RESUMO
OBJECTIVES: Soil fauna plays a crucial role in contributing to litter breakdown, accelerating the decomposition rate and enhancing the biogeochemical cycle in terrestrial ecosystems. Comprehending the specific fauna role of functional species in litter decomposition is challenging due to their vast numbers and diversity. Climate and litter quality are widely acknowledged as dominant drives of litter decomposition across large spatial scales. However, the pattern of climate and litter quality modulates the effect of soil fauna on litter decomposition remains largely unexplored. To address this gap, we conducted an extensive analysis using data from 81 studies to investigate how climate and litter traits affects soil fauna in the decomposition. DATA DESCRIPTION: The paper describes fauna body size, climate zones (tropical, subtropical and temperate), ecosystem types (forest, grassland, wetland and farmland), soil types (sand, loam and clay), decomposed duration (< 180, 180-360, > 360 days), litter initial traits, average annual temperature and precipitation. The litter traits encompass various parameters such as concentrations of carbon, nitrogen, phosphorus, potassium, lignin, cellulose, total phenol, condensed tannin, hydrolysable tannin and other nutrient traits. These comprehensive datasets provide valuable insights into the role of soil fauna on the decomposition at global scale. Furthermore, the data will give researchers keys to assess how climate, litter quality and soil fauna interact to determine decomposition rates.
Assuntos
Ecossistema , Solo , Solo/química , Folhas de Planta/metabolismo , Clima , TemperaturaRESUMO
Climate change and land-use disturbances are supposed to have severely affected the degraded alpine grasslands on the Tibetan Plateau. Artificial grassland establishment has been implemented as a restoration tool against grassland degradation. However, the impact of such degradation and restoration processes on soil microbial communities and soil quality is not clearly understood. Here, we aim to investigate how the dynamics of microbial community and soil quality of alpine grasslands respond to a gradient of degradation and that of restoration, respectively. We conducted a randomised experiment with four degradation stages (light, moderate, heavy, and extreme degradation) and three restoration stages (artificial restoration for 1, 5, and 10 years). We analysed the abundance and diversity of soil bacteria and fungi, and measured soil nutrients, enzymatic activity and microbial biomass. The concentration of soil nitrogen (TN), soil organic matter (OM) in heavy degraded grassland decreased significantly by 37.4 and 45.08% compared with that in light degraded grassland. TN and OM in 10-years restored grassland also increased significantly by 33.10 and 30.42% compared to that in 1-year restored grassland. Four soil enzymatic activity indicators related to microbial biomass decreased with degradation gradient and increased with recovery time (i.e., restoration gradient). Both bacterial and fungal community structure was significantly different among grassland degradation or restoration successional stages. The LEfSe analysis revealed that 29 fungal clades and 9 bacterial clades were susceptible to degraded succession, while16 fungal clades and 5 bacterial clades were susceptible to restoration succession. We conclude that soil quality (TN, OM, and enzymatic activity) deteriorated significantly in heavy degraded alpine grassland. Soil microbial community structure of alpine is profoundly impacted by both degradation and restoration processes, fungal communities are more sensitive to grassland succession than bacterial communities. Artificial grasslands can be used as an effective method of restoring degraded grassland, but the soil functions of artificial grassland, even after 10 years of recovery, cannot be restored to the original state of alpine grassland.
RESUMO
Poa pratensis is a perennial turfgrass used worldwide. However, shortage of irrigation and drought induced by climate change adversely affect plant growth and turf quality. Cuticular wax covers plant aerial parts and plays important roles in decreasing plant water loss under drought-stressed conditions. Previous research proposed two candidate genes that were involved in wax very-long-chain alkane biosynthesis based on the transcriptome of Poa pratensis leaf. Here, one of the candidate genes, PpCER1-2 was further characterized. A subcellular localization study revealed that PpCER1-2 was localized on the endoplasmic reticulum. The expression of PpCER1-2 could be induced by drought and salt stresses. Overexpression of PpCER1-2 in Brachypodium distachyon increased the alkane amount, whereas decreased the amounts of primary alcohols and total wax. The relative abundance of C25 and C27 alkane and C26 aldehyde increased significantly, but the relative abundance of C29 and C31 alkane and C28 aldehyde decreased. Meanwhile, PpCER1-2 overexpression lines exhibited reduced cuticle permeability and enhanced drought tolerance. These results suggested that PpCER1-2 relatively promoted alkane biosynthesis by converting more very long chain fatty acids precursors into the decarbonylation pathway from the acyl-reduction pathway. Taken together, our data suggest that PpCER1-2 is involved in wax alkane biosynthesis in P. pratensis and plays important roles in improving plant drought tolerance.
Assuntos
Alcanos , Secas , Poa , Estresse Fisiológico , Ceras , Alcanos/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poa/genética , Poa/metabolismo , Estresse Fisiológico/genética , Ceras/metabolismoRESUMO
Six perennial herbs (Plantago asiatica, Polygonum viviparum, Anaphalis lactea, Kobresia humilis, Leontopodium nanum and Potentilla chinensis) widely distributed in alpine meadows were reciprocally transplanted at two sites in eastern edge of Qinghai-Tibetan Plateau, Hongyuan (3434 m, 2.97 °C, 911 mm) and Qilian (3701 m, 2.52 °C, 472 mm), aiming to evaluate the responses of alpine plants to changing environments. When plants were transplanted from Hongyuan to Qilian, most plant species showed a decrease of total wax coverage in first year and reverse trend was observed for some plant species in second year. However, when plants were transplanted from Qilian to Hongyuan, the response of total wax coverage differed greatly between plant species. When compared with those in first year, plasticity index of average chain length of alkane decreased whereas carbon preference index of alkane increased at both Hongyuan and Qilian in second year. The total wax coverage differed between local and transplanted plants, suggesting both environmental and genetic factors controlled the wax depositions. Structural equation modeling indicated that co-variations existed between leaf cuticular waxes and leaf functional traits. These results suggest that alpine herbs adjust both wax depositions and chain length distributions to adapt to changing environment, showing climate adaptations.
RESUMO
BACKGROUND: Fertilization as one of the measures in restoring degraded soil qualities has been introduced on arid steppes in recent decades. However, the fertilization use efficiency on arid steppes varies greatly between steppe types and years, enhancing uncertainties and risks in introducing fertilizations on such natural system to restore degraded steppes. METHODS: The experiment was a completely randomized design with five fertilization treatments, 0 (Control), 60 kg P ha-1 (P), 100 kg N ha-1 (N), 100 kg N ha-1 plus 60 kg P ha-1 (NP), and 4,000 kg sheep manure ha-1 (M, equaling 16.4 kg P ha-1 and 81.2 kg N ha-1). Soils were sampled from a degraded arid steppe which was consecutively applied with organic and inorganic fertilizers for three years. We analyzed the diversity and abundance of soil bacteria and fungi using high-throughput sequencing technique, measured the aboveground biomass, the soil chemical properties (organic carbon, available and total phosphorus, available and total nitrogen, and pH), and the microbial biomass nitrogen and microbial biomass carbon. RESULTS: In total 3,927 OTU (operational taxonomic units) for bacteria and 453 OTU for fungi were identified from the tested soils. The Ace and Chao of bacteria were all larger than 2,400, which were almost 10 times of those of fungi. Fertilizations had no significant influence on the richness and diversity of the bacteria and fungi. However, the abundance of individual bacterial or fungi phylum or species was sensitive to fertilizations. Fertilization, particularly the phosphorus fertilizer, influenced more on the abundance of the AMF species and colonization. Among the soil properties, soil pH was one of the most important soil properties influencing the abundance of soil bacteria and fungi. DISCUSSION: Positive relationships between the abundance of bacteria and fungi and the soil chemical properties suggested that soil bacteria and fungi communities in degraded steppes could be altered by improving the soil chemical properties through fertilizations. However, it is still not clear whether the alteration of the soil microbe community is detrimental or beneficial to the degraded arid steppes.