RESUMO
BACKGROUND: Intestinal fibrosis is one of the most frequent and severe complications of Crohn's disease. Accumulating studies have reported that adipose mesenchymal stem cell-derived small extracellular vesicles (AMSC-sEVs) could alleviate renal fibrosis, hepatic fibrosis, etc., while their potential for treating intestinal fibrosis remains uncertain. Therefore, this study aims to determine the therapeutic effects of AMSC-sEVs on intestinal fibrosis and identify the mechanisms underlying these effects. METHODS: AMSC-sEVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and western blot. Whether AMSC-sEVs exert antifibrotic effects was investigated in two different murine models of intestinal fibrosis. Besides, AMSC-sEVs were co-cultured with primary human fibroblasts and CCD18co during transforming growth factor (TGF)-ß1 stimulation. Label-free proteomics and rescue experiments were performed to identify candidate molecules in AMSC-sEVs. Transcriptome sequencing revealed changes in mRNA levels among different groups. Lastly, proteins related to relevant signaling pathways were identified by western blotting, and their expression and activation status were assessed. RESULTS: AMSC-sEVs positively expressed CD63 and Alix and presented a classical "rim of a cup" and granule shape with approximately 43-100 nm diameter. AMSCs significantly alleviated intestinal fibrosis through secreted sEVs in vitro and in vivo. The milk fat globule-EGF factor 8 (MFGE8) was stably enriched in AMSC-sEVs and was an active compound contributing to the treatment of intestinal fibrosis by AMSCs. Mechanistically, AMSC-sEV-based therapies attenuated intestinal fibrosis by inhibiting the FAK/Akt signaling pathway. CONCLUSIONS: MFGE8-containing AMSC-sEVs attenuate intestinal fibrosis, partly through FAK/Akt pathway inhibition.
RESUMO
The behavior and fate of PFOS (perfluorooctanesulfonate) in the aquatic environment have received great attention due to its high toxicity and persistence. The nanoscale supramolecular mechanisms of interaction between PFOS and ubiquitous EPS (exopolymers) remain unclear though EPS have been widely-known to influence the bioavailability of PFOS. Typically, the exposure patterns of PFOS in aquatic animals changed with the EPS-PFOS interaction are not fully understood. This study hypothesized that PFOS exposure and accumulation pathways depended on the PFOS-EPS interactive assembly behavior and animal species. Two model animals, zebrafish and chironomid larvae, with different feeding habitats were chosen for the exposure and accumulation tests at the environmental concentrations of PFOS in the absence and presence of EPS. It was found that PFOS triggered the self-assembly of EPS to form large aggregates which significantly trapped PFOS. PFOS accumulation was significantly promoted in zebrafish but drastically reduced in chironomid larvae because of the nanoscale interactive assembly between EPS and PFOS. The decreased dermal uptake but increased oral uptake of PFOS by zebrafish with large mouthpart size could be ascribed to the increased ingestion of PFOS-enriched EPS aggregates as food. For the chironomid larvae with small mouthpart size, the PFOS-EPS assemblies reduced the dermal, oral and intestinal uptake of PFOS. The nano-visualization evidences confirmed that the PFOS-enriched EPS-PFOS assemblies blocked PFOS penetration through skin of both animals. These findings provide novel knowledge about the ecological risk of PFOS in aquatic environments.
Assuntos
Ácidos Alcanossulfônicos , Chironomidae , Fluorocarbonos , Larva , Poluentes Químicos da Água , Peixe-Zebra , Animais , Ácidos Alcanossulfônicos/metabolismo , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/metabolismo , Fluorocarbonos/toxicidade , Chironomidae/metabolismo , Chironomidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Larva/metabolismo , Larva/efeitos dos fármacos , EcossistemaRESUMO
INTRODUCTION: Patients with mantle cell lymphoma (MCL) frequently develop resistance to ibrutinib. Lymphoma-associated macrophages (LAMs) may play a causal role in this resistance but remain underexplored in current literature. OBJECTIVES: To elucidate the role of LAMs in mediating ibrutinib resistance in MCL. METHODS: We investigated macrophage polarization through multiparameter flow cytometry (MPFC) using antibodies against CD206 and CD86 in blood and tissue samples from patients with MCL, both resistant and sensitive to ibrutinib. Subsequently, we developed an in vitro co-culture model utilizing MCL cell lines to identify cytokines associated with ibrutinib resistance and macrophage M2 polarization. The mechanisms underlying resistance were examined using MPFC, RNA sequencing, and Western blot analysis. Additionally, we assessed whether SB225002, a CXCR2 inhibitor, could reverse ibrutinib resistance through CCK-8 and caspase-3 assays, as well as in a mouse xenograft model involving an ibrutinib-resistant MCL cell line. RESULTS: In patients exhibiting ibrutinib resistance, the ratio of M2 to M1 LAMs was significantly higher compared to sensitive patients. In co-cultures of LAMs and MCL cells, the percentage of M2 macrophages, the IC50 value for ibrutinib, and the concentrations of IL-8 and CXCL5 were significantly elevated. Mechanistically, CXCL5 secreted by LAMs interacted with the CXCR2 on MCL cells, leading to the activation of the Akt, p38, and STAT3 signaling pathways in the presence of ibrutinib; this activity was diminished upon blockade of the CXCL5/CXCR2 axis. The combination of SB225002 and ibrutinib significantly enhanced MCL cell apoptosis, suppressed lymphoma growth in the xenograft model, and reprogrammed macrophage phenotype compared to treatment with ibrutinib alone. CONCLUSION: Our data indicate that M2-polarized LAMs are associated with ibrutinib resistance in a model of MCL, and that a CXCR2 inhibitor can reverse this resistance. These findings suggest a potential new therapeutic strategy.
RESUMO
BACKGROUND: The therapeutic potential of adipose-derived mesenchymal stromal cells (AMSCs) in the treatment of intestinal fibrosis occured in patients with Crohn's disease (CD) remains unclear. Tumor necrosis factor-stimulated gene 6 (TSG6) protein plays a critical role in inflammation regulation and tissue repair. This study aimed to determine if AMSCs attenuate intestinal fibrosis by secreting paracrine TSG6 protein and explore the underlying mechanisms. METHODS: Two murine models for intestinal fibrosis were established using 2,4,6-trinitrobenzene sulfonic acid in BALB/c mice and dextran sulfate sodium in C57BL/6 mice. Primary human fibroblasts and CCD-18co cells were incubated with transforming growth factor (TGF)-ß1 to build two fibrosis cell models in vitro. RESULTS: Intraperitoneally administered AMSCs attenuated intestinal fibrosis in the two murine models, as evidenced by significant alleviation of colon shortening, collagen protein deposits, and submucosal thickening, and also decrease in the endoscopic and fibrosis scores (P < 0.001). Although intraperitoneally injected AMSCs did not migrate to the colon lesions, high levels of TSG6 expression and secretion were noticed both in vivo and in vitro. Similar to the role of AMSCs, injection of recombinant human TSG6 attenuated intestinal fibrosis in the mouse models, which was not observed with the administration of AMSCs with TSG6 knockdown or TSG6 neutralizing antibody. Mechanistically, TSG6 alleviates TGF-ß1-stimulated upregulation of α-smooth muscle actin (αSMA) and collagen I by inhibiting Smad2 phosphorylation. Furthermore, the expression of TSG6 is lower in intestinal fibrosis tissue of patients with Crohn's disease and can reduce pro-fibrotic protein (αSMA) secretion from primary ileal fibrotic tissue. CONCLUSIONS: AMSCs attenuate intestinal fibrosis by secreting paracrine TSG6 protein, which inhibits Smad2 phosphorylation. TSG6, a novel anti-fibrotic factor, could potentially improve intestinal fibrosis treatments.
Assuntos
Moléculas de Adesão Celular , Doença de Crohn , Modelos Animais de Doenças , Fibrose , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína Smad2 , Animais , Humanos , Células-Tronco Mesenquimais/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Doença de Crohn/terapia , Doença de Crohn/patologia , Doença de Crohn/metabolismo , Camundongos , Proteína Smad2/metabolismo , Masculino , Sulfato de Dextrana , Ácido Trinitrobenzenossulfônico , Tecido Adiposo/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Colo/patologia , Colo/metabolismo , Colite/induzido quimicamente , Colite/terapia , Colite/patologiaRESUMO
Manufactured sand (MS) is a promising alternative aggregate to quartz sand (QS) in ultra-high-performance concrete (UHPC) in the preparation of ultra-high-performance manufactured sand concrete (UHPMC), which possesses the characteristics of high strength, low cost, and environmental friendliness. In this study, the effects of variable compositional characteristics including the water-binder ratio, the stone powder (SP) content, and the MS replacement ratio on the mechanical and flexural strength of UHPMC were compared and analyzed based on response surface methodology (RSM). Meanwhile, the damage characteristics of UHPMC during compressive and flexural stress were monitored and evaluated using acoustic emission (AE) technology. The results reveal that the compressive and flexural strengths of UHPMC are both negatively correlated with the water-binder ratio, while they are positively correlated with the MS replacement rate. They tend to firstly increase and subsequently decrease with the increase in the stone powder content. In the load-displacement curve of concrete with a high MS replacement ratio and a low water-binder ratio, the slope in the elastic stage is steeper, the stiffness is higher, and the bending toughness and ductility are also better. The specimens with a 10% to 0% stone powder content present a steeper elastic phase slope, a slightly higher stiffness, and superior ductility. The specimens with a low MS replacement ratio and a high water-binder ratio display earlier cracking and weaker resistance, and the destruction process is complex and very unstable. The damage mode analysis based on RA-AF shows that an increase in the MS replacement ratio and a decrease in the water-binder ratio can both reduce the tensile cracking of UHPMC specimens under a four-point bending test. Although 10% stone powder can marginally slow down crack growth, the failure mode is not significantly affected.
RESUMO
Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.
Assuntos
Azoospermia , Proteínas de Grupos de Complementação da Anemia de Fanconi , Transdução de Sinais , Animais , Humanos , Masculino , Azoospermia/genética , Azoospermia/metabolismo , Azoospermia/patologia , Dano ao DNA , Reparo do DNA , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , EspermatogêneseRESUMO
This paper introduces two cases of multiple myeloma, COVID-19 infection during autologous stem cell transplantation, the treatment process, and different results of the two patients, which provides a reference for how to carry out ASCT safely during the COVID-19 normalization stage.
RESUMO
Immunotherapy with programmed cell death 1 ligand 1 (PD-L1) blockade was effective in patients with NK/T-cell lymphoma. In addition to PD-L1, indoleamine 2,3-dioxygenase-1 (IDO1) is one of the most promising immunotherapeutic targets. High proportions of PD-L1 and IDO1 proteins were observed by immunohistochemistry (IHC) from 230 newly diagnosed patients with NK/T lymphoma with tissue samples from three cancer centers and were associated with poor overall survival (OS) in patients with NK/T lymphoma. Importantly, the coexpression of PD-L1 and IDO1 was related to poor OS and short restricted mean survival time in patients with NK/T lymphoma and was an independent prognostic factor in the training cohorts, and which was also validated in 58 NK/T lymphoma patients (GSE90597). Moreover, a nomogram model constructed with PD-L1 and IDO1 expression together with age could provide concise and precise predictions of OS rates and median survival time. The high-risk group in the nomogram model had a positive correlation with CD4 + T-cell infiltration in the validation cohort, as did the immunosuppressive factor level. Therefore, high PD-L1 and IDO1 expression was associated with poor OS in patients with NK/T lymphoma. PD-L1 and IDO1 might be potential targets for future immune checkpoint blockade (ICB) therapy for NK/T lymphoma.
Assuntos
Antígeno B7-H1 , Biomarcadores Tumorais , Indolamina-Pirrol 2,3,-Dioxigenase , Linfoma Extranodal de Células T-NK , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Antígeno B7-H1/metabolismo , Masculino , Feminino , Linfoma Extranodal de Células T-NK/mortalidade , Linfoma Extranodal de Células T-NK/metabolismo , Linfoma Extranodal de Células T-NK/patologia , Linfoma Extranodal de Células T-NK/tratamento farmacológico , Pessoa de Meia-Idade , Prognóstico , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Taxa de Sobrevida , Adulto Jovem , Nomogramas , Seguimentos , Idoso de 80 Anos ou maisRESUMO
The ovary is an essential reproductive organ in the female organism and its development seriously affects the physical and mental health of female patients. Ovarian diseases include ovarian cancer, premature ovarian insufficiency (POI) and polycystic ovary syndrome (PCOS). Women should pay attention to the most effective treatments for this condition because it is one of the most prevalent gynecological illnesses at present. Extracellular vesicles (EVs), which are smaller vesicles that mediate the exchange of cellular information, include the three categories of exosomes, microvesicles and apoptotic bodies. They are able to transport proteins, RNA and other substances to adjacent or distal cells, thus allowing cellular and tissue homeostasis to be maintained. Numerous previous studies have revealed that EVs are crucial for the treatment of ovarian diseases. They are known to transport its contents to ovarian cancer cells as well as other ovarian cells such as granulosa cells, affecting the development of ovarian disease processes. Therefore, this extracellular vesicle may be involved as a target in the therapeutic process of ovarian disease and may have great potential in the treatment of ovarian disease. In the present review, the role of EVs in the development of three ovarian diseases, including ovarian cancer, POI and PCOS, was mainly summarizes. It is expected that this will provide some theoretical support for the treatment of ovarian disease.
RESUMO
PURPOSE: Peritoneal metastasis in gastric cancer (GC) is a late-stage condition with a poor prognosis. Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is a popular treatment for peritoneal metastases. Here, we aim to investigate the real-world application and efficacy of HIPEC alone for GC patients with synchronous peritoneal metastases. METHODS: We conducted a retrospective analysis on GC patients with synchronous peritoneal metastasis at the Sixth Affiliated Hospital of Sun Yat-sen University between January 2011 and December 2022. Survival analyses and Cox regression models were performed based on overall survival (OS) and cancer-specific survival (CSS), and subgroup analysis was used to determine the prognostic value of HIPEC across different treatment. RESULTS: We enrolled 250 patients, of whom 120 (48%) received HIPEC while 130 (52%) did not. HIPEC showed no survival benefit for GC patients (P = 0.220 for OS and P = 0.370 for CSS). However, subgroup analysis found that HIPEC can only improve OS and CSS when combined with primary tumor resection (P = 0.034 for OS and P = 0.036 for CSS). Moreover, survival analyses also demonstrated that HIPEC independently improved OS (HR for OS = 0.58, 95% CI 0.37-0.92, P = 0.020) and CSS (HR for CSS = 0.58, 95% CI 0.37-0.93, P = 0.024) for patients who underwent primary site resection, but not for those who did not. CONCLUSION: HIPEC can improve survival in GC patients with synchronous peritoneal metastases who have primary tumor resection, but not in those without primary tumor resection.
Assuntos
Neoplasias Colorretais , Hipertermia Induzida , Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Prognóstico , Estudos Retrospectivos , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/secundário , Quimioterapia Intraperitoneal Hipertérmica , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Terapia Combinada , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Taxa de Sobrevida , Neoplasias Colorretais/patologiaRESUMO
BACKGROUND: With the aging of the population, the burden of elderly gastric cancer (EGC) increases worldwide. However, there is no consensus on the definition of EGC and the efficacy of adjuvant chemotherapy in patients with stage II EGC. Here, we investigated the effectiveness of adjuvant chemotherapy in defined EGC patients. METHODS: We enrolled 5762 gastric cancer patients of three independent cohorts from the Sixth Affiliated Hospital of Sun Yat-sen University (local), the Surveillance, Epidemiology, and End Results (SEER), and the Asian Cancer Research Group (ACRG). The optimal age cutoff for EGC was determined using the K-adaptive partitioning algorithm. The defined EGC group and the efficacy of adjuvant chemotherapy for them were confirmed by Cox regression and Kaplan-Meier survival analyses. Furthermore, gene set variation analyses (GSVA) were performed to reveal pathway enrichment between groups. RESULTS: The optimal age partition value for EGC patients was 75. In the local, SEER, and ACRG cohorts, the EGC group exhibited significantly worse overall survival and cancer-specific survival than the non-EGC group (P < 0.05) and was an independent risk factor. Stratified analyses based on chemotherapy showed that EGC patients derived little benefit from adjuvant chemotherapy. Furthermore, GSVA analysis revealed the activation of DNA repair-related pathways and downregulation of the p53 pathway, which may partially contribute to the observed findings. CONCLUSION: In this retrospective, international multi-center study, 75 years old was identified as the optimal age cutoff for EGC definition, and adjuvant chemotherapy proved to be unbeneficial for stage II EGC patients.
Assuntos
Neoplasias Gástricas , Humanos , Idoso , Neoplasias Gástricas/patologia , Estudos Retrospectivos , Fatores de Risco , Estimativa de Kaplan-Meier , Quimioterapia Adjuvante , Estadiamento de NeoplasiasRESUMO
In this study, effects of three iron (oxyhydr)oxides on the biogas residue composting, i.e., composting with goethite (CFe1), hematite (CFe2) or magnetite (CFe3), were investigated. Results showed that composting performance of CFe1 was much better than those of CFe2 and CFe3. Addition of goethite increased temperature of CFe1 and enhanced lignin humification. More than 31.49% of Fe(III) in goethite was reduced to amorphous Fe(II) during the composting, suggesting that goethite worked as electron acceptor for microbial metabolism and heat generation. The functional bacteria Chloroflexi and Actinobacteria, and genes encoding key enzymes (AA1 family), which play essential roles in humification of lignin, were enriched in CFe1. Besides, goethite reduced 10.96% organic matter (OM) loss probably by increasing the molecular size and aggregation of OM for its protection during the composting. This study shows that adding goethite is an efficient strategy to enhancing the humification of lignin-rich biowaste.
Assuntos
Compostagem , Solo , Compostos Férricos , Lignina , Biocombustíveis , Bactérias , EstercoRESUMO
The Fanconi anemia pathway is a key pathway involved in the repair of deoxyribonucleic acidinterstrand crosslinking damage, which chiefly includes the following four modules: lesion recognition, Fanconi anemia core complex recruitment, FANCD2-FANCI complex monoubiquitination, and downstream events (nucleolytic incision, translesion synthesis, and homologous recombination). Mutations or deletions of multiple Fanconi anemia genes in this pathway can damage the interstrand crosslinking repair pathway and disrupt primordial germ cell development and oocyte meiosis, thereby leading to abnormal follicular development. Premature ovarian insufficiency is a gynecological clinical syndrome characterized by amenorrhea and decreased fertility due to decreased oocyte pool, accelerated follicle atresia, and loss of ovarian function in women <40 years old. Furthermore, in recent years, several studies have detected mutations in the Fanconi anemia gene in patients with premature ovarian insufficiency. In addition, some patients with Fanconi anemia exhibit symptoms of premature ovarian insufficiency and infertility. The Fanconi anemia pathway and premature ovarian insufficiency are closely associated.
Assuntos
Anemia de Fanconi , Humanos , Feminino , Adulto , Anemia de Fanconi/complicações , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Reparo do DNA/genética , Replicação do DNA , Ubiquitinação , Mutação , Dano ao DNARESUMO
The quality of oocytes determines their development competence, which will be rapidly lost if the oocytes are not fertilized at the proper time after ovulation. SIRT1, one of the sirtuin family members, has been proven to protect the quality of oocytes during postovulatory oocyte aging. However, evidence of the effect of SIRT1 on the activity of organelles including the mitochondria, the endoplasmic reticulum (ER), the Golgi apparatus, and the lysosomes in postovulatory aging oocyte is lacking. In this study, we investigated the distribution and function of organelles in postovulatory aged oocytes and discovered abnormalities. Luteolin, which is a natural flavonoid contained in vegetables and fruits, is an activator of SIRT1. When the oocytes were treated with luteolin, the abnormal distribution of mitochondria, ER, and Golgi complex were restored during postovulatory oocyte aging. The ER stress protein GRP78 and the lysosome protein LAMP1 increased, while the mitochondrial membrane potential and the Golgi complex protein GOLPH3 decreased in aged oocytes, and these were restored by luteolin treatment. EX-527, an inhibitor of SIRT1, disrupted the luteolin-mediated normal distribution and function of mitochondria, ER, Golgi apparatus, and lysosomes. In conclusion, we demonstrate that luteolin regulates the distribution and function of mitochondria, ER, Golgi apparatus, and lysosomes during postovulatory oocyte aging by activating SIRT1.
RESUMO
Premature ovarian insufficiency (POI) is a condition in which a woman experiences premature decline in ovarian function before the age of 40 years, manifested by menstrual disorders, decreased fertility, and possibly postmenopausal symptoms such as insomnia, hot flashes, and osteoporosis, and is one of the predominant clinical syndromes leading to female infertility. Genetic, immunologic, iatrogenic and other factors, alone or in combination, have been reported to trigger POI, yet the etiology remains unknown in most cases. The main methods currently used clinically to ameliorate menopausal symptoms due to hypoestrogenemia in POI patients are hormone replacement therapy, while the primary methods available to address infertility in POI patients are oocyte donation and cryopreservation techniques, both of which have limitations to some degree. In recent years, researchers have continued to explore more efficient and safe therapies, and have achieved impressive results in preclinical trials. In this article, we will mainly review the three most popular therapies and their related signaling pathways published in the past ten years, with the aim of providing ideas for clinical applications.
Assuntos
Infertilidade Feminina , Menopausa Precoce , Insuficiência Ovariana Primária , Humanos , Feminino , Adulto , Infertilidade Feminina/etiologia , Criopreservação , Doação de OócitosRESUMO
Bimetallic two-dimensional (2D) nanomaterials are widely used in electrocatalysis owing to their unique physicochemical properties, while trimetallic 2D materials of porous structures with large surface area are rarely reported. In this paper, a one-pot hydrothermal synthesis of ternary ultra-thin PdPtNi nanosheets is developed. By adjusting the volume ratio of the mixed solvents, PdPtNi with porous nanosheets (PNSs) and ultrathin nanosheets (UNSs) was prepared. The growth mechanism of PNSs was investigated through a series of control experiments. Notably, thanks to the high atom utilization efficiency and fast electron transfer, the PdPtNi PNSs have remarkable activity of methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). The mass activities of the well-tuned PdPtNi PNSs for MOR and EOR were 6.21 A mg-1 and 5.12 A mg-1, respectively, much higher than those of commercial Pt/C and Pd/C. In addition, after durability test, the PdPtNi PNSs exhibited desirable stability with the highest retained current density. Therefore, this work provides a significant guidance for designing and synthesizing a new 2D material with excellent catalytic performance toward direct fuel cells applications.
RESUMO
BACKGROUND: Bone marrow metastasis (BMM) is underestimated in gastric cancer (GC). GC with BMM frequently complicate critical hematological abnormalities like diffused intravascular coagulation and microangiopathic hemolytic anemia, which constitute a highly aggressive GC (HAGC) subtype. HAGC present a very poor prognosis with peculiar clinical and pathological features when compared with not otherwise specified advanced GC (NAGC). But the molecular mechanisms underlying BMM from GC remain rudimentary. METHODS: The transcriptomic difference between HAGC and NAGC were analyzed. Genes that were specifically upregulated in HAGC were identified, and their effect on cell migration and invasion was studied. The function of ACTN2 gene were confirmed by GC cell lines, bone-metastatic animal model and patients' tissues. Furthermore, the molecular mechanism of ACTN2 derived-BMM was explored by multiple immunofluorescence staining, western blot, chromatin immunoprecipitation, and luciferase reporter assays. RESULTS: We elucidated the key mechanisms of BMM depending on the transcriptomic difference between HAGC and NAGC. Five genes specifically upregulated in HAGC were assessed their effect on cell migration and invasion. The ACTN2 gene encoding protein α-Actinin-2 was detected enhanced the metastatic capability and induced BMM of GC cells in mouse models. Mechanically, α-Actinin-2 was involved in filopodia formation where it promoted the Actin filament cross-linking by replacing α-Actinin-1 to form α-Actinin-2:α-Actinin-4 complexes in GC cells. Moreover, NF-κB subunit RelA and α-Actinin-2 formed heterotrimers in the nuclei of GC cells. As a direct target of RelA:α-Actinin-2 heterotrimers, the ACTN2 gene was a positive auto-regulatory loop for α-Actinin-2 expression. CONCLUSIONS: We demonstrated a link between filopodia, BMM and ACTN2 activation, where a feedforward activation loop between ACTN2 and RelA is established via actin in response to distant metastasis. Given the novel filopodia formation function and the new mechanism of BMM in GC, we propose ACTN2 as a druggable molecular vulnerability that may provide potential therapeutic benefit against BMM of GC.
Assuntos
Actinina , Neoplasias da Medula Óssea , Neoplasias Gástricas , Animais , Camundongos , Actinina/genética , Actinina/metabolismo , Linhagem Celular Tumoral , NF-kappa B/metabolismo , Pseudópodes/metabolismo , Pseudópodes/patologia , Neoplasias Gástricas/patologiaRESUMO
Solid humic acids (HAsolid) plays a significant role in maintaining soil ecosystem services, especially in alkaline soil. The unique chemical structures and electrochemical properties are the cores that HAsolid works. In this study, the alkalization-induced variations of particle morphology, functional groups and redox activity of HAsolid were investigated and its soil biogeochemical implications were discussed. Atomic force microscopy (AFM) deflection images and zeta potential results showed that alkalization induced disintegration of HAsolid, with particle size reducing to 200 nm when pH value reached 10.0. This result suggested that HAsolid could exist in alkaline soil. AFM-IR along with fluorescence intensity of HAsolid at different pH further proved that the supramolecular aggregation of HAsolid became loose and dispersive with more redox-active functional groups exposure after alkalization, which could lead to HAsolid susceptible to degradation in alkaline soil. Conductivity of HAsolid decreased 42.86 % when pH increased from 5.0 to 10.0, while electron exchange capacity (EEC) of HAsolid increased 45.30 %, indicating the increase of redox activity of HAsolid. Increase of redox activity of HAsolid by alkalization-induced disintegration not only can accelerate organic pollutant degradation via enhancing microbial co-metabolism, but also speed up the organic carbon loss. This study contributes to a better understanding of the role of HAsolid in organic carbon stocks and fluxes of alkaline soils and has great implications for soil biogeochemical process.
RESUMO
The environmental fate and toxic effects of antibiotics such as tetracycline (TC) could be influenced by the ubiquitous dissolved organic matter (DOM). However, DOM from different origins has different hydrophilic and hydrophobic properties. It is still unknown the effects of hydrophilic and hydrophobic DOM on the toxic effect of TC. In this study, DOM with hydrophilicity and hydrophobicity was separated and used to investigate their roles in affecting TC toxicity to the photosynthesis of green algae Chlorella vulgaris. Results showed that 10 mg L-1 TC inhibited the efficiency of photosystem II (PSII) of C. vulgaris using light by hindering electron transfer from QA- to QB/QB-, and the O2 release rate of C. vulgaris decreased by a third after 12-h treatment of 10 mg L-1 TC, while both hydrophilic and hydrophobic DOM (20 mg L-1 TOC) alleviated TC toxicity to the photosynthesis of C. vulgaris. In the presence of hydrophilic or hydrophobic DOM, stable complex of TC-hydrophilic DOM or TC-hydrophobic DOM was formed immediately, due to the good affinity of both DOM for TC. Fourier transform infrared spectroscopy result showed that both hydrophilic and hydrophobic DOM could reduce C=O in TC to C-O, and isothermal titration calorimetry result suggested that reactions of both DOM with TC were exothermic (â³H < 0) and spontaneous (â³G < 0). Thereinto, the reaction constant (Ka) of TC reacting with hydrophobic DOM (Ka=9.70) was higher than that with hydrophilic DOM (Ka=8.93), indicating hydrophobic DOM with more chemical binding sites and accessible fractions for TC. The present study suggests that DOM, especially the hydrophobic DOM, is an important consideration in the environmental impact assessment of antibiotics.
Assuntos
Chlorella vulgaris , Matéria Orgânica Dissolvida , Interações Hidrofóbicas e Hidrofílicas , Antibacterianos , Fotossíntese , TetraciclinasRESUMO
The widely existed humic acid (HA) with abundant redox-active groups has been considered to play an important role in biogeochemistry in sediments and soils. Recent studies reported that HA showed great performance in terms of electron transfer capacity (up to HAEDC = 94 mmol e-/mol C, HAEAC = 42 mmol e-/mol C). Since HA is widely available, inexpensive and environmentally friendly, the electrochemistry of HA has been explored to apply in many fields, such as environmental remediation, detection sensor and energy storage. Whereas, these prospective applications of HA and their electrochemical principles were lack of a comprehensive summary. In this review, the electrochemical properties and the prospective electrochemical applications of HA were summarized. Simultaneously, the existing problems like shortages of traditional electrochemical characterization of HA, and future research directions about HA electrochemistry were prospected. This review provides a deeper understanding of HA electrochemistry, and also inspires ideas for environmental remediation, detection sensor and energy storage by exploring the potential application values of HA.