Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Emerg Microbes Infect ; : 2361791, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828796

RESUMO

GRAPHICAL ABSTRACT: MODEL SUMMARY AND MOTIVATION: Individuals infected with SARS-CoV-2 experience a wide spectrum of clinical manifestations ranging from no symptoms to death. Using the Virus-Human Outcomes Prediction (ViHOP) algorithm, we aim to utilize the individual's clinical characteristics, the individual's location, and the infecting SARS-CoV-2 virus characteristics obtained by whole genome sequencing to determine their likelihood of admission to the hospital, admission to the intensive care unit (ICU), or experiencing long COVID. This model allows clinicians to identify at-risk patients for further monitoring and/or early treatment.

2.
Nat Commun ; 15(1): 1128, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321021

RESUMO

Vaccines are the main pharmaceutical intervention used against the global public health threat posed by influenza viruses. Timely selection of optimal seed viruses with matched antigenicity between vaccine antigen and circulating viruses and with high yield underscore vaccine efficacy and supply, respectively. Current methods for selecting influenza seed vaccines are labor intensive and time-consuming. Here, we report the Machine-learning Assisted Influenza VaccinE Strain Selection framework, MAIVeSS, that enables streamlined selection of naturally circulating, antigenically matched, and high-yield influenza vaccine strains directly from clinical samples by using molecular signatures of antigenicity and yield to support optimal candidate vaccine virus selection. We apply our framework on publicly available sequences to select A(H1N1)pdm09 vaccine candidates and experimentally confirm that these candidates have optimal antigenicity and growth in cells and eggs. Our framework can potentially reduce the optimal vaccine candidate selection time from months to days and thus facilitate timely supply of seasonal vaccines.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Estações do Ano
3.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38260375

RESUMO

Migratory waterfowl, gulls, and shorebirds serve as natural reservoirs for influenza A viruses, with potential spillovers to domestic poultry and humans. The intricacies of interspecies adaptation among avian species, particularly from wild birds to domestic poultry, are not fully elucidated. In this study, we investigated the molecular mechanisms underlying avian species barriers in H7 transmission, particularly the factors responsible for the disproportionate distribution of poultry infected with A/Anhui/1/2013 (AH/13)-lineage H7N9 viruses. We hypothesized that the differential expression of N-glycolylneuraminic acid (Neu5Gc) among avian species exerts selective pressure on H7 viruses, shaping their evolution and enabling them to replicate and transmit efficiently among gallinaceous poultry, particularly chickens. Our glycan microarray and biolayer interferometry experiments showed that AH/13-lineage H7N9 viruses exclusively bind to Neu5Ac, in contrast to wild waterbird H7 viruses that bind both Neu5Ac and Neu5Gc. Significantly, reverting the V179 amino acid in AH/13-lineage back to the I179, predominantly found in wild waterbirds, expanded the binding affinity of AH/13-lineage H7 viruses from exclusively Neu5Ac to both Neu5Ac and Neu5Gc. When cultivating H7 viruses in cell lines with varied Neu5Gc levels, we observed that Neu5Gc expression impairs the replication of Neu5Ac-specific H7 viruses and facilitates adaptive mutations. Conversely, Neu5Gc deficiency triggers adaptive changes in H7 viruses capable of binding to both Neu5Ac and Neu5Gc. Additionally, we assessed Neu5Gc expression in the respiratory and gastrointestinal tissues of seven avian species, including chickens, Canada geese, and various dabbling ducks. Neu5Gc was absent in chicken and Canada goose, but its expression varied in the duck species. In summary, our findings reveal the crucial role of Neu5Gc in shaping the host range and interspecies transmission of H7 viruses. This understanding of virus-host interactions is crucial for developing strategies to manage and prevent influenza virus outbreaks in diverse avian populations.

4.
Anal Chim Acta ; 1275: 341378, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37524456

RESUMO

The lack of enough diagnostic capacity to detect severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) has been one of the major challenges in the control the 2019 COVID pandemic; this led to significant delay in prompt treatment of COVID-19 patients or accurately estimate disease situation. Current methods for the diagnosis of SARS-COV-2 infection on clinical specimens (e.g. nasal swabs) include polymerase chain reaction (PCR) based methods, such as real-time reverse transcription (rRT) PCR, real-time reverse transcription loop-mediated isothermal amplification (rRT-LAMP), and immunoassay based methods, such as rapid antigen test (RAT). These conventional PCR methods excel in sensitivity and specificity but require a laboratory setting and typically take up to 6 h to obtain the results whereas RAT has a low sensitivity (typically at least 3000 TCID50/ml) although with the results with 15 min. We have developed a robust micro-electro-mechanical system (MEMS) based impedance biosensor fit for rapid and accurate detection of SARS-COV-2 of clinical samples in the field with minimal training. The biosensor consisted of three regions that enabled concentrating, trapping, and sensing the virus present in low quantities with high selectivity and sensitivity in 40 min using an electrode coated with a specific SARS-COV-2 antibody cross-linker mixture. Changes in the impedance value due to the binding of the SARS-COV-2 antigen to the antibody will indicate positive or negative result. The testing results showed that the biosensor's limit of detection (LoD) for detection of inactivated SARS-COV-2 antigen in phosphate buffer saline (PBS) was as low as 50 TCID50/ml. The biosensor specificity was confirmed using the influenza virus while the selectivity was confirmed using influenza polyclonal sera. Overall, the results showed that the biosensor is able to detect SARS-COV-2 in clinical samples (swabs) in 40 min with a sensitivity of 26 TCID50/ml.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Microfluídica , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos
5.
Nat Commun ; 14(1): 4078, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429851

RESUMO

SARS-CoV-2 is a zoonotic virus with documented bi-directional transmission between people and animals. Transmission of SARS-CoV-2 from humans to free-ranging white-tailed deer (Odocoileus virginianus) poses a unique public health risk due to the potential for reservoir establishment where variants may persist and evolve. We collected 8,830 respiratory samples from free-ranging white-tailed deer across Washington, D.C. and 26 states in the United States between November 2021 and April 2022. We obtained 391 sequences and identified 34 Pango lineages including the Alpha, Gamma, Delta, and Omicron variants. Evolutionary analyses showed these white-tailed deer viruses originated from at least 109 independent spillovers from humans, which resulted in 39 cases of subsequent local deer-to-deer transmission and three cases of potential spillover from white-tailed deer back to humans. Viruses repeatedly adapted to white-tailed deer with recurring amino acid substitutions across spike and other proteins. Overall, our findings suggest that multiple SARS-CoV-2 lineages were introduced, became enzootic, and co-circulated in white-tailed deer.


Assuntos
COVID-19 , Cervos , Animais , Humanos , SARS-CoV-2/genética , COVID-19/veterinária , Washington
6.
mBio ; 14(2): e0362122, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36892291

RESUMO

Millions of Norway rats (Rattus norvegicus) inhabit New York City (NYC), presenting the potential for transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to rats. We evaluated SARS-CoV-2 exposure among 79 rats captured from NYC during the fall of 2021. Our results showed that 13 of the 79 rats (16.5%) tested IgG- or IgM-positive, and partial SARS-CoV-2 genomes were recovered from all 4 rats that were qRT-PCR (reverse transcription-quantitative PCR)-positive. Genomic analyses suggest these viruses were associated with genetic lineage B, which was predominant in NYC in the spring of 2020 during the early pandemic period. To further investigate rat susceptibility to SARS-CoV-2 variants, we conducted a virus challenge study and showed that Alpha, Delta, and Omicron variants can cause infections in wild-type Sprague Dawley (SD) rats, including high replication levels in the upper and lower respiratory tracts and induction of both innate and adaptive immune responses. Additionally, the Delta variant resulted in the highest infectivity. In summary, our results indicate that rats are susceptible to infection with Alpha, Delta, and Omicron variants, and wild Norway rats in the NYC municipal sewer systems have been exposed to SARS-CoV-2. Our findings highlight the need for further monitoring of SARS-CoV-2 in urban rat populations and for evaluating the potential risk of secondary zoonotic transmission from these rat populations back to humans. IMPORTANCE The host tropism expansion of SARS-CoV-2 raises concern for the potential risk of reverse-zoonotic transmission of emerging variants into rodent species, including wild rat species. In this study, we present both genetic and serological evidence for SARS-CoV-2 exposure to the New York City wild rat population, and these viruses may be linked to the viruses that were circulating during the early stages of the pandemic. We also demonstrated that rats are susceptible to additional variants (i.e., Alpha, Delta, and Omicron) that have been predominant in humans and that susceptibility to infection varies by variant. Our findings highlight the reverse zoonosis of SARS-CoV-2 to urban rats and the need for further monitoring of SARS-CoV-2 in rat populations for potential secondary zoonotic transmission to humans.


Assuntos
COVID-19 , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Cidade de Nova Iorque/epidemiologia , SARS-CoV-2/genética
7.
BMC Microbiol ; 23(1): 15, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647025

RESUMO

Escherichia coli (E. coli) are typically present as commensal bacteria in the gastro-intestinal tract of most animals including poultry species, but some avian pathogenic E. coli (APEC) strains can cause localized and even systematic infections in domestic poultry. Emergence and re-emergence of antimicrobial resistant isolates (AMR) constrain antibiotics usage in poultry production, and development of an effective vaccination program remains one of the primary options in E. coli disease prevention and control for domestic poultry. Thus, understanding genetic and pathogenic diversity of the enzootic E. coli isolates, particularly APEC, in poultry farms is the key to designing an optimal vaccine candidate and to developing an effective vaccination program. This study explored the genomic and pathogenic diversity among E. coli isolates in southern United States poultry. A total of nine isolates were recovered from sick broilers from Mississippi, and one from Georgia, with epidemiological variations among clinical signs, type of housing, and bird age. The genomes of these isolates were sequenced by using both Illumina short-reads and Oxford Nanopore long-reads, and our comparative analyses suggested data from both platforms were highly consistent. The 16 s rRNA based phylogenetic analyses showed that the 10 bacteria strains are genetically closer to each other than those in the public database. However, whole genome analyses showed that these 10 isolates encoded a diverse set of reported virulence and AMR genes, belonging to at least nine O:H serotypes, and are genetically clustered with at least five different groups of E. coli isolates reported by other states in the United States. Despite the small sample size, this study suggested that there was a large extent of genomic and serological diversity among E. coli isolates in southern United States poultry. A large-scale comprehensive study is needed to understand the overall genomic diversity and the associated virulence, and such a study will be important to develop a broadly protective E. coli vaccine.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Estados Unidos , Escherichia coli , Virulência/genética , Aves Domésticas , Antibacterianos/farmacologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Galinhas/microbiologia , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , Farmacorresistência Bacteriana/genética , Genômica
8.
Mol Ecol ; 32(1): 198-213, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239465

RESUMO

Influenza A viruses (IAV) circulate endemically among many wild aquatic bird populations that seasonally migrate between wintering grounds in southern latitudes to breeding ranges along the perimeter of the circumpolar arctic. Arctic and subarctic zones are hypothesized to serve as ecologic drivers of the intercontinental movement and reassortment of IAVs due to high densities of disparate populations of long distance migratory and native bird species present during breeding seasons. Iceland is a staging ground that connects the East Atlantic and North Atlantic American flyways, providing a unique study system for characterizing viral flow between eastern and western hemispheres. Using Bayesian phylodynamic analyses, we sought to evaluate the viral connectivity of Iceland to proximal regions and how inter-species transmission and reassortment dynamics in this region influence the geographic spread of low and highly pathogenic IAVs. Findings demonstrate that IAV movement in the arctic and subarctic reflects wild bird migration around the perimeter of the circumpolar north, favouring short-distance flights between proximal regions rather than long distance flights over the polar interior. Iceland connects virus movement between mainland Europe and North America, consistent with the westward migration of wild birds from mainland Europe to Northeastern Canada and Greenland. Though virus diffusion rates were similar among avian taxonomic groups in Iceland, gulls play an outsized role as sinks of IAVs from other avian hosts prior to onward migration. These data identify patterns of virus movement in northern latitudes and inform future surveillance strategies related to seasonal and emergent IAVs with potential public health concern.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Teorema de Bayes , Animais Selvagens , Aves , Migração Animal , Filogenia
9.
J Proteome Res ; 22(1): 62-77, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36480915

RESUMO

N-Linked glycosylation in hemagglutinin and neuraminidase glycoproteins of influenza viruses affects antigenic and receptor binding properties, and precise analyses of site-specific glycoforms in these proteins are critical in understanding the antigenic and immunogenic properties of influenza viruses. In this study, we developed a glycoproteomic approach by using a timsTOF Pro mass spectrometer (MS) to determine the abundance and heterogeneity of site-specific glycosylation for influenza glycoproteins. Compared with a Q Exactive HF MS, the timsTOF Pro MS method without the hydrophilic interaction liquid chromatography column enrichment achieved similar glycopeptide coverage and quantities but was more effective in identifying low-abundance glycopeptides. We quantified the distributions of intact site-specific glycopeptides in hemagglutinin of A/chicken/Wuxi/0405005/2013 (H7N9) and A/mute swan/Rhode Island/A00325125/2008 (H7N3). Results showed that hemagglutinin for both viruses had complex N-glycans at N22, N38, N240, and N483 but only high-mannose glycans at N411 and, however, that the type and quantities of glycans were distinct between these viruses. Collisional cross section (CCS) provided by the ion mobility spectrometry from the timsTOF Pro MS data differentiated sialylation linkages of the glycopeptides. In summary, timsTOF Pro MS method can quantify intact site-specific glycans for influenza glycoproteins without enrichment and thus facilitate influenza vaccine development and production.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Humanos , Hemaglutininas , Vírus da Influenza A Subtipo H7N3/metabolismo , Glicoproteínas/análise , Glicopeptídeos/análise , Polissacarídeos/metabolismo
10.
Npj Viruses ; 12023.
Artigo em Inglês | MEDLINE | ID: mdl-38186942

RESUMO

In the United States, rural populations comprise 60 million individuals and suffered from high COVID-19 disease burdens. Despite this, surveillance efforts are biased toward urban centers. Consequently, how rurally circulating SARS-CoV-2 viruses contribute toward emerging variants remains poorly understood. In this study, we aim to investigate the role of rural communities in the evolution and transmission of SARS-CoV-2 during the early pandemic. We collected 544 urban and 435 rural COVID-19-positive respiratory specimens from an overall vaccine-naïve population in Southwest Missouri between July and December 2020. Genomic analyses revealed 53 SARS-CoV-2 Pango lineages in our study samples, with 14 of these lineages identified only in rural samples. Phylodynamic analyses showed that frequent bi-directional diffusions occurred between rural and urban communities in Southwest Missouri, and that four out of seven Missouri rural-origin lineages spread globally. Further analyses revealed that the nucleocapsid protein (N):R203K/G204R paired substitutions, which were detected disproportionately across multiple Pango lineages, were more associated with urban than rural sequences. Positive selection was detected at N:204 among rural samples but was not evident in urban samples, suggesting that viruses may encounter distinct selection pressures in rural versus urban communities. This study demonstrates that rural communities may be a crucial source of SARS-CoV-2 evolution and transmission, highlighting the need to expand surveillance and resources to rural populations for COVID-19 mitigation.

11.
bioRxiv ; 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36451891

RESUMO

Millions of Norway rats (Rattus norvegicus) inhabit New York City (NYC), presenting the potential for transmission of SARS-CoV-2 from humans to rats and other wildlife. We evaluated SARS-CoV-2 exposure among 79 rats captured from NYC during the fall of 2021. Results showed that 13 of 79 rats (16.5%) tested IgG or IgM positive, and partial genomes of SARS-CoV-2 were recovered from four rats that were qRT-PCR positive. Using a virus challenge study, we also showed that Alpha, Delta, and Omicron variants can cause robust infections in wild-type Sprague Dawley (SD) rats, including high level replications in the upper and lower respiratory tracts and induction of both innate and adaptive immune responses. Additionally, the Delta variant resulted in the highest infectivity. In summary, our results indicated that rats are susceptible to infection with Alpha, Delta, and Omicron variants, and rats in the NYC municipal sewer systems have been exposed to SARS-CoV-2. Our findings highlight the potential risk of secondary zoonotic transmission from urban rats and the need for further monitoring of SARS-CoV-2 in those populations.

13.
Virology ; 576: 105-110, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36206606

RESUMO

As SARS-CoV-2 and influenza viruses co-circulate, co-infections with these viruses generate an increasing concern to public health. To evaluate the prevalence and clinical impacts of SARS-CoV-2 and influenza A virus co-infections during the 2021-2022 influenza season, SARS-CoV-2-positive samples from 462 individuals were collected from October 2021 to January 2022. Of these individuals, 152 tested positive for influenza, and the monthly co-infection rate ranged from 7.1% to 48%. Compared to the Delta variant, individuals infected with Omicron were less likely to be co-infected and hospitalized, and individuals who received influenza vaccines were less likely to become co-infected. Three individuals had two samples collected on different dates, and all three developed a co-infection after their initial SARS-CoV-2 infection. This study demonstrates high prevalence of co-infections in central Missouri during the 2021-2022 influenza season, differences in co-infection prevalence between the Delta and the Omicron waves, and the importance of influenza vaccinations against co-infections.


Assuntos
COVID-19 , Coinfecção , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/epidemiologia , SARS-CoV-2 , Coinfecção/epidemiologia , Estudos Transversais , Estações do Ano , Missouri/epidemiologia , COVID-19/epidemiologia , Vírus da Influenza A/genética
14.
Mol Cell Proteomics ; 21(11): 100412, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36103992

RESUMO

Amino acid sequences of immunodominant domains of hemagglutinin (HA) on the surface of influenza A virus (IAV) evolve rapidly, producing viral variants. HA mediates receptor recognition, binding and cell entry, and serves as the target for IAV vaccines. Glycosylation, a post-translational modification that places large branched polysaccharide molecules on proteins, can modulate the function of HA and shield antigenic regions allowing for viral evasion from immune responses. Our previous work showed that subtle changes in the HA protein sequence can have a measurable change in glycosylation. Thus, being able to quantitatively measure glycosylation changes in variants is critical for understanding how HA function may change throughout viral evolution. Moreover, understanding quantitatively how the choice of viral expression systems affects glycosylation can help in the process of vaccine design and manufacture. Although IAV vaccines are most commonly expressed in chicken eggs, cell-based vaccines have many advantages, and the adoption of more cell-based vaccines would be an important step in mitigating seasonal influenza and protecting against future pandemics. Here, we have investigated the use of data-independent acquisition (DIA) mass spectrometry for quantitative glycoproteomics. We found that DIA improved the sensitivity of glycopeptide detection for four variants of A/Switzerland/9715293/2013 (H3N2): WT and mutant, each expressed in embryonated chicken eggs and Madin-Darby canine kidney cells. We used the Tanimoto similarity metric to quantify changes in glycosylation between WT and mutant and between egg-expressed and cell-expressed virus. Our DIA site-specific glycosylation similarity comparison of WT and mutant expressed in eggs confirmed our previous analysis while achieving greater depth of coverage. We found that sequence variations and changing viral expression systems affected distinct glycosylation sites of HA. Our methods can be applied to track glycosylation changes in circulating IAV variants to bolster genomic surveillance already being done, for a more complete understanding of IAV evolution.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Cães , Animais , Humanos , Vírus da Influenza A/metabolismo , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Espectrometria de Massas
15.
J Virol ; 96(19): e0134422, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36125302

RESUMO

Subtype H7 avian influenza A viruses (IAVs) are enzootic in wild aquatic birds and have caused sporadic spillovers into domestic poultry and humans. Here, we determined the distribution of fucosylated α2,3 sialoglycan (i.e., sialyl Lewis X [SLeX]) in chickens and five common dabbling duck species and the association between SLeX and cell/tissue/host tropisms of H7 IAVs. Receptor binding analyses showed that H7 IAVs bind to both α2,3-linked (SA2,3Gal) and α2,6-linked sialic acids (SA2,6Gal), but with a higher preference for SLeX; H7 IAVs replicated more efficiently in SLeX-overexpressed than SLeX-deficient MDCK cells. While chickens and all tested dabbling ducks expressed abundant SA2,3Gal and SA2,6Gal, SLeX was detected in both respiratory and gastrointestinal tissues of chickens and mallard ducks and in only the respiratory tissues of gadwall, green-wing teal, and northern shoveler but not in wood ducks. Viral-tissue binding assays showed that H7 IAVs bind to chicken colon crypt cells that express SLeX but fewer bind to mallard colon crypt cells, which do not express SLeX; H7 IAVs bind efficiently to epithelial cells of all tissues expressing SA2,3Gal. High viral replication was identified in both chickens and mallards infected with an H7 virus, regardless of SLeX expression, and viruses were detected in all cells to the same degree as viruses detected in the viral-tissue binding assays. In summary, this study suggests that SLeX facilitates infection of H7 viruses, but other types of SA2,3Gal glycan receptors shape the tissue/host tropisms of H7 IAVs. IMPORTANCE In addition to causing outbreaks in domestic poultry, subtype H7 IAVs can cause sporadic spillover infections in lower mammals and humans. In this study, we showed that SLeX expression varies among wild dabbling ducks. Although it facilitated virus binding and affected infection of H7 IAV in cells, SLeX expression is not the only determinant of viral replication at either the tissue or host level. This study suggested that access to heterologous SA2,3Gal glycan receptors, including fucosylated α2,3-linked sialoglycans, shape tissue and host tropism of H7 IAVs in aquatic wild birds.


Assuntos
Vírus da Influenza A , Influenza Aviária , Antígeno Sialil Lewis X , Tropismo Viral , Animais , Animais Selvagens/virologia , Galinhas/virologia , Cães , Patos/virologia , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/fisiologia , Células Madin Darby de Rim Canino , Polissacarídeos , Ácidos Siálicos , Antígeno Sialil Lewis X/metabolismo
16.
Chem Sci ; 13(25): 7644-7656, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35872821

RESUMO

Bisected N-glycans represent a unique class of protein N-glycans that play critical roles in many biological processes. Herein, we describe the systematic synthesis of these structures. A bisected N-glycan hexasaccharide was chemically assembled with two orthogonal protecting groups attached at the C2 of the branching mannose residues, followed by sequential installation of GlcNAc and LacNAc building blocks to afford two asymmetric bisecting "cores". Subsequent enzymatic modular extension of the "cores" yielded a comprehensive library of biantennary N-glycans containing the bisecting GlcNAc and presenting 6 common glycan determinants in a combinatorial fashion. These bisected N-glycans and their non-bisected counterparts were used to construct a distinctive glycan microarray to study their recognition by a wide variety of glycan-binding proteins (GBPs), including plant lectins, animal lectins, and influenza A virus hemagglutinins. Significantly, the bisecting GlcNAc could bestow (PHA-L, rDCIR2), enhance (PHA-E), or abolish (ConA, GNL, anti-CD15s antibody, etc.) N-glycan recognition of specific GBPs, and is tolerated by many others. In summary, synthesized compounds and the unique glycan microarray provide ideal standards and tools for glycoanalysis and functional glycomic studies. The microarray data provide new information regarding the fine details of N-glycan recognition by GBPs, and in turn improve their applications.

17.
Virology ; 573: 111-117, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35751973

RESUMO

Influenza D virus (IDV) infections have been identified worldwide in cattle, swine, camelid, and small ruminants, mostly in domestic livestock. Here we report that the wild white-tailed deer in North America were exposed to IDVs, suggesting IDVs infect a wide range of hosts including wild animal populations.


Assuntos
Cervos , Infecções por Orthomyxoviridae , Thogotovirus , Animais , Bovinos , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Ruminantes , Suínos
18.
Viruses ; 14(6)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35746778

RESUMO

In humans and other mammals, the respiratory tract is represented by a complex network of polarized epithelial cells, forming an apical surface facing the external environment and a basal surface attached to the basement layer. These cells are characterized by differential expression of proteins and glycans, which serve as receptors during influenza virus infection. Attachment between these host receptors and the viral surface glycoprotein hemagglutinin (HA) initiates the influenza virus life cycle. However, the virus receptor binding specificities may not be static. Sialylated N-glycans are the most well-characterized receptors but are not essential for the entry of influenza viruses, and other molecules, such as O-glycans and non-sialylated glycans, may be involved in virus-cell attachment. Furthermore, correct cell polarity and directional trafficking of molecules are essential for the orderly development of the system and affect successful influenza infection; on the other hand, influenza infection can also change cell polarity. Here we review recent advances in our understanding of influenza virus infection in the respiratory tract of humans and other mammals, particularly the attachment between the virus and the surface of the polar cells and the polarity variation of these cells due to virus infection.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Polaridade Celular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Mamíferos , Orthomyxoviridae/metabolismo , Polissacarídeos/metabolismo , Receptores Virais/metabolismo
19.
Clin Infect Dis ; 74(3): 467-471, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148386

RESUMO

BACKGROUND: Pregnancy has been reported to be a risk factor for severe COVID-19. We evaluated the impact of pregnancy on severe COVID-19 and mortality in an electronic medical record (EMR) database that enabled exclusion of labor and delivery (L&D) encounters. METHODS: In this retrospective cohort study, EMRs from 82 healthcare facilities in the Cerner COVID-19 Datamart were analyzed. The study comprised 38 106 individuals aged 18-45 years old with COVID-19 who had emergency department, urgent care, or inpatient encounters from December 2019 to September 2020. Subgroups were balanced through propensity score weights for age, race, smoking status, and number of comorbidities. The primary outcome was COVID-19-related mortality; secondary outcomes were markers of severe COVID-19: intubations, mechanical ventilation, use of vasopressors, diagnosis of sepsis, and diagnosis of acute respiratory distress syndrome. RESULTS: In comparing pregnant and nonpregnant women, no statistical differences were found for markers of severe COVID-19, after adjusting for age, smoking, race, and comorbidities. The adjusted odds of an inpatient encounter were higher for pregnant vs nonpregnant women (adjusted odds ratio [aOR], 13.2; 95% confidence interval [CI], 11.6-15.3; P < .001), but notably lower after excluding L&D encounters (aOR, 2.3; 95% CI, 1.89-2.88; P < .001). In comparison to women without L&D encounters, hospitalization was significantly more likely for men. CONCLUSIONS: We did not find an increased risk of severe COVID-19 or mortality in pregnancy. Hospitalization does not necessarily indicate severe COVID-19 in pregnancy, as half of pregnant patients with COVID-19 were admitted for L&D encounters in this study.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Adolescente , Adulto , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença , Adulto Jovem
20.
Viruses ; 14(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35215819

RESUMO

Both influenza A virus (IAV) and influenza D virus (IDV) are enzootic in pigs. IAV causes approximately 100% morbidity with low mortality, whereas IDV leads to only mild respiratory diseases in pigs. In this study, we performed a series of coinfection experiments in vitro and in vivo to understand how IAV and IDV interact and cause pathogenesis during coinfection. The results showed that IAV inhibited IDV replication when infecting swine tracheal epithelial cells (STECs) with IAV 24 or 48 h prior to IDV inoculation and that IDV suppressed IAV replication when IDV preceded IAV inoculation by 48 h. Virus interference was not identified during simultaneous IAV/IDV infections or with 6 h between the two viral infections, regardless of their order. The interference pattern at 24 and 48 h correlated with proinflammatory responses induced by the first infection, which, for IDV, was slower than for IAV by about 24 h. The viruses did not interfere with each other if both infected the cells before proinflammatory responses were induced. Coinfection in pigs further demonstrated that IAV interfered with both viral shedding and virus replication of IDV, especially in the upper respiratory tract. Clinically, coinfection of IDV and IAV did not show significant enhancement of disease pathogenesis, compared with the pigs infected with IAV alone. In summary, this study suggests that interference during coinfection of IAV and IDV is primarily due to the proinflammatory response; therefore, it is dependent on the time between infections and the order of infection. This study facilitates our understanding of virus epidemiology and pathogenesis associated with IAV and IDV coinfection.


Assuntos
Coinfecção/virologia , Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Thogotovirus/fisiologia , Interferência Viral , Animais , Coinfecção/imunologia , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Suínos , Doenças dos Suínos/imunologia , Thogotovirus/genética , Fatores de Tempo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA