Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(39): e2302330, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259262

RESUMO

Selective oxidation of biomass-based molecules to high-value chemicals in conjunction with hydrogen evolution reaction (HER) is an innovative photocatalysis strategy. The key challenge is to design bifunctional photocatalysts with suitable band structures, which can achieve highly efficient generation of high-value chemicals and hydrogen. Herein, NiS/Cd0.6 Zn0.4 S Schottky junction bifunctional catalysts are constructed for sunlight-driven catalytic vanillyl alcohol (VAL) selective oxidation towards vanillin (VN) coupling HER. At optimal conditions, the 8% NiS/Cd0.6 Zn0.4 S photocatalyst achieves high activity of VN production (3.75 mmol g-1 h-1 ) and HER (3.84 mmol g-1 h-1 ). It also exhibits remarkable VAL conversion (66.9%), VN yield (52.1%), and selectivity (77.8%). The photocatalytic oxidation of VAL proceeds a carbon-centered radical mechanism via the cleavage of αC-H bond. Experimental results and theoretical calculations show that NiS with metallic properties enhances the electron transfer capability. Importantly, a Ni-S-Cd "electron bridge" formed at the interface of NiS/Cd0.6 Zn0.4 S further improves the separation/transfer of electrone/h+ pairs and also furnishes HER active sites due to its smaller the |ΔGH* | value, thereby resulting in a remarkably HER activity. This work sheds new light on the selective catalytic oxidation VAL to VN coupling HER, with a new pathway towards achieving its efficient HER efficiency.

2.
J Hazard Mater ; 455: 131578, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172389

RESUMO

Developing a convenient, efficient and eco-friendly approach for the recovery of U(VI) ion is a key measure to solve the environmental problems arising from the utilization of nuclear energy. Herein, the high efficiency of uranium extraction is realized by the piezo property of perovskite BaTiO3, revealing the intrinsically morphological engineering effect on the piezocatalytic performance. Especially, BaTiO3 nanowires (BTO NWs) exhibit not only an excellent piezocatalytic activity with U(VI) extraction rate of 96.8% in a UO2(NO3)2 aqueous solution compared to 71.3% of BaTiO3 nanoparticles (BTO NPs), but also a promising piezocatalyst for U extraction in a real U-mining wastewater with various pH ranges. Piezo response force microscopy and finite elemental simulation show that the piezo response of BTO NWs is much higher than BTO NPs. Additionally, some factors (pH, various ions, different powers) are explored on piezocatalytic efficiency for U(VI) extraction. The results from electron spin resonance and the charge/radical capture experiments confirm that the active species (e-, •O2-, •OH) stemmed from the piezo induction of BTO NWs and BTO NPs in the piezocatalytic U(VI) reduction process. The present work reveals the structure-performance correlation during piezocatalysis and highlights the crucial role of piezocatalysis in dealing with environmental problems.

3.
Chem Commun (Camb) ; 59(26): 3866-3869, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36897090

RESUMO

Inspired by the design criteria of heteroditopic receptors for ion-pair binding, we herein describe a new strategy to construct a rotaxane transporter (RR[2]) for K+/Cl- co-transport. The use of a rigid axle improves the transport activity with an EC50 value of 0.58 µM, presenting a significant step toward developing rotaxane artificial channels.


Assuntos
Rotaxanos , Rotaxanos/química , Proteínas de Membrana Transportadoras , Lipídeos
4.
J Colloid Interface Sci ; 629(Pt A): 733-743, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36095901

RESUMO

The construction of composite materials is an effective strategy to solve the problems of poor conductivity, manganese dissolution, and volume expansion of manganese-based materials. Herein, a CeO2/MnOx@C hollow composite cathode derived from the self-assembly of Ce-Mn-metal-organic frameworks (Ce-Mn-MOFs) was synthesized. The abundant oxygen vacancies and good electronic/ionic conductivity of CeO2 improve the electrical conductivity of composite, enhancing the rate performance. The unique hollow structure could inhibit manganese dissolution and alleviate volume expansion. The results indicate that the 1 % CeO2/MnOx@C composite cathode possesses a high reversible capacity and excellent cycling stability. Specifically, the 1 % CeO2/MnOx@C composite cathode shows a remarkable reversible specific capacity of 130 mAh/g at a current density of 500 mA g-1, 6.5 times more than the pure MnOx (20 mAh/g). The capacity retention is up to 99.5 % relative to the initial capacity after 800 cycles. This study provides a new strategy for designing rare-earth composite electrodes to improve electrochemical performance.

5.
Front Plant Sci ; 13: 976646, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304404

RESUMO

To clarify the flow characteristics of open channels under the combined distribution of vegetation in a patch, this study used the computational fluid dynamics tool FLUENT and the Reynolds stress model to design four combined and four discrete distribution modes under two different inundation states (submerged and non-submerged). The flow characteristics of longitudinally discontinuous rigid vegetation patches occupying half the width of the channel were numerically simulated. The numerical model is verified by indoor open channel flume experiments, and the obtained model data is in good agreement with the measured data. The results showed that: 1) The diameter of vegetation is an important factor affecting the wake structure. Under the submerged condition. 2)The submerged state, distribution pattern and combination form of vegetation are important factors that affect the distribution of flow velocity and change the structure of water flow. That is, the influence of vegetation distribution pattern on flow velocity and turbulence intensity under submerged condition is significantly weaker than that under non-submerged condition, and the flow velocity in non-vegetation area is significantly higher than that in vegetation area. The increase in the combined vegetation comprehensive stem thickness and the discrete degree resulted in an increase in the difference in flow velocity and turbulence intensity. 3) As the water flowed downstream, the flow velocity along the vegetated area continuously decreased, while it increased continuously along the non-vegetated area, and the difference in flow velocity between the two areas became more apparent. 4) The inundation state and combination characteristics of vegetation were important factors affecting the Reynolds stress of the channel location in the patch area.

6.
J Colloid Interface Sci ; 628(Pt B): 446-455, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998467

RESUMO

Electrocatalytic urea oxidation reaction (UOR) is a prospective method to substitute the slow oxygen evolution reaction (OER) and solve the problem of urea-rich water pollution due to the low thermodynamic voltage, but its complex six-electron oxidation process greatly impedes the overall efficiency of electrolysis. Here, density functional theory (DFT) calculations imply that the metallic Ni3S2 and semiconductive MoS2 could form Mott-Schottky catalyst because of the suitable band structure. Therefore, we synthesized MoS2/Ni3S2 electrocatalyst by a simple hydrothermal method, and studied its UOR and hydrogen evolution reaction (HER) performance. The formed MoS2/Ni3S2 Schottky heterojunction is only required 109  and 166 mV to obtain ±10 mA cm-2 for UOR and HER, respectively, showing great bifunctional catalytic activity. Moreover, the full urea electrolysis driven by MoS2/Ni3S2 delivers 10 and 100 mA cm-2 at a relatively low potential of 1.44 and 1.59 V. Comprehensive experiments and DFT calculations demonstrate that the MoS2/Ni3S2 Schottky heterojunction causes self-driven charge transfer at the interface and forms built-in electric field, which is not only benefit to reduce H* adsorption energy, but also helps to adjust the absorption and directional distribution of urea molecules, thereby promoting the activity of decomposition of water and urea. This research furnishes a tactic to devise more efficient catalysts for H2 generation and the treatment of urea-rich water pollution.

7.
J Colloid Interface Sci ; 614: 298-309, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35101677

RESUMO

Carbon materials with rational pore structure have attracted tremendous attention in high-performance supercapacitor applications. However, designing and constructing such carbon materials with excellent performances via a simple and low-cost route is still a challenge. Herein, the nitrogen self-doped oxygen-rich hierarchical porous carbons (OTSx-PC) derived from coal tar pitch are constructed via a facile strategy of air pre-oxidation-activation. The air pre-oxidation treatment can effectively regulate the small-sized mesopore structure (2-4 nm) of samples. The optimal OTS350-PC sample exhibits a high specific capacitance of 298 F g-1 at 0.5 A g-1, and delivers a high energy density of 14.9 Wh kg-1 at a power density of 0.15 kW kg-1 with remarkable cycling stability in KOH aqueous electrolyte. This excellent electrochemical performance is attributed to its ultrahigh specific surface area (SSA, 2941 m2 g-1), huge total pore volume (Vt, 1.9 cm3 g-1), rational pore structure and reasonable heteroatom configuration, which ensure sufficient charge storage, rapid electrolyte ions diffusion, as well as the contributed pseudocapacitance. This research not only offers a facile route for high-value utilization of coal tar pitch but also provides the cost-effective and excellent porous carbons for supercapacitor with high performance.

8.
J Colloid Interface Sci ; 606(Pt 2): 1004-1013, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34487923

RESUMO

Designing and fabricating efficient electrocatalysts is a practical step toward the commercial application of the efficient hydrogen evolution reaction (HER) over all pH ranges. Herein, novel Ti@Ni(OH)2-NiMoS heterostructure with interface between crystalline Ni(OH)2 and amorphous NiMoS was rationally designed and fabricated on Ti mesh (denoted as Ti@Ni(OH)2-NiMoS). Acid etching and calcination experiments helped in accurate elucidation of the synergistic mechanism as well as the vital role on crystalline Ni(OH)2 and amorphous NiMoS. In acidic solutions, the HER performance of Ti@Ni(OH)2-NiMoS was mainly attributed to the amorphous NiMoS. In neutral, alkaline, and natural seawater solutions, the HER performance was mainly determined by the synergistic interface behaviors between the Ni(OH)2 and NiMoS. The crystalline Ni(OH)2 accelerated water dissociation kinetics, while the amorphous NiMoS provided abundant active sites and allowed for fast electron transfer rates. To deliver current densities of 10 mA·cm-2 in acidic, neutral, alkaline, and natural seawater solutions, the Ti@Ni(OH)2-NiMoS required overpotentials of 138, 198, 180 and 371 mV, respectively. This paper provides general guidelines for designing efficient electrocatalyst with crystalline/amorphous interfaces for efficient hydrogen evolution over all-pH ranges.

9.
J Surg Res ; 258: 314-323, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33317757

RESUMO

BACKGROUND: Breast cancer (BC) is common cancer in female globally. Sevoflurane (SEV) has been reported to inhibit the metastasis of multiple cancers, including glioma, colorectal cancer, and hepatocellular carcinoma. However, the role of SEV in the metastasis of BC cells remains poorly understood. METHODS: Transwell migration and invasion assays were performed to detect the migration and invasion of BC cells. Western blot assay was carried out to measure epithelial-mesenchymal transition (EMT)-related proteins in BC cells, including E-cadherin, N-cadherin, and fibronectin. Quantitative real-time polymerase chain reaction was conducted to determine the enrichment of miR-139-5p and ADP-ribosylation factor 6 (ARF6) in BC tissues and cells. The protein expression of ARF6 in BC tissues and cells was measured by western blot assay. The target of miR-139-5p was predicted by starBase software, and the target relationship between miR-139-5p and ARF6 in BC cells was confirmed by dual-luciferase reporter assay. RESULTS: SEV suppressed the migration, invasion, and EMT of BC cells, especially in the high-concentration SEV group. The level of miR-139-5p was lower in BC tissues and cells than that in paired normal tissues and normal mammary epithelial cells MCF-10A. MiR-139-5p was upregulated in BC cells treated with SEV. ARF6 was upregulated in BC tissues and cells compared with that in corresponding normal tissues and normal mammary epithelial cells MCF-10A. SEV reduced the mRNA and protein expression of ARF6 in BC cells. The accumulation of ARF6 or the interference of miR-139-5p reversed the suppressive effects of SEV treatment on the migration, invasion, and EMT of BC cells. MiR-139-5p bound to ARF6 and inversely modulated the level of ARF6 in BC cells. The transfection of si-ARF6 attenuated the promoting effects of miR-139-5p depletion on the migration, invasion, and EMT of BC cells treated with SEV. CONCLUSIONS: SEV suppressed the migration, invasion, and EMT of BC cells through downregulating the abundance of ARF6 by upregulating miR-139-5p. The miR-139-5p/ARF6 axis might be a promising target for the treatment of BC.


Assuntos
Anestésicos Inalatórios/farmacologia , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Sevoflurano/farmacologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Avaliação Pré-Clínica de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , MicroRNAs/metabolismo
10.
Archaea ; 2019: 5108012, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827386

RESUMO

Seagrass colonization alters sediment physicochemical properties by depositing seagrass fibers and releasing organic carbon and oxygen from the roots. How this seagrass colonization-induced spatial heterogeneity affects archaeal community structure and abundance remains unclear. In this study, we investigated archaeal abundance, diversity, and composition in both vegetated and adjacent bare surface sediments of a Zostera marina meadow. High-throughput sequencing of 16S rDNA showed that Woesearchaeota, Bathyarchaeota, and Thaumarchaeota were the most abundant phyla across all samples, accounting for approximately 42%, 21%, and 17% of the total archaeal communities, respectively. In terms of relative abundance, Woesearchaeota and Bathyarchaeota were not significantly different between these two niches; however, specific subclades (Woese-3, Woese-21, Bathy-6, Bathy-18) were significantly enriched in vegetated sediments (P < 0.05), while Thaumarchaeota was favored in unvegetated sites (P = 0.02). The quantification of archaeal 16S rRNA genes showed that the absolute abundance of the whole archaeal community, Bathyarchaeota, and Woese-3, Woese-10, Woese-13, and Woese-21 was significantly more abundant in vegetated sediments than in bare sediments (P < 0.05). Our study expands the available knowledge of the distribution patterns and niche preferences of archaea in seagrass systems, especially for the different subclades of Woesearchaeota and Bathyarchaeota, in terms of both relative proportions and absolute quantities.


Assuntos
Archaea/crescimento & desenvolvimento , Archaea/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiota , Zosteraceae/crescimento & desenvolvimento , Archaea/classificação , Archaea/genética , Biodiversidade , Genes Arqueais , Genes de RNAr , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA