Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Immunother Cancer ; 11(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37844994

RESUMO

BACKGROUND: C-reactive protein (CRP) is a prototypical acute phase protein in humans with the function of regulating immune cells. Serum CRP levels are elevated in multiple myeloma (MM), associated with MM cell proliferation and bone destruction. However, its direct effects on T lymphocytes in MM have not been elucidated. METHODS: Public data sets were used to explore the correlation of CRP levels with immune cell infiltration and cytotoxicity score of CD8+ T cells in MM. In vitro, repeated freeze-thaw myeloma cell lines were taken as tumor antigens to load dendritic cells (DCs) derived from HLA-A*0201-positive healthy donors. MM-specific cytotoxic T cells (MM-CTL) were obtained from T lymphocytes of the corresponding donors pulsed with these DCs. B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor (CAR)-T cells were manipulated by transfecting with lentivirus encoding an anti-BCMA single-chain variable fragment. Then T cells from healthy controls, MM-CTLs and BCMA CAR-T cells were exposed to CRP and analyzed for cell proliferation, cytotoxicity, immunophenotypes. CRP binding capacity to T cells before and after Fc gamma receptors IIb (FcγRIIb) blockage, p38 mitogen-activated protein kinase (MAPK) pathway and the downstream molecules were also detected. In vivo, both normal C57BL/6J mice and the Vk*MYC myeloma mouse models were applied to confirm the impact of CRP on T cells. RESULTS: CRP levels were negatively correlated with cell-infiltration and cytotoxicity score of CD8+ T cells in MM. In vitro experiments showed that CRP inhibited T-cell proliferation in a dose-dependent manner, impaired the cytotoxic activity and upregulated expression of senescent markers in CD8+ T cells. In vivo results validated the suppressive role of CRP in CD8+ T cells. CRP could bind to CD8+ T cells, mainly to the naïve T subset, while the binding was dramatically decreased by FcγRIIb blockage. Furthermore, CRP resulted in increased phosphorylation of p38 MAPK, elevated levels of reactive oxygen species and oxidized glutathione in CD8+ T cells. CONCLUSIONS: We found that CRP impaired immune response of CD8+ T cells via FcγRIIb-p38MAPK-ROS signaling pathway. The study casted new insights into the role of CRP in anti-myeloma immunity, providing implications for future immunotherapy in MM.


Assuntos
Linfócitos T CD8-Positivos , Mieloma Múltiplo , Humanos , Animais , Camundongos , Proteína C-Reativa , Espécies Reativas de Oxigênio , Proteínas Quinases p38 Ativadas por Mitógeno , Antígeno de Maturação de Linfócitos B/genética , Camundongos Endogâmicos C57BL , Imunidade
2.
Int Immunopharmacol ; 124(Pt A): 110852, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37657245

RESUMO

Multiple myeloma (MM) is a bone marrow resident hematological malignancy. T helper (Th) cells play an essential role in maladjustment of immune function and promotion of myeloma cell proliferation and survival, which has not been fully elucidated. Here, we compared transcriptome profiles of CD4+ T cells in bone marrow samples of 3 healthy individuals and 10 MM patients before and after treatment using single-cell RNA sequencing. CD4+ T cells were divided into 7 clusters. Imbalanced Th17-like cell differentiation was indicated in MM based on bioinformation analyses, which involved IL2-STAT5 pathways and transcription factors NKFB1, RELA, STAT3, and GTF2A2. Pseudotime trajectory analysis of CD4+ T cell clusters further uncovered the enhanced transition of Th17-like to regulatory T (Treg) cells in MM, which was featured by expression changes of PLAC8, NKFB1, RELA, STAT3, and STAT1 along with the developmental path. Reduced cell-cell interaction between MM cells and CD4+ naïve/recently activated naïve T cells via CD74-APP might lead to imbalanced Th17-like cell differentiation. Checkpoints via TIGIT-NECTIN3 and LGALS9-CD47 in Treg and MM cells were also identified. Our study reveals imbalanced differentiation pattern of Th17-like cells and the immunosuppressive profiles in connection with MM cells, which might help to shed light on CD4+ T cell function in MM.

3.
Cancer Lett ; 562: 216171, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37054944

RESUMO

The mechanisms underlying the functional impairment and metabolic reprogramming of T lymphocytes in multiple myeloma (MM) have not been fully elucidated. In this study, single-cell RNA sequencing was used to compare gene expression profiles in T cells in bone marrow and peripheral blood of 10 newly diagnosed MM patients versus 3 healthy donors. Unbiased bioinformatics analysis revealed 9 cytotoxic T cell clusters. All 9 clusters in MM had higher expression of senescence markers (e.g., KLRG1 and CTSW) than the healthy control; some had higher expression of exhaustion-related markers (e.g., LAG3 and TNFRSF14). Pathway enrichment analyses showed downregulated amino acid metabolism and upregulated unfolded protein response (UPR) pathways, along with absent expression of glutamine transporter SLC38A2 and increased expression of UPR hallmark XBP1 in cytotoxic T cells in MM. In vitro studies revealed that XBP1 inhibited SLC38A2 by directly binding to its promoter, and silencing SLC38A2 resulted in decreased glutamine uptake and immune dysfunction of T cells. This study provided a landscape description of the immunosuppressive and metabolic features in T lymphocytes in MM, and suggested an important role of XBP1-SLC38A2 axis in T cell function.


Assuntos
Mieloma Múltiplo , Linfócitos T Citotóxicos , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Mieloma Múltiplo/genética , Glutamina , Análise de Sequência de RNA , Proteína 1 de Ligação a X-Box/genética , Sistema A de Transporte de Aminoácidos/genética
4.
Cancer Sci ; 114(7): 2750-2760, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37002866

RESUMO

Multiple myeloma (MM) is an incurable plasma cell malignancy with the hallmark of immunodeficiency, including dysfunction of T cells, NK cells, and APCs. Dysfunctional APCs have been reported to play a key role in promoting MM progression. However, the molecular mechanisms remain elusive. Here, single-cell transcriptome analysis of dendritic cells (DC) and monocytes from 10 MM patients and three healthy volunteers was performed. Both DCs and monocytes were divided into five distinct clusters, respectively. Among them, monocyte-derived DCs (mono-DC) were shown to develop from intermediate monocytes (IM) via trajectory analysis. Functional analysis showed that, compared with healthy controls, conventional DC2 (cDC2), mono-DC, and IM of MM patients exhibited impaired antigen processing and presentation capacity. Moreover, reduced regulon activity of interferon regulatory factor 1 (IRF1) was found in cDC2, mono-DC and IM of MM patients according to single-cell regulatory network inference and clustering (SCENIC) analysis, while the downstream mechanisms were distinct. Specifically in MM patients, cathepsin S (CTSS) was markedly downregulated in cDC2, major histocompatibility complex (MHC) class II transactivator (CIITA) was significantly decreased in IM, in addition both CTSS and CIITA were downregulated in mono-DC based on differentially expressed genes analysis. In vitro study validated that knockdown of Irf1 downregulated Ctss and Ciita respectively in mouse DC cell line DC2.4 and mouse monocyte/macrophage cell line RAW264.7, which ultimately inhibited proliferation of CD4+ T cells after being cocultured with DC2.4 or RAW264.7 cells. This current study unveils the distinct mechanisms of cDC2, IM, and mono-DC function impairment in MM, offering new insight into the pathogenesis of immunodeficiency.


Assuntos
Monócitos , Mieloma Múltiplo , Camundongos , Animais , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Antígenos , Apresentação de Antígeno , Células Dendríticas , Antígenos de Histocompatibilidade Classe II , Diferenciação Celular
5.
Cell Biosci ; 13(1): 19, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717896

RESUMO

BACKGROUND: Multiple myeloma (MM) is a hematological malignancy characterized by clonal proliferation of malignant plasma cells. Despite extensive research, molecular mechanisms in MM that drive drug sensitivity and clinic outcome remain elusive. RESULTS: Single-cell RNA sequencing was applied to study tumor heterogeneity and molecular dynamics in 10 MM individuals before and after 2 cycles of bortezomib-cyclophosphamide-dexamethasone (VCD) treatment, with 3 healthy volunteers as controls. We identified that unfolded protein response and metabolic-related program were decreased, whereas stress-associated and immune reactive programs were increased after 2 cycles of VCD treatment. Interestingly, low expression of the immune reactive program by tumor cells was associated with unfavorable drug response and poor survival in MM, which probably due to downregulation of MHC class I mediated antigen presentation and immune surveillance, and upregulation of markers related to immune escape. Furthermore, combined with immune cells profiling, we uncovered a link between tumor intrinsic immune reactive program and immunosuppressive phenotype in microenvironment, evidenced by exhausted states and expression of checkpoint molecules and suppressive genes in T cells, NK cells and monocytes. Notably, expression of YBX1 was associated with downregulation of immune activation signaling in myeloma and reduced immune cells infiltration, thereby contributed to poor prognosis. CONCLUSIONS: We dissected the tumor and immune reprogramming in MM during targeted therapy at the single-cell resolution, and identified a tumor program that integrated tumoral signaling and changes in immune microenvironment, which provided insights into understanding drug sensitivity in MM.

6.
Clin Transl Med ; 12(10): e1065, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36245253

RESUMO

BACKGROUNDS: Decreased cytotoxicity of natural killer (NK) cells has been shown in multiple myeloma (MM). However, the underlying molecular mechanisms remain unclear. Here, by using single-cell RNA sequencing analysis and in vitro experiments, we aim to uncover and validate molecularly distinctive insights into identifying regulators for NK cell exhaustion and provide potential targets for novel immune therapies in MM. METHODS: Single-cell RNA sequencing was conducted in the bone marrow and peripheral blood samples from 10 newly diagnosed MM patients and three healthy volunteers. Based on the cluster-defining differentially expressed genes, we named and estimated functional states of each cluster via bioinformatics analyses. Functional significance of key findings obtained from sequencing analysis was examined in a series of in vitro experiments, including luciferase reporter assay, lentiviral expression vector construction, NK cell transfection, RT-qPCR, flow cytometry, and cytotoxicity assay. RESULTS: We classified NK cells into seven distinct clusters and confirmed that a subset of ZNF683+ NK cells were enriched in MM patients with 'exhausted' transcriptomic profile, featuring as decreased expression of activating receptors and cytolytic molecules, as well as increased expression of inhibitory receptors. Next, we found a significant downregulation of SH2D1B gene that encodes EAT-2, an adaptor protein of activating receptor SLAMF7, in ZNF683+ NK cells from MM patients versus healthy volunteers. We further proved that ZNF683 transfection in NK cells significantly downregulated SH2D1B expression via directly binding to the promoter of SH2D1B, leading to NK cell cytotoxic activity impairment and exhausted phenotypes acquisition. In contrast, ZNF683 knockout in NK cells from MM patients increased cytotoxic activity and reversed NK cell exhaustion. CONCLUSIONS: In summary, our findings uncover an important mechanism of ZNF683+ NK cell exhaustion and suggest that transcriptional suppressor ZNF683 as a potential useful therapeutic target in immunotherapy of MM.


Assuntos
Mieloma Múltiplo , Humanos , Citotoxicidade Imunológica , Perfilação da Expressão Gênica , Células Matadoras Naturais/metabolismo , Luciferases/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo
7.
Front Genet ; 12: 785330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917133

RESUMO

Multiple myeloma is a heterogeneous plasma cell malignancy that remains incurable because of the tendency of relapse for most patients. Survival outcomes may vary widely due to patient and disease variables; therefore, it is necessary to establish a more accurate prognostic model to improve prognostic precision and guide clinical therapy. Here, we developed a risk score model based on myeloma gene expression profiles from three independent datasets: GSE6477, GSE13591, and GSE24080. In this model, highly survival-associated five genes, including EPAS1, ERC2, PRC1, CSGALNACT1, and CCND1, are selected by using the least absolute shrinkage and selection operator (Lasso) regression and univariate and multivariate Cox regression analyses. At last, we analyzed three validation datasets (including GSE2658, GSE136337, and MMRF datasets) to examine the prognostic efficacy of this model by dividing patients into high-risk and low-risk groups based on the median risk score. The results indicated that the survival of patients in low-risk group was greatly prolonged compared with their counterparts in the high-risk group. Therefore, the five-gene risk score model could increase the accuracy of risk stratification and provide effective prediction for the prognosis of patients and instruction for individualized clinical treatment.

8.
Cancer ; 127(12): 2039-2048, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33764527

RESUMO

BACKGROUND: Waldenström macroglobulinemia (WM) is a rare chronic B-cell lymphoma. Familial clustering of WM has been observed over the years. However, little is known about the contribution of inherited genetic variants to familial WM cases. METHODS: The authors performed whole exome sequencing (WES) of germline DNA samples from twins, one diagnosed with WM and the other diagnosed with immunoglobulin M monoclonal gammopathy of undetermined significance, and their healthy siblings. Bioinformatics analysis of public biological databases was used to identify the most relevant familial WM candidate from WES. Transcript expression and protein levels of the familial WM candidate were evaluated in the WM patient and 2 unaffected members of the kindred. RESULTS: Among the 10 shared candidate mutations in the twins, the authors identified a novel heterozygous germline mutation in four and a half LIM domains protein 2 (FHL2; c.G226A, p.V76M) as a familial WM-associated mutation. FHL2 appeared to be connected with reported signaling pathways and disease-driving genes such as IL6 and HCK in WM. In addition, the authors found reduced FHL2 messenger RNA and protein expression in peripheral blood samples from the patient with WM in comparison with the healthy siblings. CONCLUSIONS: Taken together, these findings indicate that an FHL2g226a mutation may play an important role in familial WM, and they provide new screening possibilities for familial cases. LAY SUMMARY: Familial clustering in Waldenström macroglobulinemia (WM) has been observed over the years. The authors performed whole exome sequencing of germline DNA samples from twins, one diagnosed with WM and the other diagnosed with immunoglobulin M monoclonal gammopathy of undetermined significance, and their healthy siblings. Among the 10 shared candidate mutations in the twins, a novel heterozygous germline mutation in four and a half LIM domains protein 2 (FHL2; c.G226A, p.V76M) was identified as the most relevant familial WM candidate through bioinformatics analysis of a public database. Also, messenger RNA and protein expression of FHL2 was significantly lower in peripheral blood mononuclear cells of the WM patient in comparison with the healthy siblings, and this suggested that the function of FHL2 was impaired when mutated.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Macroglobulinemia de Waldenstrom , Humanos , Proteínas com Homeodomínio LIM/genética , Leucócitos Mononucleares/metabolismo , Gamopatia Monoclonal de Significância Indeterminada/genética , Gamopatia Monoclonal de Significância Indeterminada/metabolismo , Proteínas Musculares/genética , Mutação , Fatores de Transcrição/genética , Macroglobulinemia de Waldenstrom/diagnóstico , Macroglobulinemia de Waldenstrom/genética , Sequenciamento do Exoma
9.
J Nutr ; 145(5): 1003-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25788583

RESUMO

BACKGROUND: Iron accumulation in the central nervous system (CNS) is a common feature of many neurodegenerative diseases. Multicopper ferroxidases (MCFs) play an important role in cellular iron metabolism. However, the role of MCFs in the CNS in health and disease remains poorly characterized. OBJECTIVE: The aim was to study the role of hephaestin (HEPH) and ceruloplasmin (CP) in CNS iron metabolism and homeostasis. METHODS: Iron concentrations and L-ferritin protein levels of selected brain regions were determined in global hephaestin knockout (Heph KO), global ceruloplasmin knockout (Cp KO), and wild-type (WT) male mice at 6-7 mo of age. Gene expression of divalent metal transporter 1 (Dmt1), ferroportin 1 (Fpn1), Heph, Cp, and transferrin receptor 1 (Tfrc) and HEPH protein level was quantitated in the same brain regions. RESULTS: Iron and L-ferritin protein levels were significantly increased in Heph KO mouse brain cortex (iron: 30%, P < 0.05; L-ferritin: 200%, P < 0.05), hippocampus (iron: 80%, P < 0.05; L-ferritin: 300%, P < 0.05), brainstem (iron: 20%, P < 0.05; L-ferritin: 150%, P < 0.05), and cerebellum (iron: 20%, P < 0.05; L-ferritin: 100%, P < 0.05) regions than in WT and Cp KO mouse brain regions at 6 mo of age. Expression of the Heph gene was significantly increased in the Cp KO mouse cortex (100%; P < 0.01), hippocampus (350%; P < 0.001), brainstem (30%; P < 0.01), and cerebellum (150%; P < 0.001) than in WT controls, and Cp gene expression was significantly decreased in the Heph KO mouse hippocampus (20%; P < 0.05) than in WT control mice at 6 mo of age. CONCLUSIONS: Ablation of HEPH or CP results in disordered brain iron homeostasis in mice. Heph KO may provide a novel model for neurodegenerative disorders.


Assuntos
Encéfalo/metabolismo , Ceruloplasmina/metabolismo , Regulação da Expressão Gênica , Homeostase , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Tronco Encefálico/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Ceruloplasmina/genética , Hipocampo/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA