Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Exp Parasitol ; 262: 108776, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38750807

RESUMO

Timely and accurate diagnosis of Schistosoma infection is important to adopt effective strategies for schistosomiasis control. Previously, we demonstrated that Schistosoma japonicum can secret extracellular vesicles and their cargos may serve as a novel type of biomarkers for diagnosing schistosomiasis. Here, we developed a Gaussia luciferase immunoprecipitation assay combined with S. japonicum extracellular vesicle (SjEV) protein to evaluate its potential for diagnosing schistosomiasis. A saposin-like protein (SjSLP) identified from SjEVs was fused to the Gaussia luciferase as the diagnostic antigen. The developed method showed good capability for detecting S. japonicum infection in mice and human patients. We also observed that the method could detect Schistosoma infection in mice as early as 7 days of post-infection, which showed better sensitivity than that of indirect ELISA method. Overall, the developed method showed a good potential for detecting Schistosoma infection particularly for early stage, which may provide an alternative strategy for identify Schistosoma infection for disease control.

2.
Parasitol Int ; 100: 102871, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403046

RESUMO

Blastocystis sp., Enterocytozoon bieneusi, and Giardia duodenalis are three common zoonotic intestinal parasites, and cattle are important hosts of these three intestinal protozoa. In this study, 1632 fecal samples were collected from dairy farms in Heilongjiang Province, China, and screened for Blastocystis sp., E. bieneusi, and G. duodenalis using polymerase chain reaction. Of these, 149 (9.13%) were positive for three zoonotic pathogens, including 104 (6.40%), 22 (1.35%), and 23 (1.41%) for Blastocystis sp., E. bieneusi, and G. duodenalis, respectively. Based on partial SSU rRNA gene sequencing analysis, 104 positive samples of Blastocystis sp. were found, and a total of nine known subtypes were identified, including ST10 (61), ST3 (18), ST14 (6), ST26 (7), ST24 (3), ST25 (2), ST1 (2), ST5 (2), and ST21 (1). Among these, three subtypes (ST1, ST3, and ST5) were recognized as zoonotic subtypes, and two subtypes (ST10 and ST14) were specific to animals. All 23 Giardia duodenalis-positive samples belonged to assemblage E (n = 23) based on sequenced beta-giardin (bg) and triosephosphate isomerase (tpi) genes. Three known genotypes of E. bieneusi, namely J (n = 9), I (n = 6), and BEB4 (n = 7), were identified by sequence analysis of the internal transcriptional spacer region gene. Our study provides basic data for prevention and control in Heilongjiang Province; however, further research is required to better understand the prevalence and public health significance of these pathogens in the Heilongjiang region.


Assuntos
Cryptosporidium , Enterocytozoon , Giardia lamblia , Giardíase , Microsporidiose , Animais , Bovinos , Giardia lamblia/genética , Giardíase/epidemiologia , Giardíase/veterinária , Giardíase/parasitologia , Enterocytozoon/genética , Microsporidiose/epidemiologia , Microsporidiose/veterinária , China/epidemiologia , Genótipo , Fezes/parasitologia , Prevalência , Cryptosporidium/genética
3.
Parasitol Res ; 123(1): 81, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165486

RESUMO

Cryptosporidium is an important gastrointestinal parasite that can cause mild to severe diarrhea in various vertebrates, including humans and domestic animals. Infection is prevalent in dairy cattle, particularly calves, resulting in diarrhea and increased mortality with significant production losses. However, the prevalence and identity of Cryptosporidium spp. in cattle in Heilongjiang Province is still poorly known. Our study aimed to investigate the prevalence and species and subtype distribution of Cryptosporidium in cattle in the region. In addition, we evaluated the zoonotic potential of Cryptosporidium isolates and assessed possible transmission routes and health effects of this organism. We collected 909 fecal samples from five different farms in Heilongjiang Province between August and September 2022. The samples underwent Cryptosporidium detection by nested PCR and small subunit (SSU) rRNA gene sequence analysis. Four Cryptosporidium species were identified, including C. parvum, C. bovis, C. ryanae, and C. andersoni, with an overall prevalence of 4.4% (40/909). Based on sequence analysis of the 60 kDa glycoprotein gene of C. parvum and C. bovis, three subtypes of C. parvum were identified, namely two previously known subtypes (IIdA19G1 and IIdA20G1), and one novel subtype (IIdA24G2). Two distinct subtype families were identified in C. bovis (XXVId and XXVIe). The high diversity of Cryptosporidium in dairy cattle and the emergence of a novel subtype of C. parvum in Heilongjiang Province suggest that dairy cattle may serve as a significant source of zoonotic cryptosporidiosis infection in this region.


Assuntos
Criptosporidiose , Cryptosporidium , Humanos , Bovinos , Animais , Cryptosporidium/genética , Criptosporidiose/epidemiologia , Zoonoses/epidemiologia , China/epidemiologia , Diarreia/epidemiologia , Diarreia/veterinária
4.
Parasitol Res ; 122(12): 2859-2870, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801131

RESUMO

Prosthogonimiasis poses a threat to the reproductive system of poultry and wild birds, which are the definitive hosts of the parasite causing this disease. However, the parasite infection of the second intermediate host (dragonfly), the primary vector of this pathogen, is rarely reported. In this study, the prevalence of Prosthogonimus infection in dragonflies was investigated from June 2019 to October 2022 in Heilongjiang Province, northeast China. The species of metacercariae isolated from dragonfly were identified by morphological characteristics, molecular biology techniques, and animal infection experiments. The results showed that 11 species of dragonflies and one damselfly were identified and among six of the dragonflies infected by Prosthogonimus metacercariae, Sympetrum depressiusculum (28.53%) had the highest infection rate among all positive dragonflies, followed by Sympetrum vulgatum (27.86%) and Sympetrum frequens (20.99%), which are preferred hosts, and the total prevalence was 20.39% (2061/10,110) in Heilongjiang Province. Three species of Prosthogoniumus metacercariae were isolated, including Prosthogonimus cuneatus, Prosthogonimus pullucidus, and Prosthogonimus sp., among which P. cuneatus was the dominant species in dragonflies in Heilongjiang Province. This is the first report on the prevalence of Prosthogonimus in dragonflies in China, which provides baseline data for the control of prosthogonimiasis in Heilongjiang Province and a reference for the prevention of prosthogonimiasis in other areas of China.


Assuntos
Odonatos , Trematódeos , Animais , Metacercárias , China/epidemiologia , Prevalência
5.
Animals (Basel) ; 13(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37238117

RESUMO

Fasciolosis is a significant zoonotic and common parasitic disease for animals and humans, creating public health concerns worldwide. This study retrieved articles related to the occurrence of Fasciola hepatica and Fasciola gigantica in sheep and goats in China by searching five databases: PubMed, ScienceDirect, the Chinese National Knowledge Infrastructure (CNKI), Wanfang Data, and the VIP Chinese Journal Database. A total of 60 valid articles were captured. The pooled prevalence of ovine and caprine fasciolosis was 26.00%. It was also found to be higher in the subgroups of Northwest China and Shaanxi Province, as well as in areas with a high altitude, rainfall of ≥800 mm, and temperature ranging between 10 °C and 20 °C. Analysis of the type of season and sampling years showed significant (p < 0.05) difference. In other subgroups, sheep (34.74%), hosts aged over 2 years (32.26%), females (48.33%) and free-range animals (26.83%) showed a higher disease prevalence. These results indicated that ovine and caprine fasciolosis was widely distributed, especially in Northwest China. The sampling years and the type of season are risk factors for the prevalence of ovine and caprine fasciolosis. Therefore, strategies for ovine and caprine fasciolosis control should be developed based on these epidemic risk factors, which will reduce the prevalence of fasciolosis in China.

6.
Parasitology ; 150(8): 661-671, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37051880

RESUMO

Trematodes of the genus Ogmocotyle are intestinal flukes that can infect a variety of definitive hosts, resulting in significant economic losses worldwide. However, there are few studies on molecular data of these trematodes. In this study, the mitochondrial (mt) genome of Ogmocotyle ailuri isolated from red panda (Ailurus fulgens) was determined and compared with those from Pronocephalata to investigate the mt genome content, genetic distance, gene rearrangements and phylogeny. The complete mt genome of O. ailuri is a typical closed circular molecule of 14 642 base pairs, comprising 12 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions. All genes are transcribed in the same direction. In addition, 23 intergenic spacers and 2 locations with gene overlaps were determined. Sequence identities and sliding window analysis indicated that cox1 is the most conserved gene among 12 PCGs in O. ailuri mt genome. The sequenced mt genomes of the 48 Plagiorchiida trematodes showed 5 types of gene arrangement based on all mt genome genes, with the gene arrangement of O. ailuri being type I. Phylogenetic analysis using concatenated amino acid sequences of 12 PCGs revealed that O. ailuri was closer to Ogmocotyle sikae than to Notocotylus intestinalis. These data enhance the Ogmocotyle mt genome database and provide molecular resources for further studies of Pronocephalata taxonomy, population genetics and systematics.


Assuntos
Ailuridae , Genoma Mitocondrial , Trematódeos , Infecções por Trematódeos , Filogenia , Trematódeos/classificação , Trematódeos/genética , Infecções por Trematódeos/veterinária , Animais
7.
Vet Parasitol ; 313: 109852, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36493508

RESUMO

Fasciolosis is a neglected zoonotic parasitic disease caused by liver flukes, Fasciola hepatica. F. hepatica is harmful to livestock and human health. However, changes in host metabolism caused by F. hepatica infection are unclear. An artificial sheep model was established as follows. The sheep in the infection group were fed with 220 metacercariae obtained by incubating F. hepatica miracidia with the intermediate host snail (Galba pervia). Thereafter, serum and blood were collected from these sheep periodically. Changes in 31 biochemical parameters were systematically tested over different periods of infection. Metabolomic analysis was performed based on liquid chromatography/mass spectrometry (LC-MS) technology using a UHPLC system. Differentially expressed metabolites were analyzed for biomarkers, and changes in the metabolic pathways of the host were evaluated. Ten biochemical parameters (TP, ALB, GLB, DBIL, IBIL, GGT, LDH, CHOL, HDL-C, and BUN) showed significant dynamic changes during the study period. For metabolomic analysis: 13, 27, and 82 differential metabolites (ESI+ mode) and 0, 37, and 83 differential metabolites (ESI- mode) were found on 7, 56, and 98 dpi, respectively. The number of different metabolic pathways increased with disease development. Five metabolites had the highest area under the curve (AUC) value as joint diagnostic factors, indicating their potential use as biomarkers for diagnosing F. hepatica infection. This study establishes the F. hepatica life cycle in an artificial model of sheep infected with F. hepatica to identify changes in metabolic pathways in the host due to infection. Biochemical parameters and metabolomic analysis revealed that not only the biomarkers screened by differentially expressed metabolites have the potential to diagnose F. hepatica infection in sheep, but the differential pathways and biochemical parameters also explain the metabolic pathway changes in the sheep infected with F. hepatica. F. hepatica absorbs the nutrients of the host and destroys the essential metabolic pathways of the host. This result suggests that animal metabolism can be altered in the host as a response to parasitic infections such as F. hepatica. In addition, this finding will provide the basis for studying the pathogenic mechanisms and biomarkers for F. hepatica infection.


Assuntos
Fasciola hepatica , Fasciolíase , Doenças dos Ovinos , Humanos , Ovinos , Animais , Doenças dos Ovinos/parasitologia , Fasciolíase/parasitologia , Fasciolíase/veterinária , Gado , Biomarcadores
8.
Animals (Basel) ; 12(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496758

RESUMO

Ticks carry and transmit a variety of pathogens, which are very harmful to humans and animals. To characterize the microbial interactions in ticks, we analysed the microbiota of the hard ticks, Dermacentor silvarum, Ixodes persulcatus, and Haemaphysalis concinna, using 16S rRNA, showing that microbial interactions are underappreciated in terms of shaping arthropod microbiomes. The results show that the bacterial richness and microbiota structures of these three tick species had significant differences. Interestingly, the bacterial richness (Chao1 index) of all ticks decreased significantly after they became engorged. All the operational taxonomic units (OTUs) were assigned to 26 phyla, 67 classes, 159 orders, 279 families, and 627 genera. Microbial interactions in D. silvarum demonstrated more connections than in I. persulcatus and H. concinna. Bacteria with a high abundance were not important families in microbial interactions. Positive interactions of Bacteroidaceae and F_Solibacteraceae Subgroup 3 with other bacterial families were detected in all nine groups of ticks. This study provides an overview of the microbiota structure and interactions of three tick species and improves our understanding of the role of the microbiota in tick physiology and vector capacity, thus being conducive to providing basic data for the prevention of ticks and tick-borne diseases.

9.
Tissue Eng Part C Methods ; 28(11): 589-598, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36066337

RESUMO

Objective: The effectiveness of tissue engineering materials combining porcine small intestine submucosa (SIS) and umbilical cord mesenchymal stem cells (UC-MSCs) on uterine injury in female rat after full-thickness uterine resection was evaluated as a basis for clinical treatment of postoperative uterine injury. Methods: After complex culture with SIS and UC-MSCs, cell adhesion, growth, and proliferation were assessed. Before the implantation, a surgical procedure of bilateral full-thickness uterine resection (0.5-2.0 cm long and 0.3 cm wide) was performed to obtain the rat uterine injury model, while the sham-operated rats were used as controls. Hematoxylin-eosin (H&E) staining results and fertility of female rats in each group were assessed to determine the critical resection length of the full-thickness uterine resection. Then SIS or UC-MSCs-SIS were implanted into the female rats from the uterine injury group, followed by assessments of H&E staining, the expression of ki67, α-SMA, and leukemia inhibitory factor (LIF), and fertility to determine the effectiveness of SIS and UC-MSCs-SIS on uterine injury in female rat. Results: At 24, 48, and 72 h, the cells grew progressively on the SIS material. In the 1.5 cm and 2.0 cm groups, the pregnancy rate, proportion of the uterus supporting live embryo growth, number of live embryos, and proportion of live embryos were all significantly less than those in the 0.5 cm and sham-operated groups. In the 2.0 cm group, there was little tissue regeneration at the center of the injury and not conducive to subsequent assessment. The UC-MSCs-SIS and SIS groups were better on morphological development, cell proliferation, LIF expression, and fertility than the control group. Conclusions: UC-MSCs show good adhesion, growth, and proliferation on the SIS scaffold material. The optimal resection length in full-thickness uterine resection on female rat is 1.5 cm. UC-MSCs-SIS is the effective treatment for repairing a injury after the full-thickness resection of the uterus in this research. Impact Statement The acquired severe uterus injury is a serious condition, which prone to uterine adhesions. Postoperative endometrial repairment and prevention of intrauterine adhesion recurrence are two major clinical challenges. Fortunately, the development of tissue engineering technology makes repairing a uterine injury possible. There are two main contributions from this study. First, due to ethical requirements, it is difficult to assess the repairing effect on uterus by invasive experiments in a clinical practice. Therefore, we constructed a full-thickness uterine injury rat model, which allows us to assess the repairing effect of treatments after severe uterine injuries in vivo. Second, it explored the effect of using a combination of and umbilical cord mesenchymal stem cells and small intestine submucosa materials on improving uterine repairments, providing a potential possibility for a future clinical practice.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Feminino , Gravidez , Ratos , Endométrio/metabolismo , Suínos , Cordão Umbilical , Útero/lesões , Útero/metabolismo
10.
Biomed Res Int ; 2022: 8287163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060134

RESUMO

Objective: To investigate the feasibility and effectiveness of an alginate-based gastric mucosal protective gel on the gastric ulcer. Methods: (1) In the physical protection model, after GES-1 cell attachment add the gel to transwell chamber, add different concentrations of HCl to the gel. Absorbance was measured to assess proliferation and images of the cells migrating into the wound were taken; then the migration rate of the cells was quantified by comparing images. (2) In the gastric ulcer model, excise the gastric mucosal of SD rats; the gel and fixative were applied on the artificial ulcer immediately. Dissect rats after 10 days, and calculate the wound healing rate and analyzed histology changes. Results: The effect of hydrochloric acid on cells in the lower layer was significantly reduced after the use of gastric mucosal protection gel. The protective gel had an isolation effect on different concentrations of acid. A number of GES-1 were significantly higher than those in the control group at 24 h to 72 h (P < 0.01). The migration was observed compared with the control group. The average healing rate of ulcer in the gel group was about 50%, and the control group was about 30%. Inflammation occurred in all wound regions after ten days. In the gel group, inflammatory infiltration depth was lower than that of the control, and part of SD rats' new muscle layer appeared without inflammatory infiltration. The connective tissue proliferation promoted tissue repair. In the control group, necrosis marginal, mucosal hyperplasia, marginal lymphocyte aggregation, and bleeding were observed. Conclusion: This novel gel mainly has an isolating and shielding effect to prevent the wound from being exposed to gastric acid for a long time, and it can reduce the inflammatory reaction on the wounds to promote the healing of the ulcer. The gastric mucosal protective gel cannot only promote the speed of wound healing but also improve the quality of wound healing.


Assuntos
Úlcera Gástrica , Alginatos/farmacologia , Animais , Mucosa Gástrica/patologia , Ratos , Ratos Sprague-Dawley , Úlcera Gástrica/patologia , Úlcera/patologia
11.
Int J Parasitol Parasites Wildl ; 19: 9-17, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35991946

RESUMO

Diplodiscus japonicus and Diplodiscus mehari (Trematoda: Diplodiscidae) are two important parasites in wood frogs, which have large infection rates and essential importance of ecology, economy and society. In this study, the complete mitochondrial (mt) genomes of D. japonicus and D. mehari were sequenced, then compared with other related trematodes in the superfamily Paramphistomoidea. The complete circular mt sequence of D. japonicus and D. mehari were 14,210 bp and 14,179 bp in length, respectively. Both mt genomes comprised 36 functional subunits, consisting of 12 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and one non-coding region. The mt genes of D. japonicus and D. mehari were transcribed in the same direction, and the gene arrangements were identical to those of Paramphistomoidea trematodes. In the 12 PCGs, GTG was the most common initiation codon, whereas TAG was the most common termination codon. All tRNAs had a typical cloverleaf structure except tRNA Ser1. A comparison with related Paramphistomoidea trematode mt genomes suggested that the cox1 gene of D. mehari was the longest in these trematodes. Phylogenetic analyses revealed that Paramphistomoidea trematodes formed a monophyletic branch, Paramphistomidae and Gastrothylacidae were more closely related than Diplodiscidae. And the further analysis with Pronocephalata branch found that the flukes parasitic in amphibians (frogs) formed one group, and the flukes from ruminants (cattle, sheep, ect) formed another group. Our study demonstrated the importance of sequencing mt genomes of D. japonicus and D. mehari, which will provide significant molecular resources for further studies of Paramphistomoidea taxonomy, population genetics and systematics.

12.
Vet Parasitol ; 309: 109767, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35901606

RESUMO

Bromodomain (BRD) is a highly conserved structural module domain, found in various proteins, including chromatin-related proteins, nucleus acetyltransferases, and transcription-associated proteins. Toxoplasma gondii, a zoonotic protozoan, encodes at least 12 predicted BRD-containing proteins (BDPs). Here, we investigated the subcellular location and regulatory role of a hypothetical protein BDP that we named TgBDP5. The BRD of TgBDP5 did not contain the conserved Asn and Tyr residues required for acetyl-lysine recognition. TgBDP5 localized in the nucleus of the parasite and remained unchanged during parasite replication. Conditional ablation of TgBDP5 through an auxin-inducible degron-based knockdown strategy caused a growth defect in parasite replication. Depletion of TgBDP5 led to changes in the expression level of 179 genes, suggesting it as an important target for drugs acting against T. gondii.


Assuntos
Parasitos , Toxoplasma , Animais , Parasitos/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo
13.
Animals (Basel) ; 12(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35739907

RESUMO

Cylicocyclus elongatus (C. elongatus) is one of the species in Cylicocyclus, subfamily Cyathostominae, but its taxonomic status in Cylicocyclus is controversial. Mitochondrial (mt) genome is an excellent gene marker which could be used to address the taxonomy controversy. In the present study, the complete mt genome of C. elongatus was determined, and sequence and phylogenetic analyses were performed based on mtDNA data to determine the classification of C. elongatus. The circular complete mt genome of C.elongatus was 13875 bp in size, containing 12 protein-coding genes (12 PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and 2 non-coding regions (NCRs). The A + T content of C. elongatus complete mt genome was 76.64%. There were 19 intergenic spacers with lengths of 2-53 bp and 2 overlaps with lengths of 1-2 bp in the impact complete mt genome. ATT and TAA were the most common start and termination codons of 12 PCGs, respectively. Comparative analyses of mt genomes nucleotide sequence and amino acid sequence showed that there were higher identities between C. elongatus and five other Cylicocyclus, rather than with P. imparidentatum. Phylogenetic analyses based on concatenated nucleotide sequences of 12 PCGs of 23 species in the family Strongylidae showed that C. elongatus was closely related to Cylicocyclus species, rather than P. imparidentatum. We concluded that C. elongatus was a member in Cylicocyclus based on comparative and phylogenetic analyses of mt genome sequences. The data of the complete mt genome sequence of C. elongatus provide a new and useful genetic marker for further research on Cyathostominae nematodes.

14.
Infect Genet Evol ; 102: 105311, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35640863

RESUMO

Culicidae, the mosquito family, includes more than 3600 species subdivided into the subfamilies Anophelinae and Culicinae. One-third of mosquitoes belong to the Aedini tribe, which is subordinate to the subfamily Culicinae, which comprises common vectors of viral zoonoses. The tribe of Aedini is extremely diverse in morphology and geographical distribution and has high ecological and medical significance. However, knowledge about the systematics of the Aedini tribe is still limited owing to its large population and the similar morphological characteristics of its species. This study provides the first description of the complete mitochondrial (mt) genome sequence of Aedes vexans and Ochlerotatus caspius belonging to the Aedini tribe. The mt genomes of A. vexans and O. caspius are circular molecules that are 15,861 bp and 15,954 bp in size, with AT contents of 78.54% and 79.36%, respectively. Both the circular mt genomes comprise 37 functional subunits, including 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 transfer RNA genes (tRNAs), and a control region (also known as the AT-rich region). The most common start codons are ATT/ATG, apart from cox1 (TCG) and nad5 (GTG), while TAA is the termination codon for all PCGs. All tRNAs have a typical clover leaf structure, except tRNA Ser1. Phylogenetic analysis of the concatenated, aligned amino acid sequences of the 13 PCGs showed that A. vexans gathered with Aedes sp. in a sister taxon, and O. caspius gathered with Ochlerotatus sp. in a sister taxon. The findings from the present study support the concept of monophyly of all groups, ratify the current taxonomic classification, and provide vital molecular marker resources for further studies of the taxonomy, population genetics, and systematics of the Aedini tribe.


Assuntos
Aedes , Culicidae , Genoma Mitocondrial , Ochlerotatus , Aedes/anatomia & histologia , Animais , Culicidae/anatomia & histologia , Mosquitos Vetores/genética , Ochlerotatus/genética , Filogenia
15.
Parasit Vectors ; 15(1): 172, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590378

RESUMO

BACKGROUND: Clonorchiasis, an infectious disease caused by the liver fluke Clonorchis sinensis, may lead to the development of liver and gallbladder diseases, and even cholangiocarcinoma (CCA). However, the pathogenesis, host-pathogen interaction, and diagnostic markers for clonorchiasis remain unclear. METHODS: Eighteen rabbits were randomly divided into control group (n = 9) and C. sinensis-infected group (n = 9), and their plasma samples were collected at 7, 14, 28, and 63 days post-infection (dpi). Biochemical indices and metabolites in different infection periods were detected. A non-targeted ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) approach was employed to investigate the metabolic profiles of plasma in rabbits, and related metabolic pathways of differential metabolites and correlation between candidate biochemical indices and differential metabolites were analyzed. Finally, the candidate biomarkers were verified with human samples using a targeted metabolomics method. RESULTS: The result of biochemical indices indicated C. sinensis infection would affect the liver function biochemical indices, especially alanine aminotransferase, aspartate transaminase (AST), glutamyl transpeptidase (GGT), total bile acid, high-density lipoprotein, and cholinesterase. The metabonomic results showed that 58, 212, 23, and 21 differential metabolites were identified in different phases of the infection. Multivariate statistical analysis of differential metabolites revealed distinct metabolic signatures during different phases of infection, with most of these signatures being observed at 14 dpi, which mainly influences the amino acid metabolisms. For metabolites and biochemical indices, AST, GGT, hypoxanthine, L-pipecolic acid, and D-glucuronate represented potential noninvasive biomarkers for the diagnosis of C. sinensis (P < 0.05 and AUC > 0.8). Furthermore, GGT and D-glucuronate levels were positively correlated with the infection (r(28) = 0.98, P < 0.0001) and showed excellent diagnostic performance (AUC = 0.972; 95% confidence interval, 0.921 to 1.000). CONCLUSIONS: The present results provide new insights into plasma metabolic changes in rabbits during C. sinensis infection, and the potential biomarker may be used for developing an effective method to diagnose clonorchiasis in the future.


Assuntos
Neoplasias dos Ductos Biliares , Clonorquíase , Clonorchis sinensis , Animais , Ductos Biliares Intra-Hepáticos , Biomarcadores , Cromatografia Líquida , Clonorquíase/diagnóstico , Glucuronatos , Metabolômica , Coelhos , Espectrometria de Massas em Tandem
16.
Acta Trop ; 232: 106469, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35430263

RESUMO

Prosthogonimus cuneatus and Prosthogonimus pellucidus (Trematoda: Prosthogonimidae) are common flukes of poultry and other birds which can cause severe impacts on animal health and losses to the poultry industry. However, there are limited studies on the molecular epidemiology, population genetics, and systematics of Prosthogonimus species. In the present study, the complete mitochondrial (mt) genomes of P. cuneatus and P. pellucidus were determined to be 14,829 bp and 15,013 bp in length, respectively. Both mt genomes contain 12 protein-coding genes (PCGs) (cox1-3, nad1-6, nad4L, cytb, and atp6), 22 transfer RNA genes, two ribosomal RNA genes, and one non-coding region. Our comparative analysis shows that the atp6 genes of P. cuneatus and P. pellucidus are longer than any previously published atp6 genes of other trematodes. The lengths of the atp6 genes of P. cuneatus and P. pellucidus in this study seem unusual, and should therefore be studied further. The mt genes of P. cuneatus and P. pellucidus are transcribed in the same direction, and the gene arrangements are identical to those of Plagiorchis maculosus, Tamerlania zarudnyi, and Tanaisia sp., but different from those of Eurytrema pancreaticum, Dicrocoelium chinensis, and Brachycladium goliath. The mt genome A + T contents of P. cuneatus and P. pellucidus are 64.47% and 65.34%, respectively. In the 12 PCGs, ATG is the most common initiation codon, whereas TAG is the most common termination codon. The sequence identity of the same 12 PCGs among the eight trematodes (P. cuneatus, P. pellucidus, Pl. maculosus, D. chinensis, E. pancreaticum, B. goliath, T. zarudnyi, Tanaisia sp.) of Xiphidiata are 55.5%-81.7% at the nucleotide level and 43.9%-82.5% at the amino acid level. The nucleotide similarities among the complete mt genomes of the eight trematodes range from 54.1%-81.5%. Phylogenetic analysis based on the aligned concatenated amino acid sequences of the 12 PCGs shows that P. cuneatus and P. pellucidus cluster together and are sister to T. zarudnyi and Tanaisia sp., and this clade is more closely related to E. pancreaticum, Dicrocoelium spp. and Lyperosomum longicauda in the family Dicrocoeliidae, than it is to species in the families Plagiorchiidae and Brachycladiidae. These are the first reported complete mt genomes of Prosthogonimidae, and these data will provide additional molecular resources for further studies of Prosthogonimidae taxonomy, population genetics, and systematics.


Assuntos
Genoma Mitocondrial , Trematódeos , Animais , Genes Mitocondriais , Nucleotídeos , Filogenia , Análise de Sequência de DNA , Trematódeos/genética
17.
Parasitol Int ; 88: 102555, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35131471

RESUMO

Fascioliasis is a foodborne zoonotic disease generally caused by the parasitic flukes Fasciola gigantica and Fasciola hepatica in class Trematoda. An "intermediate" Fasciola forms between F. gigantica and F. hepatica has been shown to exist. However, the relationships among F. gigantica, F. hepatica, and "intermediate" Fasciola forms remain unclear. In this study, we found five new polymorphic positions in 18S and 28S rDNAs sequences of "intermediate" Fasciola forms. According to the high-throughput sequencing results, all known 16 polymorphic positions of "intermediate" Fasciola forms show a clear and consistent tendency for F. gigantica or F. hepatica, and the percentages of the most frequently occurring bases were different in specimens. In the three ITS sequence fragments, hybrid-type base combinations of the polymorphic positions were detected, and the percentages of the most frequent base combinations were different in specimens too. In addition, interestingly, the newly detected ITS-802 position was not a traditional polymorphic position in "intermediate" Fasciola forms, and the bases in ITS-802 position are not same as the allele bases of F. gigantica or F. hepatica. Our results will be helpful to investigations into the molecular taxonomy, population genetics, and ecology of F. gigantica, F. hepatica, and "intermediate" Fasciola forms.


Assuntos
Fasciola hepatica , Fasciola , Fasciolíase , Animais , DNA Ribossômico , Fasciola/genética , Fasciola hepatica/genética , Fasciolíase/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala
18.
Int J Parasitol Parasites Wildl ; 17: 35-42, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34976723

RESUMO

Tetrameres grusi is a significant parasitic nematode of cranes that is classified into suborder Spirurina. However, for more than a century, this classification has been controversial. Mitochondrial genomes are valuable resources for parasite taxonomy, population genetics and systematics studies. Here, the mitochondrial genome of T. grusi was determined and subsequently compared with those from Spirurina species using concatenated datasets of amino acid sequences predicted from mitochondrial protein-coding genes. The complete mitochondrial genome of T. grusi is circular with 13,709 bp, and it contains 12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and one non-coding region. All of the protein-coding genes are transcribed in the same direction. There were 18 intergenic spacers of 1-44 bp, and six locations with gene overlaps, ranging from 1 bp to 28 bp, in the mitochondrial genome of T. grusi. The AT content of this mitochondrial genome was 71.56%. This was similar to mitochondrial genomes of other Spirurina species, which also exhibited strong AT content bias, not only in the nucleotide composition but also in codon usage. The sequenced mitogenomes of the 25 Spirurina nematodes showed three classes of gene arrangements based on the 12 protein-coding genes, and the gene arrangement of the T. grusi mitochondrial genome belonged to the Class I. Phylogenetic analyses using mitochondrial genomes of 25 Spirurina nematodes revealed that T. grusi (Habronematoidea) was closer to Gongylonema pulchrum (Spiruroidea) than Spirocerca lupi (Thelazioidea). The availability of the complete mitochondrial genome sequence of T. grusi provides new and useful genetic markers for further studies on Spirurina nematodes.

19.
Microb Pathog ; 162: 105369, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34952152

RESUMO

Theileria, one of the causative agents of blood protozoan, has brought a huge economic loss to the cattle industry worldwide. However, the epidemiology of Theileria in Chinese cattle has not been systematically investigated. This comprehensive review aimed at investigating the prevalence of Theileria infection in cattle in China. A total of 48 published papers on Theileria infection in cattle in China (including data from 21,366 animals) from inception to October 8, 2021 met the inclusion standard after searching in five databases (Technology Periodical Database, Wan Fang Database, China National Knowledge Infrastructure, PubMed, and ScienceDirect). The pooled prevalence of Theileria in cattle in China was 32.4% identified by using a random effects model. The prevalence in Northeastern China (45.3%) was higher than that in other regions. In the sex subgroup, the prevalence of Theileria was higher in females (48.9%) than that in males (45.8%). The prevalence of Theileria was higher in cattle of free range (34.4%) compared with that of intensive farming (22.3%). The prevalence prior to 2013 (36.1%) was higher than that after 2013 (33.6%). Among three cattle species, dairy cows had the lowest prevalence (21.5%). The prevalence of Theileria (T.) annulata (22.2%) and T. sergenti (26.2%) was higher than other species of Theileria (T. buffeli: 17.5%, T. luwenshuni: 0.9%, T. orientalis: 15.5%, T. ovis: 0.21%, T. sinensis: 20.2%, T. uilenbergi: 6.2%, Others: 0.9%). We also analyzed the impact of different geographic factor subgroups (longitude, latitude, precipitation, temperature, humidity, and altitude) on the prevalence of Theileria in cattle. Among them, climatic factors of longitude, latitude, precipitation, humidity, temperature were associated with the prevalence of Theileria. These analyses suggested that Theileria was common in cattle in China. Targeted prevention programs based on geographic and climatic conditions in different areas may play an important role in reducing Theileria infection among cattle.


Assuntos
Doenças dos Bovinos , Theileria , Theileriose , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , China/epidemiologia , Feminino , Masculino , Prevalência , Ovinos , Theileriose/epidemiologia
20.
Front Cell Infect Microbiol ; 11: 783662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926326

RESUMO

Metorchis orientalis is a neglected zoonotic parasite of the gallbladder and bile duct of poultry, mammals, and humans. It has been widely reported in Asian, including China, Japanese, and Korea, where it is a potential threat to public health. Despite its significance as an animal and human pathogen, there are few published transcriptomic and proteomics data available. Transcriptome Illumina RNA sequencing and label-free protein quantification were performed to compare the gene and protein expression of adult and metacercariae-stage M. orientalis, resulting in 100,234 unigenes and 3,530 proteins. Of these, 13,823 differentially expressed genes and 1,445 differentially expressed proteins were identified in adult versus metacercariae. In total, 570 genes were differentially expressed consistent with the mRNA and protein level in the adult versus metacercariae stage. Differential gene transcription analyses revealed 34,228 genes to be expressed in both stages, whereas 66,006 genes showed stage-specific expression. Compared with adults, the metacercariae stage was highly transcriptional. GO and KEGG analyses based on transcriptome and proteome revealed numerous up-regulated genes in adult M. orientalis related to microtubule-based processes, microtubule motor activity, and nucleocytoplasmic transport. The up-regulated genes in metacercariae M. orientalis were mainly related to transmembrane receptor protein serine/threonine kinase activity, transmembrane receptor protein serine/threonine kinase signaling pathway. Transcriptome and proteome comparative analyses showed numerous up-regulated genes in adult stage were mainly enriched in actin filament capping, spectrin, and glucose metabolic process, while up-regulated genes in metacercariae stage were mainly related to cilium assembly, cilium movement, and motile cilium. These results highlight changes in protein and gene functions during the development of metacercariae into adults, and provided evidence for the mechanisms involved in morphological and metabolic changes at both the protein and gene levels. Interestingly, many genes had been proved associated with liver fibrosis and carcinogenic factors were identified highly expressed in adult M. orientalis, which suggests that M. orientalis is a neglected trematode with potential carcinogenic implications. These data provide attractive targets for the development of therapeutic or diagnostic interventions for controlling M. orientalis.


Assuntos
Doenças dos Peixes , Trematódeos , Animais , Carcinógenos , Peixes , Perfilação da Expressão Gênica , Humanos , Proteômica , Transcriptoma , Trematódeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA