Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
ACS Omega ; 9(19): 20807-20818, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764684

RESUMO

Studying the gas-water distribution characteristics is essential in guiding the efficient development of gas fields. The relationship between gas and water in the Sudong 41-33 Block is complicated and has not been adequately researched. In recent years, gas wells have suffered from increased water/gas ratios and significant liquid loadings, which greatly affect the development of the block. A comprehensive analysis of formation water, log interpretation, and production data was conducted to determine the gas-water distribution characteristics and main controlling factors in the Sudong 41-33 Block. The findings indicate the following. (1) The formation water in the study area consists mainly of CaCl2 brine with high total dissolved solids (TDS) (with an average value of 36.06 g/L). The hydrochemical characteristics indicate that the formation water is typical sedimentary buried water under well-sealing conditions, which is markedly different from shallow river water and seawater. (2) The formation water can be categorized into three types: edge-bottom water under the gas layer (Type I), stagnant water in tight sandstone (Type II), and isolated lenticular water (Type III). The water layer distribution in the plane is mainly concentrated in the northwest region, whereas it is dispersed in other regions. On the vertical, the water layer mainly appears in P2x8-1, P2x8-2, and P1s2 Members. (3) The physical properties of the reservoir, hydrocarbon generation intensity (HGI), source rock-reservoir relationship, and mini-structure are the main factors affecting the gas-water distribution in the study area. Based on the clarification of the characteristics of gas and water distribution and its main controlling factors, it is of great importance to accurately identify the water layer, avoid the direct development of the water layer, adopt the proper production pressure differential, and carry out drainage gas production measures in time to ensure the effective development of the gas field.

2.
ACS Nano ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751164

RESUMO

The potential of human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hucMSC-EVs) in wound healing is promising, yet a comprehensive understanding of how fibroblasts and keratinocytes respond to this treatment remains limited. This study utilizes single-cell RNA sequencing (scRNA-seq) to investigate the impact of hucMSC-EVs on the cutaneous wound microenvironment in mice. Through rigorous single-cell analyses, we unveil the emergence of hucMSC-EV-induced hematopoietic fibroblasts and MMP13+ fibroblasts. Notably, MMP13+ fibroblasts exhibit fetal-like expressions of MMP13, MMP9, and HAS1, accompanied by heightened migrasome activity. Activation of MMP13+ fibroblasts is orchestrated by a distinctive PIEZO1-calcium-HIF1α-VEGF-MMP13 pathway, validated through murine models and dermal fibroblast assays. Organotypic culture assays further affirm that these activated fibroblasts induce keratinocyte migration via MMP13-LRP1 interactions. This study significantly contributes to our understanding of fibroblast heterogeneities as well as intercellular interactions in wound healing and identifies hucMSC-EV-induced hematopoietic fibroblasts as potential targets for reprogramming. The therapeutic targets presented by these fibroblasts offer exciting prospects for advancing wound healing strategies.

3.
Cancer Discov ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563585

RESUMO

Glioblastoma (GBM) exhibits profound metabolic plasticity for survival and therapeutic resistance, while the underlying mechanisms remain unclear. Here, we show that GBM stem cells (GSCs) reprogram the epigenetic landscape by producing substantial amounts of phosphocreatine (PCr). This production is attributed to the elevated transcription of brain-type creatine kinase (CKB), mediated by Zinc finger E-box binding homeobox 1 (ZEB1). PCr inhibits the poly-ubiquitination of the chromatin regulator bromodomain containing protein 2 (BRD2) by outcompeting the E3 ubiquitin ligase SPOP for BRD2 binding. Pharmacological disruption of PCr biosynthesis by cyclocreatine leads to BRD2 degradation and a decrease in its targets' transcription, which inhibits chromosome segregation and cell proliferation. Notably, cyclocreatine treatment significantly impedes tumor growth and sensitizes tumors to a BRD2 inhibitor in mouse GBM models without detectable side effects. These findings highlight that high production of PCr is a druggable metabolic feature of GBM and a promising therapeutic target for GBM treatment.

4.
Small ; : e2312129, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593332

RESUMO

Lithium (Li) metal is widely recognized as a viable candidate for anode material in future battery technologies due to its exceptional energy density. Nevertheless, the commercial Li foils in common use are too thick (≈100 µm), resulting in a waste of Li resources. Herein, by applying the vacuum evaporation plating technology, the ultra-thin Li foils (VELi) with high purity, strong adhesion, and thickness of less than 10 µm are successfully prepared. The manipulation of evaporation temperature allows for convenient regulation of the thickness of the fabricated Li film. This physical thinning method allows for fast, continuous, and highly accurate mass production. With a current density of 0.5 mA cm-2 for a plating amount of 0.5 mAh cm-2, VELi||VELi cells can stably cycle for 200 h. The maximum utilization of Li is already more than 25%. Furthermore, LiFePO4||VELi full cells present excellent cycling performance at 1 C (1 C = 155 mAh g-1) with a capacity retention rate of 90.56% after 240 cycles. VELi increases the utilization of active Li and significantly reduces the cost of Li usage while ensuring anode cycling and multiplication performance. Vacuum evaporation plating technology provides a feasible strategy for the practical application of ultra-thin Li anodes.

5.
Chemosphere ; 356: 141841, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582173

RESUMO

The coexistence of metal cations is often accompanied by organic pollution and could affect the environmental fate of organics by mediating the formation of cation bridges. However, the environmental fate and risk of organics in cation co-existing environments are poorly understood due to the lack of accurate identification of cation bridge formation and stability. In this study, the sorption of sulfamethoxazole (SMX) on montmorillonite (MT) with the coexistence of three different valence metal cations (Na+, Ca2+, and Cr3+) was investigated. Ca2+ and Cr3+ can significantly promote the sorption of SMX on MT for about 5∼10 times promotion, respectively, while Na+ bridges displayed little effect on the sorption of SMX. The sorption binding energy of SMX with MT-Ca (-44.01 kcal/mol) and MT-Cr (-64.57 kcal/mol) bridges was significantly lower than that with MT-Na (-38.45 kcal/mol) and MT (-39.39 kcal/mol), indicating that the sorption affinity of SMX on Cr and Ca bridges was much stronger. The higher valence of the cations also resulted in a more stable adsorbed SMX with less desorption fluctuation. In addition, the relatively higher initial concentration of SMX and the valence of cations increased the bonding density of the cation bridges, thus promoting the apparent sorption of SMX on MT to a certain extent. This work reveals the formation and function of cation bridges in the sorption of SMX on MT. It lays a theoretical foundation for further understanding the environmental fate and risk of organics.


Assuntos
Bentonita , Cátions , Sulfametoxazol , Bentonita/química , Sulfametoxazol/química , Adsorção , Cátions/química
7.
Mol Immunol ; 169: 28-36, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493579

RESUMO

Our previous work has demonstrated that the tetraspan MS4A6D interacts with MHC-II to be a complex that promotes macrophage activation (Mol Immunol. 2023; 160: 121-132), however, the exact role of MS4A6D in controlling macrophage-derived inflammation is still poorly understood. Here, we showed that Ms4a6d-deficient (Ms4a6d-/-) mice manifested a lower level of footpad swelling induced by subcutaneous injection of 100 µL of 1% Carrageenan (CGN, w/v) plus CaCl2 (50 mM), a phenomenon that is similar to Nlrp3-/-, Casp-1-/-, and Ilr1-/- mice. Mechanistically, F4/80+ macrophages infiltrated in the footpad tissues of the Ms4A6d-/- mice was significantly lower than that of the WT littermates, leading to dramatically lower levels of proIL-1ß in vivo. Moreover, macrophages from Ms4a6d-/- mice also showed a dramatical reduction of Il-1ß secretion following NLRP3 inflammsome activation in vitro. Interestingly, both Ms4a6dC237G mutant (Interruption of MS4A6D homodimerization) and Ms4a6dY241G mutant (deletion of heITAM motif) mice also significantly inhibited CGN-induced footpad swelling due to lower levels of Il-1ß secretion in vivo. Collectively, MS4A6D aggravates CGN-induced footpad swelling in mice by enhancing NLRP3 inflammasome in macrophages and inducing the release of IL-1ß, indicating that MS4A6D promotes the progression of acute inflammation.


Assuntos
Macrófagos , Animais , Camundongos , Carragenina , Inflamassomos , Inflamação/induzido quimicamente , Interleucina-1beta , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
8.
Int J Biol Sci ; 20(5): 1634-1651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481819

RESUMO

Background: Hypoxia induces hepatocellular carcinoma (HCC) malignancies; yet it also offers treatment opportunities, exemplified by developing hypoxia-activated prodrugs (HAPs). Although HAP TH-302 combined with therapeutic antibody (Ab) has synergistic effects, the clinical benefits are limited by the on-target off-tumor toxicity of Ab. Here, we sought to develop a hypoxia-activated anti-M2 splice isoform of pyruvate kinase (PKM2) Ab combined with TH-302 for potentiated targeting therapy. Methods: Codon-optimized and hypoxia-activation strategies were used to develop H103 Ab-azo-PEG5k (HAP103) Ab. Hypoxia-activated HAP103 Ab was characterized, and hypoxia-dependent antitumor and immune activities were evaluated. Selective imaging and targeting therapy with HAP103 Ab were assessed in HCC-xenografted mouse models. Targeting selectivity, systemic toxicity, and synergistic therapeutic efficacy of HAP103 Ab with TH-302 were evaluated. Results: Human full-length H103 Ab was produced in a large-scale bioreactor. Azobenzene (azo)-linked PEG5k conjugation endowed HAP103 Ab with hypoxia-activated targeting features. Conditional HAP103 Ab effectively inhibited HCC cell growth, enhanced apoptosis, and induced antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) functions. Analysis of HCC-xenografted mouse models showed that HAP103 Ab selectively targeted hypoxic HCC tissues and induced potent tumor-inhibitory activity either alone or in combination with TH-302. Besides the synergistic effects, HAP103 Ab had negligible side effects when compared to parent H103 Ab. Conclusion: The hypoxia-activated anti-PKM2 Ab safely confers a strong inhibitory effect on HCC with improved selectivity. This provides a promising strategy to overcome the on-target off-tumor toxicity of Ab therapeutics; and highlights an advanced approach to precisely kill HCC in combination with HAP TH-302.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nitroimidazóis , Mostardas de Fosforamida , Pró-Fármacos , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/farmacologia , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Hipóxia
9.
MedComm (2020) ; 5(3): e512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469549

RESUMO

Therapeutic antibodies (Abs) improve the clinical outcome of cancer patients. However, on-target off-tumor toxicity limits Ab-based therapeutics. Cluster of differentiation 147 (CD147) is a tumor-associated membrane antigen overexpressed in cancer cells. Ab-based drugs targeting CD147 have achieved inadequate clinical benefits for liver cancer due to side effects. Here, by using glycoengineering and hypoxia-activation strategies, we developed a conditional Ab-dependent cellular cytotoxicity (ADCC)-enhanced humanized anti-CD147 Ab, HcHAb18-azo-PEG5000 (HAP18). Afucosylated ADCC-enhanced HcHAb18 Ab was produced by a fed-batch cell culture system. Azobenzene (Azo)-linked PEG5000 conjugation endowed HAP18 Ab with features of hypoxia-responsive delivery and selective targeting. HAP18 Ab potently inhibits the migration, invasion, and matrix metalloproteinase secretion, triggers the cytotoxicity and apoptosis of cancer cells, and induces ADCC, complement-dependent cytotoxicity, and Ab-dependent cellular phagocytosis under hypoxia. In xenograft mouse models, HAP18 Ab selectively targets hypoxic liver cancer tissues but not normal organs or tissues, and has potent tumor-inhibiting effects. HAP18 Ab caused negligible side effects and exhibited superior pharmacokinetics compared to those of parent HcHAb18 Ab. The hypoxia-activated ADCC-enhanced humanized HAP18 Ab safely confers therapeutic efficacy against liver cancer with improved selectivity. This study highlights that hypoxia activation is a promising strategy for improving the tumor targeting potential of anti-CD147 Ab drugs.

10.
Nat Commun ; 15(1): 2656, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531872

RESUMO

The manipulation of cell identity by reprograming holds immense potential in regenerative medicine, but is often limited by the inefficient acquisition of fully functional cells. This problem can potentially be resolved by better understanding the reprogramming process using in vivo genetic models, which are currently scarce. Here we report that both enterocytes (ECs) and enteroendocrine cells (EEs) in adult Drosophila midgut show a surprising degree of cell plasticity. Depleting the transcription factor Tramtrack in the differentiated ECs can initiate Prospero-mediated cell transdifferentiation, leading to EE-like cells. On the other hand, depletion of Prospero in the differentiated EEs can lead to the loss of EE-specific transcription programs and the gain of intestinal progenitor cell identity, allowing cell cycle re-entry or differentiation into ECs. We find that intestinal progenitor cells, ECs, and EEs have a similar chromatin accessibility profile, supporting the concept that cell plasticity is enabled by pre-existing chromatin accessibility with switchable transcription programs. Further genetic analysis with this system reveals that the NuRD chromatin remodeling complex, cell lineage confliction, and age act as barriers to EC-to-EE transdifferentiation. The establishment of this genetically tractable in vivo model should facilitate mechanistic investigation of cell plasticity at the molecular and genetic level.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/metabolismo , Transdução de Sinais/fisiologia , Intestinos , Diferenciação Celular/genética , Cromatina
11.
J Pain Res ; 17: 623-634, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371482

RESUMO

Purpose: To identify the prevalence of exacerbation of pre-existing chronic pain after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and investigate the impact of exacerbated previous chronic pain on quality of life, sleep quality, anxiety and depression levels and risk factors associated with exacerbated chronic pain among elderly coronavirus disease of 2019 (COVID-19) survivors. Patients and Methods: In this cross-sectional study, elderly COVID-19 survivors with chronic pain residing in Continuing Care Retirement Community (CCRC) were recruited from April 2023 to June 2023. Eligible individuals were divided into exacerbation and non-exacerbation groups based on the patient-reported worsening symptoms of previous chronic pain after SARS-CoV-2 infection. Baseline information, COVID-19 symptoms, laboratory parameters, characteristics of exacerbated chronic pain, quality of life, anxiety and depression levels were systematically collected. Results: Ninety-five (95/441, 21.5%) older adults suffered from exacerbated chronic pain with a median numerical rating scale (NRS) score of 6 (4-7) on a median duration of 4.9 (4.3-5.6) months after SARS-CoV-2 infection. More participants were not vaccinated against COVID-19 (46.5%, 40/86 vs 26.1%, 86/330, P < 0.001) in exacerbation group. Exacerbation group exhibited poor quality of life (EQ5D index: 0.734 [0.536-0.862] vs 0.837 [0.716-0.942], P < 0.001), more severe anxiety (GAD-7: 2 [0-5] vs 0 [0-3], P < 0.001) and depression (PHQ-9: 4 [2-7] vs 2.5 [0-5], P < 0.001) than non-exacerbation group. Risk factors significantly associated with exacerbation of pre-existing chronic pain were neuropathic pain (aOR 4.81, 95% CI 1.73-13.32, P = 0.003), lymphocyte count (aOR 0.31, 95% CI 0.12-0.78, P = 0.013) and D-dimer levels (aOR 6.46, 95% CI 1.92-21.74, P = 0.003). Conclusion: Our study observed a prevalence of 21.5% exacerbation of pre-existing chronic pain after SARS-CoV-2 infection, with a consequence of poor quality of life, more severe anxiety and depression. Previous chronic neuropathic pain, lower lymphocyte count and higher D-dimer levels were risk factors associated with the development of exacerbated previous chronic pain.

12.
Chem Sci ; 15(4): 1384-1392, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38274064

RESUMO

Electrocatalytic hydrogenation of benzoic acid (BA) to cyclohexanecarboxylic acid (CCA) at ambient temperature and pressure has been recognized as a promising alternative to thermal hydrogenation since water is required as the hydrogen source. So far, only a few Pt-based electrocatalysts have been developed in acidic electrolyte. To overcome the limitations of reactant solubility and catalyst corrosion, herein, carbon fiber-supported Ru electrocatalysts with abundant Ru/RuO2 heterojunctions were fabricated via cyclic electrodeposition between -0.8 and 1.1 V vs. Ag/AgCl. In an alkaline environment, a Ru/RuO2 catalyst achieves an excellent ECH reactivity in terms of high BA conversion (100%) and selectivity towards CCA (100%) within 180 min at a current density of 200/3 mA cm-2, showing exceptional reusability and long-term stability. 1-Cyclohexenecarboxylic acid (CEA) was identified as the reaction intermediate, whose the selectivity is governed by the applied potential. Kinetic studies demonstrate that ECH of BA over Ru/RuO2 follows a Langmuir-Hinshelwood (L-H) mechanism. In situ Raman spectroscopy and theoretical calculations reveal that the Ru/RuO2 interface enhances the adsorption strength of CEA, thereby facilitating the production of fully hydrogenated CCA. This work provides a deep understanding of the ECH pathway of BA in alkaline media, and gives a new methodology to fabricate heterostructure electrocatalysts.

13.
Biomaterials ; 305: 122460, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246018

RESUMO

Ex vivo patient-derived tumor slices (PDTS) are currently limited by short-term viability in culture. Here, we show how bioengineered hydrogels enable the identification of key matrix parameters that significantly enhance PDTS viability compared to conventional culture systems. As demonstrated using single-cell RNA sequencing and high-dimensional flow cytometry, hydrogel-embedded PDTS tightly preserved cancer, cancer-associated fibroblast, and various immune cell populations and subpopulations in the corresponding original tumor. Cell-cell communication networks within the tumor microenvironment, including immune checkpoint ligand-receptor interactions, were also maintained. Remarkably, our results from a co-clinical trial suggest hydrogel-embedded PDTS may predict sensitivity to immune checkpoint inhibitors (ICIs) in head and neck cancer patients. Further, we show how these longer term-cultured tumor explants uniquely enable the sampling and detection of temporal evolution in molecular readouts when treated with ICIs. By preserving the compositional heterogeneity and complexity of patient tumors, hydrogel-embedded PDTS provide a valuable tool to facilitate experiments targeting the tumor microenvironment.


Assuntos
Neoplasias de Cabeça e Pescoço , Hidrogéis , Humanos , Hidrogéis/farmacologia , Avaliação de Medicamentos , Microambiente Tumoral
14.
Artigo em Inglês | MEDLINE | ID: mdl-38261490

RESUMO

Mild cognitive impairment (MCI) is often at high risk of progression to Alzheimer's disease (AD). Existing works to identify the progressive MCI (pMCI) typically require MCI subtype labels, pMCI vs. stable MCI (sMCI), determined by whether or not an MCI patient will progress to AD after a long follow-up. However, prospectively acquiring MCI subtype data is time-consuming and resource-intensive; the resultant small datasets could lead to severe overfitting and difficulty in extracting discriminative information. Inspired by that various longitudinal biomarkers and cognitive measurements present an ordinal pathway on AD progression, we propose a novel Hybrid-granularity Ordinal PrototypE learning (HOPE) method to characterize AD ordinal progression for MCI progression prediction. First, HOPE learns an ordinal metric space that enables progression prediction by prototype comparison. Second, HOPE leverages a novel hybrid-granularity ordinal loss to learn the ordinal nature of AD via effectively integrating instance-to-instance ordinality, instance-to-class compactness, and class-to-class separation. Third, to make the prototype learning more stable, HOPE employs an exponential moving average strategy to learn the global prototypes of NC and AD dynamically. Experimental results on the internal ADNI and the external NACC datasets demonstrate the superiority of the proposed HOPE over existing state-of-the-art methods as well as its interpretability. Source code is made available at https://github.com/thibault-wch/HOPE-for-mild-cognitive-impairment.

15.
ACS Synth Biol ; 13(1): 370-383, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38194633

RESUMO

Nisin, with its unique mode of action and potent antimicrobial activity, serves as a remarkable inspiration for the design of novel antibiotics. However, peptides possess inherent weaknesses, particularly their susceptibility to proteolytic degradation, such as by trypsin, which limits their broader applications. This led us to speculate that natural variants of nisin produced by underexplored bacterial species can potentially overcome these limitations. We carried out genome mining of two Romboutsia sedimentorum strains, RC001 and RC002, leading to the discovery of rombocin A, which is a 25 amino acid residue short nisin variant that is predicted to have only four macrocycles compared to the known 31-35 amino acids long nisin variants with five macrocycles. Using the nisin-controlled expression system, we heterologously expressed fully modified and functional rombocin A in Lactococcus lactis and demonstrated its selective antimicrobial activity against Listeria monocytogenes. Rombocin A uses a dual mode of action involving lipid II binding activity and dissipation of the membrane potential to kill target bacteria. Stability tests confirmed its high stability at different pH values, temperatures, and in particular, against enzymatic degradation. With its gene-encoded characteristic, rombocin A is amenable to bioengineering to generate novel derivatives. Further mutation studies led to the identification of rombocin K, a mutant with enhanced bioactivity against L. monocytogenes. Our findings suggest that rombocin A and its bioengineered variant, rombocin K, are promising candidates for development as food preservatives or antibiotics against L. monocytogenes.


Assuntos
Lactococcus lactis , Listeria monocytogenes , Nisina , Nisina/genética , Nisina/farmacologia , Nisina/química , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Antibacterianos/metabolismo , Mutação , Lactococcus lactis/genética , Lactococcus lactis/metabolismo
16.
Small ; : e2308293, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282181

RESUMO

Zeolites have been widely applied as versatile catalysts, sorbents, and ion exchangers with unique porous structures showing molecular sieving capability. In these years, it is reported that some layered zeolites can be delaminated into molecularly thin 2-dimensional (2D) nanosheets characterized by inherent porous structures and highly exposed active sites. In the present study, two types of zeolite nanosheets with distinct porous structures with MWW topology (denoted mww) and ferrierite-related structure (denoted bifer) are deposited on a substrate through the solution process via electrostatic self-assembly. Alternate deposition of zeolite nanosheets with polycation under optimized conditions allows the layer-by-layer growth of their multilayer films with a stacking distance of 2-3 nm. Furthermore, various hierarchical structures defined at the unit-cell dimensions can be constructed simply by conducting the deposition of mww and bifer nanosheets in a designed sequence. Adsorption of a dye, Rhodamine B, in these films, is examined to show that adsorption is dependent on constituent zeolite nanosheets and their assembled nanostructures. This work has provided fundamental advancements in the fabrication of artificial zeolite-related hierarchical structures, which may be extended to other zeolite nanosheets, broadening their functionalities, applications, and benefits.

17.
J Infect Dis ; 229(1): 223-231, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37506257

RESUMO

BACKGROUND: The impact of metagenomic next-generation sequencing (mNGS) on antimicrobial stewardship in patients with lower respiratory tract infections (LRTIs) is still unknown. METHODS: This retrospective cohort study included patients who had LRTIs diagnosed and underwent bronchoalveolar lavage between September 2019 and December 2020. Patients who underwent both mNGS and conventional microbiologic tests were classified as the mNGS group, while those with conventional tests only were included as a control group. A 1:1 propensity score match for baseline variables was conducted, after which changes in antimicrobial stewardship between the 2 groups were assessed. RESULTS: A total of 681 patients who had an initial diagnosis of LRTIs and underwent bronchoalveolar lavage were evaluated; 306 patients were finally included, with 153 in each group. mNGS was associated with lower rates of antibiotic escalation than in the control group (adjusted odds ratio, 0.466 [95% confidence interval, .237-.919]; P = .02), but there was no association with antibiotic de-escalation. Compared with the control group, more patients discontinued the use of antivirals in the mNGS group. CONCLUSIONS: The use of mNGS was associated with lower rates of antibiotic escalation and may facilitate the cessation of antivirals, but not contribute to antibiotic de-escalation in patients with LRTIs.


Assuntos
Gestão de Antimicrobianos , Infecções Respiratórias , Humanos , Líquido da Lavagem Broncoalveolar , Estudos Retrospectivos , Sequenciamento de Nucleotídeos em Larga Escala , Infecções Respiratórias/tratamento farmacológico , Antibacterianos/uso terapêutico , Dimercaprol , Metagenômica , Antivirais , Sensibilidade e Especificidade
18.
Small ; 20(1): e2305161, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37641192

RESUMO

Single-atom catalysts (SACs) are promising cathode materials for addressing issues faced by lithium-sulfur batteries. Considering the ample chemical space of SACs, high-throughput calculations are efficient strategies for their rational design. However, the high throughput calculations are impeded by the time-consuming determination of the decomposition barrier (Eb ) of Li2 S. In this study, the effects of bond formation and breakage on the kinetics of SAC-catalyzed Li2 S decomposition with g-C3 N4 as the substrate are clarified. Furthermore, a new efficient and easily-obtained descriptor Li─S─Li angle (ALi─S─Li ) of adsorbed Li2 S, different from the widely accepted thermodynamic data for predicting Eb , which breaks the well-known Brønsted-Evans-Polanyi relationship, is identified. Under the guidance of ALi─S─Li , several superior SACs with d- and p-block metal centers supported by g-C3 N4 are screened to accelerate the sulfur redox reaction and fix the soluble lithium polysulfides. The newly identified descriptor of ALi─S─Li can be extended to rationally design SACs for Na─S batteries. This study opens a new pathway for tuning the performance of SACs to catalyze the decomposition of X2 S (X = Li, Na, and K) and thus accelerate the design of SACs for alkaline-chalcogenide batteries.

19.
Med Image Anal ; 91: 103032, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995628

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative disorders presenting irreversible progression of cognitive impairment. How to identify AD as early as possible is critical for intervention with potential preventive measures. Among various neuroimaging modalities used to diagnose AD, functional positron emission tomography (PET) has higher sensitivity than structural magnetic resonance imaging (MRI), but it is also costlier and often not available in many hospitals. How to leverage massive unpaired unlabeled PET to improve the diagnosis performance of AD from MRI becomes rather important. To address this challenge, this paper proposes a novel joint learning framework of unsupervised cross-modal synthesis and AD diagnosis by mining underlying shared modality information, improving the AD diagnosis from MRI while synthesizing more discriminative PET images. We mine underlying shared modality information in two aspects: diversifying modality information through the cross-modal synthesis network and locating critical diagnosis-related patterns through the AD diagnosis network. First, to diversify the modality information, we propose a novel unsupervised cross-modal synthesis network, which implements the inter-conversion between 3D PET and MRI in a single model modulated by the AdaIN module. Second, to locate shared critical diagnosis-related patterns, we propose an interpretable diagnosis network based on fully 2D convolutions, which takes either 3D synthesized PET or original MRI as input. Extensive experimental results on the ADNI dataset show that our framework can synthesize more realistic images, outperform the state-of-the-art AD diagnosis methods, and have better generalization on external AIBL and NACC datasets.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética/métodos , Aprendizagem , Disfunção Cognitiva/diagnóstico por imagem
20.
Nanoscale ; 16(2): 903-912, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38108145

RESUMO

Nanomedicines based on ferroptosis may be effective strategies for cancer therapy due to their unique inducing mechanism. However, the challenges, including non-target distribution, poor accumulation and retention of nanomedicine, have a profound impact on the effectiveness of drug delivery. Here, we developed cancer cell membrane (CCM)-coated Fe3O4 nanoparticles (NPs) modified with supramolecular precursors and loaded with sulfasalazine (SAS) for breast cancer therapy. Benefiting from the coating of the CCM, these NPs can be specifically recognized and internalized by tumor cells rapidly after being administered and form aggregates via the host-guest interaction between adamantane (ADA) and cyclodextrins (CD), which in turn effectively reduces the exocytosis of tumor cells and prolongs the retention time. In vitro and in vivo studies showed that Fe3O4 NPs possessed effective cellular uptake and precise specific accumulation in tumor cells and tissues through CCM-targeted supramolecular in situ aggregation, demonstrating enhanced ferroptosis-inducing therapy of breast cancer. Overall, this work provided a supramolecular biomimetic platform to achieve targeted delivery of Fe3O4 NPs with high efficiency and precise self-assembly for improved cancer therapy.


Assuntos
Neoplasias da Mama , Ferroptose , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Biomimética , Sistemas de Liberação de Medicamentos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA