nanosystems with chemotherapy ability, which causes destructive effect on bacterial cell membrane, including membrane ATPase protein and fatty acids. AgNPs@MOFs show excellent synergistic drug-resistant bacterial killing efficiency through multiple mechanisms, which further restrain bacterial resistance. In addition, biocompatible AgNPs@MOFs pose potential tissue regeneration ability in both Methicillin-resistant Staphylococcus aureus (MRSA)-related soft and hard tissue infection. Overall, this study provides a promising perspective in the exploration of AgNPs@MOFs as nano antibacterial medicine against drug-resistant bacteria for infected tissue regeneration in the future.


Assuntos
Infecções Bacterianas , Nanopartículas Metálicas , Estruturas Metalorgânicas , Staphylococcus aureus Resistente à Meticilina , Humanos , Estruturas Metalorgânicas/farmacologia , Staphylococcus aureus , Prata/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
14.
Adv Healthc Mater ; 12(4): e2202317, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349826

RESUMO

In the process of bone tissue regeneration, regulation of osteogenesis-angiogenesis coupling is of great importance. Therefore, dimethyloxallyl glycine (DMOG) is loaded by nanoscale zeolitic imidazolate frameworks-8 (ZIF-8) to obtain a drug-loading system that can promote osteogenesis-angiogenesis coupling. Characterization of the drug-loading nanoparticles (DMOG@ZIF-8) reveals that DMOG is successfully loaded into ZIF-8 by two different methods, and the DMOG@ZIF-8 is prepared using the one-pot method (OD@ZIF-8) achieves higher loading efficiency and longer release time than those prepared using the post-loading method (PD@ZIF-8). In vitro studies found that DMOG@ZIF-8 significantly enhances the migration, tube formation, and angiogenesis-related protein secretion of human umbilical vein endothelial cells as well as the extracellular matrix mineralization, alkaline phosphatase activity, and osteogenesis-related protein secretion of bone marrow mesenchymal stem cells. Moreover, OD@ZIF-8 nanoparticles are more efficient than PD@ZIF-8 nanoparticles in induction of osteogenesis-angiogenesis coupling. Then, in vivo cranial critical defect model shows that the addition of OD@ZIF-8 significantly promotes vascularized bone formation as indicated by the results including microcomputed tomographic, histological and immunofluorescence staining, and so on. Taken together, loading ZIF-8 with DMOG may be a promising solution for critical-sized bone defect reconstruction and the one-pot method is preferred in the preparation of such drug-loading system.


Assuntos
Zeolitas , Humanos , Zeolitas/farmacologia , Células Endoteliais , Regeneração Óssea , Osteogênese
15.
Laryngoscope ; 133(6): 1507-1512, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36098478

RESUMO

This study developed a novel digital workflow to fabricate a 3D printed hollow obturator for the prosthetic reconstruction of palatal fistula. It will provide cleft surgeons and therapists a choice for treating children with large palatal fistula before the appropriate age for surgical reconstruction. Laryngoscope, 133:1507-1512, 2023.


Assuntos
Fissura Palatina , Fístula , Doenças Nasais , Humanos , Criança , Fístula Bucal/cirurgia , Fissura Palatina/cirurgia , Doenças Nasais/cirurgia , Desenho Assistido por Computador
16.
ACS Appl Mater Interfaces ; 14(48): 53575-53592, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36416245

RESUMO

Full-thickness oral mucosal defects are accompanied by significant blood loss and frequent infections. Instead of conventional therapies that separate hemostasis and anti-inflammation in steps, emerging hydrogels can integrate multiple functions for the successive process after defect including hemostasis/inflammatory phase, proliferative phase, and remodeling phase. However, these functions can be easily compromised by rapid swelling and degradation of hydrogels in wet oral environment. Herein, a low-swelling adhesive hydrogel with rapid hemostasis and potent anti-inflammatory capability was developed using a dual cross-linking strategy as well as a safe and facile fabrication method. It was double cross-linked hydrogel consisting of gelatin methacrylate (GelMA), nanoclay, and tannic acid (TA) (referred to as GNT). GNT hydrogel exhibited low-swelling (one-eighth of that of GelMA), excellent stretchability (211.86%), and good adhesive properties (5 times the adhesive strength of GelMA). Physicochemical characterization illuminated the close interactions among the three components. A systematic investigation of the therapeutic effects of GNT hydrogels was performed. In vitro and in vivo experimental results demonstrated the potent hemostatic property and excellent antibacterial and anti-inflammatory effects of GNT hydrogels. The RNA sequencing analysis results for rat full-thickness oral mucosal samples showed that GNT reduced inflammation levels by down-regulating the expression of multiple inflammation-related pathways, including TNF and IL-17 pathways. It also enhanced the expression levels of tissue regeneration-related genes and thus accelerated defective mucosal repair. More importantly, the therapeutic effects of GNT were superior to those of a commercial oral tissue repair membrane when applied for full-thickness oral mucosal defect repair in rabbits. In summary, the prepared low-swelling adhesive GNT hydrogel with rapid hemostasis and potent anti-inflammatory is a promising therapy for full-thickness mucosal defect in the moist and dynamic oral environment.


Assuntos
Adesivos , Hidrogéis , Coelhos , Animais , Ratos , Adesivos/farmacologia , Hidrogéis/farmacologia , Anti-Inflamatórios/farmacologia
17.
J Mater Chem B ; 10(41): 8535-8548, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36222374

RESUMO

Biocompatibility and osteointegration of implants are highly desired in orthopedic and dentistry applications. The synthesis of a coating with ideal biocompatibility and osteogenic effect carries practical significance for improving the bio-inertness of pure Ti implants. Metal-organic frameworks (MOFs) are effective surface modification agents in bone regeneration applications. Bio-MOF-1, a classic type of biofriendly MOF with a bio-derived constitution, possesses biocompatibility and osteogenic potential resulting from its Zn core and adenine ligand. In this study, bio-MOF-1 coatings at multiple concentrations were synthesized on alkali-heat treated Ti, and their cytocompatibility and osteogenic properties were systematically examined both in vitro and in vivo. Coatings were characterized to confirm the successful synthesis of bio-MOF-1 coatings. These coatings exhibited advanced thermostability, excellent biocompatibility, and stable Zn2+ release, which up-regulated the expression of osteogenesis-related genes and proteins. Furthermore, bio-MOF-1 coating of Ti implants enhanced early osseointegration at the bone-implant interface. This study demonstrates the promising potential of bio-MOF-1 coatings with the osteogenic effect for surface modification in bone tissue engineering.


Assuntos
Estruturas Metalorgânicas , Titânio , Titânio/farmacologia , Estruturas Metalorgânicas/farmacologia , Ligantes , Álcalis , Adenina
18.
Adv Sci (Weinh) ; 9(35): e2204553, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36307870

RESUMO

Silk fibroin (SF) is widely used to fabricate biomaterials for skin related wound caring or monitoring, and its hydrogel state are preferred for their adaptability and easy to use. However, in-depth development of SF hydrogel is restricted by their limited mechanical strength, increased risk of infection, and inability to accelerate tissue healing. Therefore, a structure-function pluralistic modification strategy using composite system of metal organic framework (MOF) as bridge expanding SF's biomedical application is proposed. After developing the photocuring and bonding SF hydrogel, a MOF drug-loading system is utilized to enhance hydrogel's structural strength while endowing its antibacterial and angiogenic properties, yielding a multifunctional SF hydrogel. The synergy between the MOF and SF proteins at the secondary structure level gives this hydrogel reliable mechanical strength, making it suitable for conventional wound treatment, whether for closing incisions quickly or acting as adhesive dressings (five times the bonding strength of ordinary fibrin glue). Additionally, with the antibacterial and angiogenic functions getting from MOF system, this modified SF hydrogel can even treat ischemic trauma with cartilage exposure. This multiple modification should contribute to the improvement of advanced wound care, by promoting SF application in the production of tissue engineering materials.


Assuntos
Fibroínas , Estruturas Metalorgânicas , Fibroínas/química , Cicatrização , Hidrogéis/química , Materiais Biocompatíveis/química
19.
ACS Appl Mater Interfaces ; 14(34): 39172-39187, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35977147

RESUMO

Infectious cutaneous wounds are a thorny clinical problem. The microenvironment of the infectious wound is complicated and changes at different healing stages. Traditional treatments either have a single effect such as anti-inflammation, antibacteria, or angiogenesis or a simple mixture of several functions. They fail to deal with the change of the physiological healing process, leading to unsatisfactory outcomes. Herein, we have designed a logic-based smart nanoplatform (named as ZEM), aiming to self-monitor the wound microenvironment and accordingly react to the changes of the healing process, fitting multiple needs of physiological repair at different stages. ZEM was synthesized using zeolitic imidazolate framework-8 (ZIF-8) coated with an epigallocatechin gallate (EGCG)/Mg2+ complex. We characterized ZEM in the aspects of morphology, physical and chemical properties, and ion release pattern. At the initial stage, ZEM sensed the weakly acidic environment and responsively released a large number of zinc ions to eliminate bacterial infection. Then came the second inflammation stage, where ZEM responded to the oxidative stress of the local wound area with EGCG absorbing excessive reactive oxygen species (ROS), contributing to the downregulation of intracellular ROS. Meanwhile, local inflammation was alleviated by reducing the expression of proinflammatory M1 phenotype factors (IL-6, TNF-α, and IL-1ß). Since the balance of local ROS had been achieved, the resulting disintegration of the EGCG/Mg2+ complex gave rise to the sustainable release of Mg2+ at the proliferation stage, promoting vascularized healing. In vivo animal experiments further proved the diagnostic and therapeutic functions of ZEM. All these results demonstrated that ZEM was a promising treatment strategy in soft tissue engineering.


Assuntos
Cicatrização , Infecção dos Ferimentos , Animais , Inflamação/tratamento farmacológico , Lógica , Espécies Reativas de Oxigênio/metabolismo , Infecção dos Ferimentos/diagnóstico , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
20.
Front Bioeng Biotechnol ; 10: 913080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747494

RESUMO

Carbon nanotubes (CNTs) are a promising bioactive scaffold for bone regeneration because of their superior mechanical and biological properties. Vascularization is crucial in bone tissue engineering, and insufficient vascularization is a long-standing problem in tissue-engineered scaffolds. However, the effect of CNTs on vascularization is still minimal. In the current study, pristine single-walled carbon nanotubes (SWNTs) were purified to prepare different ratios of SWNTs/EDC composites, and their surface morphology and physicochemical properties of SWNTs/EDC were studied. Furthermore, the effect of SWNTs/EDC on vascularization was investigated by inducing the differentiation of bone mesenchymal stem cells (BMSCs) into vascular endothelial cell-like cells (VEC-like cells). Results showed that SWNTs/EDC composite was successfully prepared, and EDC was embedded in the SWNTs matrix and uniformly distributed throughout the composites. The AFM, FTIR spectra, and Raman results confirmed the formation of SWNTs/EDC composites. Besides, the surface topography of the SWNTs/EDC composites presents a rough surface, which may positively affect cell function. In vitro cell culture revealed that SWNTs and SWNTs/EDC composites exhibited excellent biocompatibility and bioactivity. The SWNTs/EDC composite at mass/volume ratios 1:10 had the best enhancement of proliferation and differentiation of BMSCs. Moreover, after culture with SWNTs/EDC composite, approximately 78.3% ± 4.2% of cultured cells are double-positive for FITC-UEA-1 and DiI-Ac-LDL double staining. Additionally, the RNA expression of representative endothelial cell markers VEGF, VEGF-R2, CD31, and vWF in the SWNTs/EDC composite group was significantly higher than those in the control and SWNTs group. With the limitation of our study, the results suggested that SWNTs/EDC composite can promote BMSCs differentiation into VEC-like cells and positively affect angiogenesis and bone regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA