Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Fish Shellfish Immunol ; 147: 109467, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423489

RESUMO

LEAP2 (liver expression antimicrobial peptide 2), is an antimicrobial peptide widely found in vertebrates and mainly expressed in liver. LEAP2 plays a vital role in host innate immunity. In teleosts, a number of LEAP2 homologs have been reported, but their in vivo effects on host defense are still limited. In this study, a LEAP2 homolog (SsLEAP2) was identified from black rockfish, Sebastes schlegelii, and its structure, expression as well as biological functions were analyzed. The results showed that the open reading frame of SsLEAP2 is 300 bp, with a 5'- untranslated region (UTR) of 375 bp and a 3' - UTR of 238 bp. The deduced amino acid sequence of SsLEAP2 shares the highest overall identity (96.97%) with LEAP2 of Sebastes umbrosus. SsLEAP2 possesses conserved LEAP2 features, including a signal peptide sequence, a prodomain and a mature peptide, in which four well-conserved cysteines formed two intrachain disulphide domain. The expression of SsLEAP2 was highest in liver and could be induced by experimental infection with Listonella anguillarum, Edwardsiealla piscicida and Rock bream iridovirus C1 (RBIV-C1). Recombinant SsLEAP2 (rSsLEAP2) purified from Escherichia coli was able to bind with various Gram-positive and Gram-negative bacteria. Further analysis showed that rSsLEAP2 could enhance the respiratory burst activity, and induce the expression of immune genes including interleukin 1-ß (IL-1ß) and serum amyloid A (SAA) in macrophages; additionally, rSsLEAP2 could also promote the proliferation and chemotactic of peripheral blood lymphocytes (PBLs). In vivo experiments indicated that overexpression of SsLEAP2 could inhibit bacterial infection, and increase the expression level of immune genes including IL-1ß, tumor necrosis factor ligand superfamily member 13B (TNF13B) and haptoglobin (HP); conversely, knock down of SsLEAP2 promoted bacterial infection and decreased the expression level of above genes. Taken together, these results suggest that SsLEAP2 is a novel LEAP2 homolog that possesses apparent antibacterial activity and immunoregulatory property, thus plays a critical role in host defense against pathogens invasion.


Assuntos
Infecções Bacterianas , Doenças dos Peixes , Perciformes , Animais , Peixes , Proteínas de Peixes/genética , Hepcidinas/genética , Antibacterianos , Bactérias Gram-Negativas , Filogenia , Bactérias Gram-Positivas , Imunidade Inata/genética , Peptídeos Antimicrobianos
2.
Fish Shellfish Immunol ; 136: 108715, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001746

RESUMO

As an effective and broad-spectrum antimicrobial peptide, NK-Lysin is attracted more and more attention at present. However, the functions and action mechanism of NK-Lysin peptides are still not comprehensive enough at present. In this study, a sevenband grouper (Hyporthodus septemfasciatus) NK-Lysin peptide, NKHs27, was identified and synthesized, and its biological functions were studied. The results indicated that NKHs27 shares 44.44%∼88.89% overall sequence identities with other teleost NK-Lysin peptides. The following antibacterial activity assay exhibited that NKHs27 was active against both Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Listonella anguillarum, Vibrio parahaemolyticus and Vibrio vulnificus. Additionally, NKHs27 showed a synergistic effect when it was combined with rifampicin or erythromycin. In the process of interaction with the L. anguillarum cells, NKHs27 changed the cell membrane permeability and retained its morphological integrity, then penetrated into the cytoplasm to act on genomic DNA or total RNA. Then, in vitro studies showed that NKHs27 could enhance the respiratory burst ability of macrophages and upregulate immune-related genes expression in it. Moreover, NKHs27 incubation improved the proliferation of peripheral blood leukocytes significantly. Finally, in vivo studies showed that administration of NKHs27 prior to bacterial infection significantly reduced pathogen dissemination and replication in tissues. In summary, these results provide new insights into the function of NK-Lysin peptides in teleost and support that NKHs27, as a novel broad-spectrum antibacterial peptide, has potential applications in aquaculture against pathogenic infections.


Assuntos
Bass , Infecções Estafilocócicas , Animais , Bass/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/farmacologia , Proteínas de Peixes/metabolismo , Proteolipídeos/genética , Peptídeos , Antibacterianos
3.
Mar Drugs ; 20(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35736157

RESUMO

Tissue factor pathway inhibitor-2 (TFPI-2) is a Kunitz-type serine protease inhibitor. Previous reports have shown that TFPI-2 plays an important role in innate immunity, and the C-terminal region of TFPI-2 proved to be active against a broad-spectrum of microorganisms. In this study, the TFPI-2 homologue (SsTFPI-2) of black rockfish (Sebastods schegelii) was analyzed and characterized, and the biological functions of its C-terminal derived peptide TS40 (FVSRQSCMDVCAKGAKQHTSRGNVRRARRNRKNRITYLQA, corresponding to the amino acid sequence of 187-226) was investigated. The qRT-PCR (quantitative real-time reverse transcription-PCR) analysis showed that the expression of SsTFPI-2 was higher in the spleen and liver. The expression of SsTFPI-2 increased significantly under the stimulation of Listonella anguillarum. TS40 had a strong bactericidal effect on L. anguillarum and Staphylococcus aureus. Further studies found that TS40 can destroy the cell structure and enter the cytoplasm to interact with nucleic acids to exert its antibacterial activity. The in vivo study showed that TS40 treatment could significantly reduce the transmission of L. anguillarum and the viral evasion in fish. Finally, TS40 enhanced the respiratory burst ability, reactive oxygen species production and the expression of immune-related genes in macrophages, as well as promoted the proliferation of peripheral blood leukocytes. These results provide new insights into the role of teleost TFPI-2.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Antibacterianos , Doenças dos Peixes/tratamento farmacológico , Proteínas de Peixes/química , Glicoproteínas , Imunidade Inata/genética , Peptídeos/farmacologia , Perciformes/metabolismo
4.
Fish Shellfish Immunol ; 123: 369-380, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35318137

RESUMO

Natural killer lysin (NK-lysin) is a small molecule antimicrobial peptide secreted by natural killer cells and T lymphocytes. In this study, we characterized a cDNA sequence encoding an NK-lysin homologue (SsNKL1) from black rockfish, Sebastes schlegelii. The open reading frame (ORF) of SsNKL1 encodes a putative protein of 149 amino acids and shares 44%-87% overall sequence identities with other teleost NK-lysins. SsNKL1 possesses conserved NK-lysin family features, including a signal sequence and a surfactant-associated protein B (SapB) domain, sequence analysis revealed that SsNKL1 is most closely related to false kelpfish (Sebastiscus marmoratus) NK-lysin (with 87% sequence identity). SsNKL1 transcripts were detected in all the tested tissues, with the highest level in the kidney, followed by the spleen and gills. Upon Listonella anguillarum infection, the mRNA expression of SsNKL1 in the black rockfish was significantly up-regulated in the liver and kidney. The derived peptide SsNKLP27 from SsNKL1 was synthesized, and its biological function was studied. SsNKLP27 showed direct antibacterial activity against Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Bacillus subtilis, L. anguillarum, Vibrio parahaemolyticus, Vibrio alginolyticus and Vibrio vulnificus. SsNKLP27 treatment facilitated the bactericidal process of erythromycin by enhancing the permeability of the outer membrane. In the process of interaction with the target bacterial cells, SsNKLP27 changed the permeability and retained the morphological integrity of the cell membrane, then penetrated into the cytoplasm, and induced the degradation of genomic DNA and total RNA. In vivo studies showed that administration of SsNKLP27 before bacterial and viral infection significantly reduced the transmission and replication of pathogens in tissues. In vitro analysis showed that SsNKLP27 could enhance the respiratory burst ability and regulate the expression of some immune-related genes of macrophages. In summary, these results provided new insights into the function of NK-lysins in teleost fish and support that SsNKLP27 is a new broad-spectrum antimicrobial peptide that has a potential application prospect in aquaculture against pathogenic infection.


Assuntos
Anti-Infecciosos , Doenças dos Peixes , Perciformes , Vibrioses , Sequência de Aminoácidos , Animais , Antibacterianos , Doenças dos Peixes/microbiologia , Proteínas de Peixes/química , Células Matadoras Naturais , Peptídeos , Perciformes/metabolismo , Proteolipídeos/química , Proteolipídeos/genética , Vibrioses/genética , Vibrioses/veterinária
5.
Dev Comp Immunol ; 130: 104355, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35077723

RESUMO

The suppressors of cytokine signaling (SOCS) family are important soluble mediators to inhibit signal transduction via the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway in the innate and adaptive immune responses. SOCS1 is the primary regulator of a number of cytokines. In this study, two spliced transcripts of SOCS1 were identified and characterized from black rockfish (Sebastes schlegeli), named SsSOCS1a and SsSOCS1b. SsSOCS1a and SsSOCS1b contained conserved structural and functional domains including KIR region, ESS region, SH2 domain and SOCS box. SsSOCS1a and SsSOCS1b were distributed ubiquitously in all the detected tissues with the higher expression level in liver and spleen. After stimulation in vivo with Vibrio anguillarum and Edwardsiella tarda, the mRNA expression of SsSOCS1a and SsSOCS1b were induced in most of the immune-related tissues, including head kidney, spleen and liver. Meanwhile, poly I:C and IFNγ up-regulated the expression of SsSOCS1a and SsSOCS1b that reached the highest level at 24 h in macrophages in vitro. Luciferase assays in HEK293 cells showed SsSOCS1a and SsSOCS1b had the similar function in inhibiting ISRE activity after poly I:C and IFNγ treatment. Furthermore, KIR domain in black rockfish was determined to have a negative regulatory role in IFN signaling. SsSOCS1a and SsSOCS1b were found to interact strongly with each other by Co-immunoprecipitation analyses. These results indicated that the function of SOCS1 in the negative regulation of IFN signaling is conserved from teleost to mammals which will be helpful to further understanding of the biological functions of teleosts SOCS1 in innate immunity.


Assuntos
Citocinas , Perciformes , Animais , Citocinas/metabolismo , Células HEK293 , Humanos , Imunidade Inata/genética , Mamíferos , Poli I-C , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética
6.
Fish Shellfish Immunol ; 118: 197-204, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34509628

RESUMO

Tongue sole tissue factor pathway inhibitor 2 (TFPI-2) C-terminus derived peptide, TC38, has previously been shown to kill Vibrio vulnificus cells without lysing the cell membrane; thus, the remaining bacterial shell has potential application as an inactivated vaccine. Therefore, this study aimed to evaluate the immune response induced by the novel V. vulnificus vaccine. The protective potential of TC38-killed V. vulnificus cells (TKC) was examined in a turbot model. Fish were intramuscularly vaccinated with TKC or FKC (formalin-killed V. vulnificus cells) and challenged with a lethal-dose of V. vulnificus. The results showed that compared with FKC, TKC was effective in protecting fish against V. vulnificus infection, with relative percent of survival (RPS) rates of 53.29% and 63.64%, respectively. The immunological analysis revealed that compared with the FKC and control groups, the TKC group exhibited: 1) significantly higher respiratory burst ability and bactericidal activity of macrophages at 7 d post-vaccination; 2) increased alkaline phosphatase, acid phosphatase, lysozyme, and total superoxide dismutase levels post-vaccination; 3) higher serum agglutinating antibody titer with corresponding higher serum bactericidal ability, and a more potent serum agglutination effect, as well as an increased IgM expression level; 4) higher expression of immune relevant genes, which were involved in both innate and adaptive immunity. Taken together, this is the first study to develop a novel V. vulnificus inactivated vaccine based on AMP inactivation, and TKC is an effective vaccine against V. vulnificus infection for aquaculture.


Assuntos
Doenças dos Peixes , Linguados , Vibrioses , Vibrio vulnificus , Vibrio , Animais , Antibacterianos , Vacinas Bacterianas , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Linguados/microbiologia , Peptídeos , Vacinas de Produtos Inativados , Vibrio/imunologia , Vibrioses/prevenção & controle , Vibrioses/veterinária
7.
Vet Res ; 52(1): 32, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632337

RESUMO

Tissue factor pathway inhibitors (TFPI), including TFPI-1 and TFPI-2, are Kunitz-type serine protease inhibitors that mainly inhibit the blood coagulation induced by tissue factors. Previous reports on teleost proved TFPI play important roles in innate immunity. In this study, two TFPI (PoTFPI-1 and PoTFPI-2) molecules from Japanese flounder (Paralichthys olivaceus) were analyzed and characterized for their expression patterns, antibacterial and anticancer activities of the C-terminal derived peptides. Quantitative real time RT-PCR analysis shows that constitutive PoTFPI-1 expression occurred, in increasing order, in the brain, muscle, spleen, gills, head kidney, blood, intestine, heart, and liver; PoTFPI-2 was expressed, in increasing order, in the brain, gills, head kidney, muscle, intestine, spleen, liver, heart, and blood. Under the stimulation of fish pathogens, both PoTFPI-1 and PoTFPI-2 expressions increased significantly in a manner that depended on the pathogens, tissue type, and infection stage. Furthermore, C-terminal peptides TP25 and TP26, derived from PoTFPI-1 and PoTFPI-2, respectively, were synthesized and proved to be active against Micrococcus luteus (for TP25 and TP26) and Staphylococcus aureus (for TP25) via retardation effects on bacterial nucleic acids. In addition, TP25 and TP26 also displayed significant inhibitory effects on human colon cancer cell line HT-29. These results reveal that both PoTFPI-1 and PoTFPI-2 play important roles in host innate immunity. The antibacterial activity and anticancer cells function of TP25 and TP26 will add new insights into the roles of teleost TFPI.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Linguados/genética , Linguados/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Perfilação da Expressão Gênica/veterinária , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/imunologia , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/imunologia , Micrococcus luteus/efeitos dos fármacos , Filogenia , Staphylococcus aureus/efeitos dos fármacos
8.
Dev Comp Immunol ; 118: 103995, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33412232

RESUMO

The bactericidal permeability-increasing protein (BPI) is a multifunctional cationic protein produced by neutrophils with antibacterial, antitumor, and LPS-neutralizing properties. In teleost, a number of BPIs have been reported, but their functions are very limited. In this study, an N-terminal peptide, BO18 (with 18 amino acids), derived from rock bream (Oplegnathus fasciatus) BPI, was synthesized and investigated for its antibacterial spectrum, action mechanism, immunoregulatory property as well as the inhibition effects on bacterial invasion and human colon cancer cells growth. The results showed that BO18 was active against Gram-positive bacteria Bscillus subiilis, Micrococcus luteus, and Staphylococcus aureus, as well as Gram-negative bacteria Vibrio alginolyticus, Vibrio litoralis, Vibrio parahaemolyticus and Vibrio vulnificus. BO18 treatment facilitated the bactericidal process of erythromycin and rifampicin by enhancing the permeability of the outer membrane. During its interaction with V. alginolyticus, BO18 exerted its antibacterial activity by destroying cell membrane integrity, penetrating into the cytoplasm and binding to genomic DNA and total RNA. In vitro analysis indicated BO18 could enhance the respiratory burst ability and regulate the expression of immune related genes of macrophages. In vivo detection showed the administration of fish with BO18 before bacterial infection significantly reduced pathogen dissemination and replication in tissues. In addition, BO18 exerted a cytotoxic effect on the growth of human colon cancer cells HT-29. Together, these results add new insights into the function of teleost BPIs, and support that BO18 is a novel and broad-spectrum antibacterial peptide with potential to apply in fighting pathogenic infection in aquaculture.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Antineoplásicos/farmacologia , Proteínas Sanguíneas/genética , Proteínas de Peixes/genética , Fragmentos de Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Antibacterianos/uso terapêutico , Antineoplásicos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Linguados/genética , Linguados/imunologia , Linguados/metabolismo , Células HT29 , Humanos , Testes de Sensibilidade Microbiana , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/uso terapêutico
9.
Biochem Biophys Res Commun ; 519(1): 113-120, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31474334

RESUMO

Gastric cancer (GC) is still a major lethal gastrointestinal tumor. In this study, we clarified that RAB13, which is a member of Rab GTPase family and responsible for cargos delivery between the Golgi and the plasma membrane, plays critical roles in the proliferation and the chemotherapeutic resistance in GC cells. Analyzing RAB13 expression in GC specimens, we found that its mRNA level was higher in cancerous tissues compared with normal counterparts and this increase was further associated with malignant progression of GC. Moreover, increased RAB13 indicated poor overall survival (OS) and progression free survival (PFS) in GC patients. We then found that deletion of RAB13 inhibited the proliferation and promoted the apoptosis in AGS and NCI-N87 cells, the impairments of viability which was due to reduced amount of RAB13 anchoring the plasma membrane and attenuated cellular response to EGF treatment and the activation of downstream Akt/ERK/mTOR signaling pathways accordingly. Moreover, in vitro experiments showed that RAB13 deletion enhanced the sensitization of AGS and NCI-N87 cells toward cisplatin (CDDP) and 5-fluorouracil (5-FU) treatment respectively. Together, these data demonstrate that RAB13 promotes the proliferation and confers CDDP and 5-FU resistance to GC cells, which provides experimental support to target this protein in future clinical practice.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Proteínas rab de Ligação ao GTP/metabolismo , Biomarcadores Tumorais/análise , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Células Tumorais Cultivadas , Proteínas rab de Ligação ao GTP/análise , Proteínas rab de Ligação ao GTP/deficiência
10.
PLoS One ; 13(2): e0192967, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29451918

RESUMO

Bio-organic fertilizers (BOFs) combine functional microbes with a suitable substrate and have been shown to effectively suppress soil-borne diseases and promote plant growth. Here, we developed a novel bio-organic fertilizer (BOF) by fermentation of a cow plus chicken manure (M) compost using Fen-liquor Daqu (FLD) as a fermentation starter and compared the compositions of bacterial and fungal communities in the rhizosphere soil of watermelon plants after treatment with different fertilizers. Further, we aimed to explore the mechanisms underlying plant-promoting and disease (Fusarium wilt)-suppressing activities of each rhizosphere microbial community. The microbial communities of soil amended with cow plus chicken manure compost (S+M), soil amended with the BOF (S+BOF), and untreated control soil (S) without plants were analyzed through sequence analysis using the Illumina MiSeq platform. The results showed that a new microbial community was formed in the manure compost after fermentation by the Daqu. Application of the BOF to the soil induced remarkable changes in the rhizosphere microbial communities, with increased bacterial diversity and decreased fungal diversity. Most importantly, S+BOF showed the lowest abundance of Fusarium. Moreover, watermelon quality was higher (P < 0.05) in the S+BOF than in the S+M treatment. Thus, application of the BOF favorably altered the composition of the rhizosphere microbial community, suppressing Fusarium wilt disease and promoting plant quality.


Assuntos
Citrullus/crescimento & desenvolvimento , Fertilizantes/microbiologia , Esterco/microbiologia , Doenças das Plantas/prevenção & controle , Rizosfera , Microbiologia do Solo , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bovinos , Galinhas , Citrullus/microbiologia , Citrullus/fisiologia , Consórcios Microbianos , Doenças das Plantas/microbiologia
11.
Front Plant Sci ; 8: 383, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28377783

RESUMO

Plant genetic transformation has arguably been the core of plant improvement in recent decades. Efforts have been made to develop in planta transformation systems due to the limitations present in the tissue-culture-based methods. Herein, we report an improved in planta transformation system, and provide the evidence of reporter gene expression in pollen tube, embryos and stable transgenicity of the plants following pollen-mediated plant transformation with optimized sonication treatment of pollen. The results showed that the aeration at 4°C treatment of pollen grains in sucrose prior to sonication significantly improved the pollen viability leading to improved kernel set and transformation efficiency. Scanning electron microscopy observation revealed that the removal of operculum covering pollen pore by ultrasonication might be one of the reasons for the pollen grains to become competent for transformation. Evidences have shown that the eGfp gene was expressed in the pollen tube and embryos, and the Cry1Ac gene was detected in the subsequent T1 and T2 progenies, suggesting the successful transfer of the foreign genes to the recipient plants. The Southern blot analysis of Cry1Ac gene in T2 progenies and PCR-identified Apr gene segregation in T2 seedlings confirmed the stable inheritance of the transgene. The outcome illustrated that the pollen-mediated genetic transformation system can be widely applied in the plant improvement programs with apparent advantages over tissue-culture-based transformation methods.

12.
PLoS One ; 10(11): e0141540, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26536014

RESUMO

Microsatellites or simple sequence repeats (SSRs) are distributed across both prokaryotic and eukaryotic genomes and have been widely used for genetic studies and molecular marker-assisted breeding in crops. Though an ordered draft sequence of hexaploid bread wheat have been announced, the researches about systemic analysis of SSRs for wheat still have not been reported so far. In the present study, we identified 364,347 SSRs from among 10,603,760 sequences of the Chinese spring wheat (CSW) genome, which were present at a density of 36.68 SSR/Mb. In total, we detected 488 types of motifs ranging from di- to hexanucleotides, among which dinucleotide repeats dominated, accounting for approximately 42.52% of the genome. The density of tri- to hexanucleotide repeats was 24.97%, 4.62%, 3.25% and 24.65%, respectively. AG/CT, AAG/CTT, AGAT/ATCT, AAAAG/CTTTT and AAAATT/AATTTT were the most frequent repeats among di- to hexanucleotide repeats. Among the 21 chromosomes of CSW, the density of repeats was highest on chromosome 2D and lowest on chromosome 3A. The proportions of di-, tri-, tetra-, penta- and hexanucleotide repeats on each chromosome, and even on the whole genome, were almost identical. In addition, 295,267 SSR markers were successfully developed from the 21 chromosomes of CSW, which cover the entire genome at a density of 29.73 per Mb. All of the SSR markers were validated by reverse electronic-Polymerase Chain Reaction (re-PCR); 70,564 (23.9%) were found to be monomorphic and 224,703 (76.1%) were found to be polymorphic. A total of 45 monomorphic markers were selected randomly for validation purposes; 24 (53.3%) amplified one locus, 8 (17.8%) amplified multiple identical loci, and 13 (28.9%) did not amplify any fragments from the genomic DNA of CSW. Then a dendrogram was generated based on the 24 monomorphic SSR markers among 20 wheat cultivars and three species of its diploid ancestors showing that monomorphic SSR markers represented a promising source to increase the number of genetic markers available for the wheat genome. The results of this study will be useful for investigating the genetic diversity and evolution among wheat and related species. At the same time, the results will facilitate comparative genomic studies and marker-assisted breeding (MAS) in plants.


Assuntos
Cromossomos de Plantas/genética , Bases de Dados de Ácidos Nucleicos , Loci Gênicos , Variação Genética , Repetições de Microssatélites , Triticum/genética , China , Estudo de Associação Genômica Ampla
13.
PLoS One ; 9(10): e110638, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329551

RESUMO

Cannabis sativa L. is an important economic plant for the production of food, fiber, oils, and intoxicants. However, lack of sufficient simple sequence repeat (SSR) markers has limited the development of cannabis genetic research. Here, large-scale development of expressed sequence tag simple sequence repeat (EST-SSR) markers was performed to obtain more informative genetic markers, and to assess genetic diversity in cannabis (Cannabis sativa L.). Based on the cannabis transcriptome, 4,577 SSRs were identified from 3,624 ESTs. From there, a total of 3,442 complementary primer pairs were designed as SSR markers. Among these markers, trinucleotide repeat motifs (50.99%) were the most abundant, followed by hexanucleotide (25.13%), dinucleotide (16.34%), tetranucloetide (3.8%), and pentanucleotide (3.74%) repeat motifs, respectively. The AAG/CTT trinucleotide repeat (17.96%) was the most abundant motif detected in the SSRs. One hundred and seventeen EST-SSR markers were randomly selected to evaluate primer quality in 24 cannabis varieties. Among these 117 markers, 108 (92.31%) were successfully amplified and 87 (74.36%) were polymorphic. Forty-five polymorphic primer pairs were selected to evaluate genetic diversity and relatedness among the 115 cannabis genotypes. The results showed that 115 varieties could be divided into 4 groups primarily based on geography: Northern China, Europe, Central China, and Southern China. Moreover, the coefficient of similarity when comparing cannabis from Northern China with the European group cannabis was higher than that when comparing with cannabis from the other two groups, owing to a similar climate. This study outlines the first large-scale development of SSR markers for cannabis. These data may serve as a foundation for the development of genetic linkage, quantitative trait loci mapping, and marker-assisted breeding of cannabis.


Assuntos
Cannabis/genética , Etiquetas de Sequências Expressas , Variação Genética , Repetições de Microssatélites , Locos de Características Quantitativas , Ligação Genética
14.
PLoS One ; 8(4): e60346, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565230

RESUMO

Ramie (Boehmeria nivea L. Gaud) is one of the most important natural fiber crops, and improvement of fiber yield and quality is the main goal in efforts to breed superior cultivars. However, efforts aimed at enhancing the understanding of ramie genetics and developing more effective breeding strategies have been hampered by the shortage of simple sequence repeat (SSR) markers. In our previous study, we had assembled de novo 43,990 expressed sequence tags (ESTs). In the present study, we searched these previously assembled ESTs for SSRs and identified 1,685 ESTs (3.83%) containing 1,878 SSRs. Next, we designed 1,827 primer pairs complementary to regions flanking these SSRs, and these regions were designated as SSR markers. Among these markers, dinucleotide and trinucleotide repeat motifs were the most abundant types (36.4% and 36.3%, respectively), whereas tetranucleotide, pentanucleotide, and hexanucleotide motifs represented <10% of the markers. The motif AG/CT was the most abundant, accounting for 28.74% of the markers. One hundred EST-SSR markers (97 SSRs located in genes encoding transcription factors and 3 SSRs in genes encoding cellulose synthases) were amplified using polymerase chain reaction for detecting 24 ramie varieties. Of these 100 markers, 98 markers were successfully amplified and 81 markers were polymorphic, with 2-6 alleles among the 24 varieties. Analysis of the genetic diversity of all 24 varieties revealed similarity coefficients that ranged from 0.51 to 0.80. The EST-SSRs developed in this study represent the first large-scale development of SSR markers for ramie. These SSR markers could be used for development of genetic and physical maps, quantitative trait loci mapping, genetic diversity studies, association mapping, and cultivar fingerprinting.


Assuntos
Boehmeria/genética , DNA de Plantas , Etiquetas de Sequências Expressas , Repetições de Microssatélites , Alelos , Sequência de Bases , Boehmeria/classificação , Análise por Conglomerados , Loci Gênicos , Anotação de Sequência Molecular , Motivos de Nucleotídeos , Polimorfismo Genético
15.
BMC Genomics ; 9: 314, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18590573

RESUMO

BACKGROUND: Upland cotton has the highest yield, and accounts for > 95% of world cotton production. Decoding upland cotton genomes will undoubtedly provide the ultimate reference and resource for structural, functional, and evolutionary studies of the species. Here, we employed GeneTrek and BAC tagging information approaches to predict the general composition and structure of the allotetraploid cotton genome. RESULTS: 142 BAC sequences from Gossypium hirsutum cv. Maxxa were downloaded http://www.ncbi.nlm.nih.gov and confirmed. These BAC sequence analysis revealed that the tetraploid cotton genome contains over 70,000 candidate genes with duplicated gene copies in homoeologous A- and D-subgenome regions. Gene distribution is uneven, with gene-rich and gene-free regions of the genome. Twenty-one percent of the 142 BACs lacked genes. BAC gene density ranged from 0 to 33.2 per 100 kb, whereas most gene islands contained only one gene with an average of 1.5 genes per island. Retro-elements were found to be a major component, first an enriched LTR/gypsy and second LTR/copia. Most LTR retrotransposons were truncated and in nested structures. In addition, 166 polymorphic loci amplified with SSRs developed from 70 BAC clones were tagged on our backbone genetic map. Seventy-five percent (125/166) of the polymorphic loci were tagged on the D-subgenome. By comprehensively analyzing the molecular size of amplified products among tetraploid G. hirsutum cv. Maxxa, acc. TM-1, and G. barbadense cv. Hai7124, and diploid G. herbaceum var. africanum and G. raimondii, 37 BACs, 12 from the A- and 25 from the D-subgenome, were further anchored to their corresponding subgenome chromosomes. After a large amount of genes sequence comparison from different subgenome BACs, the result showed that introns might have no contribution to different subgenome size in Gossypium. CONCLUSION: This study provides us with the first glimpse of cotton genome complexity and serves as a foundation for tetraploid cotton whole genomesequencing in the future.


Assuntos
Cromossomos Artificiais Bacterianos , Genoma de Planta , Gossypium/genética , Poliploidia , Análise de Sequência de DNA , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas , Evolução Molecular , Genes Duplicados , Ligação Genética , Marcadores Genéticos , Repetições de Microssatélites , Modelos Genéticos , Mapeamento Físico do Cromossomo , Polimorfismo Genético , Técnica de Amplificação ao Acaso de DNA Polimórfico , Retroelementos , Software
16.
Genetics ; 176(1): 527-41, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17409069

RESUMO

The mapping of functional genes plays an important role in studies of genome structure, function, and evolution, as well as allowing gene cloning and marker-assisted selection to improve agriculturally important traits. Simple sequence repeats (SSRs) developed from expressed sequence tags (ESTs), EST-SSR (eSSR), can be employed as putative functional marker loci to easily tag corresponding functional genes. In this paper, 2218 eSSRs, 1554 from G. raimondii-derived and 754 from G. hirsutum-derived ESTs, were developed and used to screen polymorphisms to enhance our backbone genetic map in allotetraploid cotton. Of the 1554 G. raimondii-derived eSSRs, 744 eSSRs were able to successfully amplify polymorphisms between our two mapping parents, TM-1 and Hai7124, presenting a polymorphic rate of 47.9%. However, only a 23.9% (159/754) polymorphic rate was produced from G. hirsutum-derived eSSRs. No relationship was observed between the level of polymorphism, motif type, and tissue origin, but the polymorphism appeared to be correlated with repeat type. After integrating these new eSSRs, our enhanced genetic map consists of 1790 loci in 26 linkage groups and covers 3425.8 cM with an average intermarker distance of 1.91 cM. This microsatellite-based, gene-rich linkage map contains 71.96% functional marker loci, of which 87.11% are eSSR loci. There were 132 duplicated loci bridging 13 homeologous At/Dt chromosome pairs. Two reciprocal translocations after polyploidization between A2 and A3, and between A4 and A5, chromosomes were further confirmed. A functional analysis of 975 ESTs producing 1122 eSSR loci tagged in the map revealed that 60% had clear BLASTX hits (<1e(-10)) to the Uniprot database and that 475 were associated mainly with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function; many of the ESTs were associated with two or more category functions. The results presented here will provide new insights for future investigations of functional and evolutionary genomics, especially those associated with cotton fiber improvement.


Assuntos
Mapeamento Cromossômico , Evolução Molecular , Genoma de Planta/genética , Gossypium/genética , Repetições de Microssatélites/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Etiquetas de Sequências Expressas , Marcadores Genéticos , Polimorfismo Genético , Poliploidia , Recombinação Genética/genética
17.
Theor Appl Genet ; 112(3): 430-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16341684

RESUMO

In order to construct a saturated genetic map and facilitate marker-assisted selection (MAS) breeding, it is necessary to enhance the current reservoir of known molecular markers in Gossypium. Microsatellites or simple sequence repeats (SSRs) occur in expressed sequence tags (EST) in plants. Many ESTs are publicly available now and represent a good tool in developing EST-SSRs. From 13,505 ESTs developed from our two cotton fiber/ovule cDNA libraries constructed for Upland cotton, 966 (7.15%) contained one or more SSRs and from them, 489 EST-SSR primer pairs were developed. Among the EST-SSRs, 59.1% are trinucleotides, followed by dinucleotides (30%), tetranucleotides (6.4%), pentanucleotides (1.8%), and hexanucleotides (2.7%). AT/TA (18.4%) is the most frequent repeat, followed by CTT/GAA (5.3%), AG/TC (5.1%), AGA/TCT (4.9%), AGT/TCA (4.5%), and AAG/TTC (4.5%). One hundred and thirty EST-SSR loci were produced from 114 informative EST-SSR primer pairs, which generated polymorphism between our two mapping parents. Of these, 123 were integrated on our allotetraploid cotton genetic map, based on the cross [(TM-1xHai7124)TM-1]. EST-SSR markers were distributed over 20 chromosomes and 6 linkage groups in the map. These EST-SSR markers can be used in genetic mapping, identification of quantitative trait loci (QTLs), and comparative genomics studies of cotton.


Assuntos
Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Repetições de Microssatélites , Poliploidia , Sequência de Bases , Cromossomos de Plantas , Ligação Genética , Marcadores Genéticos , Sequências Repetitivas de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA