Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
bioRxiv ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37732176

RESUMO

Memories are crucial for our daily lives, yet the network-level organizing principle that governs neural representations of our experiences remains to be determined. Employing dual-site electrophysiology recording in freely behaving mice, we discovered that hippocampal dorsal CA1 (dCA1) and basolateral amygdala (BLA) utilize distinct coding strategies to represent novel experiences. A small assembly of BLA neurons rapidly emerged during memory acquisition and remained active during subsequent consolidation, whereas the majority of dCA1 neurons engaged in the same processes. Machine learning decoding revealed that dCA1 population spikes predicted the BLA assembly firing rate. This suggests that most dCA1 neurons concurrently index an episodic event by rapidly establishing weighted communications with a specific BLA assembly, a process we call "many-to-one weighted mapping." Furthermore, we demonstrated that closed-loop optoinhibition of BLA activity triggered by dCA1 ripples after new learning resulted in impaired memory. These findings highlight a new principle of hippocampus-amygdala communication underlying memory formation and provide new insights into how the brain creates and stores memories.

2.
Prog Neurobiol ; 221: 102396, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563928

RESUMO

Sharp-wave ripples, prominently in the CA1 region of the hippocampus, are short oscillatory events accompanied by bursts of neural firing. Ripples and associated hippocampal place cell sequences communicate with cortical ensembles during slow-wave sleep, which has been shown to be critical for systems consolidation of episodic memories. This consolidation is not limited to a newly formed memory trace; instead, ripples appear to reactivate and consolidate memories spanning various experiences. Despite this broad spanning influence, ripples remain capable of producing precise memories. The underlying mechanisms that enable ripples to consolidate memories broadly and with specificity across experiences remain unknown. In this review, we discuss data that uncovers circuit-level processes that generate ripples and influence their characteristics during consolidation. Based on current knowledge, we propose that memory emerges from the integration of two parallel consolidation pathways in CA1: the rigid and plastic pathways. The rigid pathway generates ripples stochastically, providing a backbone upon which dynamic plastic pathway inputs carrying novel information are integrated.


Assuntos
Hipocampo , Sono , Humanos , Hipocampo/fisiologia
3.
Cells ; 11(9)2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35563703

RESUMO

The recovery of lower-urinary-tract activity is a top priority for patients with spinal-cord injury. Historically, locomotor training improved micturition function in both patients with spinal cord injury and animal models. We explore whether training augments such as the supraspinal control of the external urethral sphincter results in enhanced coordination in detrusor-sphincter activity. We implemented a clinically relevant contusive spinal-cord injury at the 12th thoracic level in rats and administered forced wheel running exercise for 11 weeks. Awake rats then underwent bladder cystometrogram and sphincter electromyography recordings to examine the micturition reflex. Subsequently, pseudorabies-virus-encoding red fluorescent protein was injected into the sphincter to trans-synaptically trace the supraspinal innervation of Onuf's motoneurons. Training in the injury group reduced the occurrence of bladder nonvoiding contractions, decreased the voiding threshold and peak intravesical pressure, and shortened the latency of sphincter bursting during voiding, leading to enhanced voiding efficiency. Histological analysis demonstrated that the training increased the extent of spared spinal-cord tissue around the epicenter of lesions. Compared to the group of injury without exercise, training elicited denser 5-hydroxytryptamine-positive axon terminals in the vicinity of Onuf's motoneurons in the cord; more pseudorabies virus-labeled or c-fos expressing neurons were detected in the brainstem, suggesting the enhanced supraspinal control of sphincter activity. Thus, locomotor training promotes tissue sparing and axon innervation of spinal motoneurons to improve voiding function following contusive spinal-cord injury.


Assuntos
Contusões , Traumatismos da Medula Espinal , Animais , Humanos , Atividade Motora , Ratos , Traumatismos da Medula Espinal/patologia , Uretra/inervação , Uretra/fisiologia , Bexiga Urinária , Micção/fisiologia
4.
Nat Commun ; 13(1): 1386, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296648

RESUMO

The prefrontal cortex is involved in goal-directed behavior. Here, we investigate circuits of the PFC regulating motivation, reinforcement, and its relationship to dopamine neuron activity. Stimulation of medial PFC (mPFC) neurons in mice activated many downstream regions, as shown by fMRI. Axonal terminal stimulation of mPFC neurons in downstream regions, including the anteromedial thalamic nucleus (AM), reinforced behavior and activated midbrain dopaminergic neurons. The stimulation of AM neurons projecting to the mPFC also reinforced behavior and activated dopamine neurons, and mPFC and AM showed a positive-feedback loop organization. We also found using fMRI in human participants watching reinforcing video clips that there is reciprocal excitatory functional connectivity, as well as co-activation of the two regions. Our results suggest that this cortico-thalamic loop regulates motivation, reinforcement, and dopaminergic neuron activity.


Assuntos
Neurônios Dopaminérgicos , Objetivos , Animais , Axônios , Neurônios Dopaminérgicos/fisiologia , Humanos , Camundongos , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Tálamo
5.
J Neurosci ; 42(10): 1987-1998, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35064000

RESUMO

Hippocampal theta oscillations (HTOs) during rapid eye movement (REM) sleep play an important role in mnemonic processes by coordinating hippocampal and cortical activities. However, it is not fully understood how HTOs are modulated by subcortical regions, including the median raphe nucleus (MnR). The MnR is thought to suppress HTO through its serotonergic outputs. Here, our study on male mice revealed a more complex framework indicating roles of nonserotonergic MnR outputs in regulating HTO. We found that nonselective optogenetic activation of MnR neurons at theta frequency increased HTO amplitude. Granger causality analysis indicated that MnR theta oscillations during REM sleep influence HTO. By using three transgenic mouse lines, we found that MnR serotonergic neurons exhibited little or no theta-correlated activity during HTO. Instead, most MnR GABAergic neurons and Vglut3 neurons respectively increased and decreased activities during HTO and exhibited hippocampal theta phase-locked activities. Although MnR GABAergic neurons do not directly project to the hippocampus, they could modulate HTO through local Vglut3 and serotonergic neurons as we found that MnR GABAergic neurons monosynaptically targeted Vglut3 and serotonergic neurons. Additionally, pontine wave recorded from the MnR during REM sleep accompanied nonserotonergic activity increase and HTO acceleration. These results suggest that MnR nonserotonergic neurons modulate hippocampal theta activity during REM sleep, which regulates memory processes.SIGNIFICANCE STATEMENT The MnR is the major source of serotonergic inputs to multiple brain regions including the hippocampus and medial septal area. It has long been thought that those serotonergic outputs suppress HTOs. However, our results revealed that MnR serotoninergic neurons displayed little firing changes during HTO. Instead, MnR Vglut3 neurons were largely silent during HTO associated with REM sleep. Additionally, many MnR GABAergic neurons fired rhythmically phase-locked to HTO. These results indicate an important role of MnR nonserotonergic neurons in modulating HTO.


Assuntos
Hipocampo , Núcleos da Rafe , Animais , Neurônios GABAérgicos/fisiologia , Hipocampo/fisiologia , Masculino , Camundongos , Septo do Cérebro , Neurônios Serotoninérgicos , Ritmo Teta/fisiologia
6.
eNeuro ; 8(6)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764187

RESUMO

The lateral septum (LS) is implicated as a hub that regulates a variety of affects, such as reward, feeding, anxiety, fear, sociability, and memory. However, it remains unclear how the LS, previously treated as a structure of homogeneity, exhibits such multifaceted functions. Emerging evidence suggests that different functions of the LS are mediated largely by its diverse input and output connections. It has also become clear that the LS is a heterogeneous region, where its dorsal and ventral poles play dissociable and often opposing roles. This functional heterogeneity can often be explained by distinct dorsal and ventral hippocampal inputs along the LS dorsoventral axis, as well as antagonizing connections between LS subregions. Similarly, outputs from LS subregions to respective downstream targets, such as hypothalamic, preoptic, and tegmental areas, also account for this functional heterogeneity. In this review, we provide an updated perspective on LS subregion classification, connectivity, and functions. We also identify key questions that have yet to be addressed in the field.


Assuntos
Medo , Hipocampo , Ansiedade , Vias Neurais , Recompensa
7.
Nat Commun ; 12(1): 2811, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990558

RESUMO

The supramammillary region (SuM) is a posterior hypothalamic structure, known to regulate hippocampal theta oscillations and arousal. However, recent studies reported that the stimulation of SuM neurons with neuroactive chemicals, including substances of abuse, is reinforcing. We conducted experiments to elucidate how SuM neurons mediate such effects. Using optogenetics, we found that the excitation of SuM glutamatergic (GLU) neurons was reinforcing in mice; this effect was relayed by their projections to septal GLU neurons. SuM neurons were active during exploration and approach behavior and diminished activity during sucrose consumption. Consistently, inhibition of SuM neurons disrupted approach responses, but not sucrose consumption. Such functions are similar to those of mesolimbic dopamine neurons. Indeed, the stimulation of SuM-to-septum GLU neurons and septum-to-ventral tegmental area (VTA) GLU neurons activated mesolimbic dopamine neurons. We propose that the supramammillo-septo-VTA pathway regulates arousal that reinforces and energizes behavioral interaction with the environment.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Hipotálamo Posterior/citologia , Hipotálamo Posterior/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Comportamento Consumatório/efeitos dos fármacos , Comportamento Consumatório/fisiologia , Dopamina/fisiologia , Feminino , Ácido Glutâmico/fisiologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Vias Neurais/citologia , Vias Neurais/fisiologia , Optogenética , Ratos , Ratos Wistar , Reforço Psicológico , Septo do Cérebro/citologia , Septo do Cérebro/efeitos dos fármacos , Septo do Cérebro/fisiologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/administração & dosagem
8.
J Neurosci ; 41(5): 1080-1091, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33436527

RESUMO

Fear of heights is evolutionarily important for survival, yet it is unclear how and which brain regions process such height threats. Given the importance of the basolateral amygdala (BLA) in mediating both learned and innate fear, we investigated how BLA neurons may respond to high-place exposure in freely behaving male mice. We found that a discrete set of BLA neurons exhibited robust firing increases when the mouse was either exploring or placed on a high place, accompanied by increased heart rate and freezing. Importantly, these high-place fear neurons were only activated under height threats, but not looming, acoustic startle, predatory odor, or mild anxiogenic conditions. Furthermore, after a fear-conditioning procedure, these high-place fear neurons developed conditioned responses to the context, but not the cue, indicating a convergence in processing of dangerous/risky contextual information. Our results provide insights into the neuronal representation of the fear of heights and may have implications for the treatment of excessive fear disorders.SIGNIFICANCE STATEMENT Fear can be innate or learned, as innate fear does not require any associative learning or experiences. Previous research mainly focused on studying the neural mechanism of learned fear, often using an associative conditioning procedure such as pairing a tone with a footshock. Only recently scientists started to investigate the neural circuits of innate fear, including the fear of predator odors and looming visual threats; however, how the brain processes the innate fear of heights is unclear. Here we provide direct evidence that the basolateral amygdala (BLA) is involved in representing the fear of heights. A subpopulation of BLA neurons exhibits a selective response to height and contextual threats, but not to other fear-related sensory or anxiogenic stimuli.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Medo/psicologia , Neurônios/fisiologia , Transtornos Fóbicos/psicologia , Animais , Frequência Cardíaca/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Fóbicos/fisiopatologia
9.
Biol Psychiatry ; 89(5): 521-531, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190846

RESUMO

BACKGROUND: The medial prefrontal cortex (mPFC) is essential for social behaviors, yet whether and how it encodes social memory remains unclear. METHODS: We combined whole-cell patch recording, morphological analysis, optogenetic/chemogenetic manipulation, and the TRAP (targeted recombination in active populations) transgenic mouse tool to study the social-associated neural populations in the mPFC. RESULTS: Fos-TRAPed prefrontal social-associated neurons are excitatory pyramidal neurons with relatively small soma sizes and thin-tufted apical dendrite. These cells exhibit intrinsic firing features of dopamine D1 receptor-like neurons, show persisting firing pattern after social investigation, and project dense axons to nucleus accumbens. In behaving TRAP mice, selective inhibition of prefrontal social-associated neurons does not affect social investigation but does impair subsequent social recognition, whereas optogenetic reactivation of their projections to the nucleus accumbens enables recall of a previously encountered but "forgotten" mouse. Moreover, chemogenetic activation of mPFC-to-nucleus accumbens projections ameliorates MK-801-induced social memory impairments. CONCLUSIONS: Our results characterize the electrophysiological and morphological features of social-associated neurons in the mPFC and indicate that these Fos-labeled, social-activated prefrontal neurons are necessary and sufficient for social memory.


Assuntos
Memória , Córtex Pré-Frontal , Animais , Camundongos , Neurônios , Núcleo Accumbens , Comportamento Social
10.
Learn Mem ; 27(8): 310-318, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32669386

RESUMO

Learning and memory involves a large neural network of many brain regions, including the notable hippocampus along with the retrosplenial cortex (RSC) and lateral septum (LS). Previous studies have established that the dorsal hippocampus (dHPC) plays a critical role during the acquisition and retrieval/expression of episodic memories. However, the role of downstream circuitry from the dHPC, including the dHPC-to-RSC and dHPC-to-LS pathways, has come under scrutiny only recently. Here, we used an optogenetic approach with contextual fear conditioning in mice to determine whether the above two pathways are involved in acquisition and expression of contextual fear memory. We found that a selective inhibition of the dHPC neuronal terminals in either the RSC or LS during acquisition impaired subsequent memory performance, suggesting that both the dHPC-to-RSC and dHPC-to-LS pathways play a critical role in memory acquisition. We also selectively inhibited the two dHPC efferent pathways during memory retrieval and found a differential effect on memory performance. These results indicate the intricacies of memory processing and that hippocampal efferents to cortical and subcortical regions may be differentially involved in aspects of physiological and cognitive memory processes.


Assuntos
Condicionamento Clássico/fisiologia , Giro do Cíngulo/fisiologia , Hipocampo/fisiologia , Rememoração Mental/fisiologia , Rede Nervosa/fisiologia , Núcleos Septais/fisiologia , Animais , Comportamento Animal/fisiologia , Medo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Optogenética
11.
Cell Rep ; 30(2): 432-441.e3, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31940487

RESUMO

The hippocampus and retrosplenial cortex (RSC) play indispensable roles in memory formation, and importantly, a hippocampal oscillation known as ripple is key to consolidation of new memories. However, it remains unclear how the hippocampus and RSC communicate and the role of ripple oscillation in coordinating the activity between these two brain regions. Here, we record from the dorsal hippocampus and RSC simultaneously in freely behaving mice during sleep and reveal that the RSC displays a pre-ripple activation associated with slow and fast oscillations. Immediately after ripples, a subpopulation of RSC putative inhibitory neurons increases firing activity, while most RSC putative excitatory neurons decrease activity. Consistently, optogenetic stimulation of this hippocampus-RSC pathway activates and suppresses RSC putative inhibitory and excitatory neurons, respectively. These results suggest that the dorsal hippocampus mainly inhibits RSC activity via its direct innervation of RSC inhibitory neurons, which overshadows the RSC in supporting learning and memory functions.


Assuntos
Giro do Cíngulo/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Sono de Ondas Lentas/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
12.
Cell Rep ; 18(11): 2584-2591, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297663

RESUMO

Dopamine neurons in the ventral tegmental area (VTA) were previously found to express vesicular glutamate transporter 2 (VGLUT2) and to co-transmit glutamate in the ventral striatum (VStr). This capacity may play an important role in reinforcement learning. Although it is known that activation of the VTA-VStr dopamine system readily reinforces behavior, little is known about the role of glutamate co-transmission in such reinforcement. By combining electrode recording and optogenetics, we found that stimulation of VTA dopamine neurons in vivo evoked fast excitatory responses in many VStr neurons of adult mice. Whereas conditional knockout of the gene encoding VGLUT2 in dopamine neurons largely eliminated fast excitatory responses, it had little effect on the acquisition of conditioned responses reinforced by dopamine neuron activation. Therefore, glutamate co-transmission appears dispensable for acquisition of conditioned responding reinforced by DA neuron activation.


Assuntos
Comportamento Animal , Condicionamento Psicológico , Neurônios Dopaminérgicos/metabolismo , Ácido Glutâmico/metabolismo , Animais , Camundongos Knockout , Neostriado/metabolismo , Optogenética , Área Tegmentar Ventral/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
13.
J Neurosci ; 36(41): 10663-10672, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733616

RESUMO

Hippocampal-cortical interaction during sleep promotes transformation of memory for long-term storage in the cortex. In particular, hippocampal sharp-wave ripple-associated neural activation is important for this transformation during slow-wave sleep. The anterior cingulate cortex (ACC) has been shown to be crucial for expression and likely storage of long-term memory. However, little is known about how ACC activity is influenced by hippocampal ripple activity during sleep. We report here about coordinated interactions between hippocampal ripple activity and ACC neural firings. By recording from the ACC and hippocampal CA1 simultaneously in mice, we found that almost all ACC neurons showed increased activity before hippocampal ripple activity; moreover, a subpopulation (17%) displayed a further activation immediately after ripple activity. This postripple activation of ACC neurons correlated positively with ripple amplitude, and the same neurons were excited upon electrical stimulation of the CA1. Interestingly, the preripple activation of ACC neurons was present during the sleep state, but not during the awake state. These results suggest intimate interactions between hippocampal sharp-wave ripples and ACC neurons in a state-dependent manner. Importantly, sharp-wave ripples and associated activation appear to regulate activity of a small population of ACC neurons, a process that may play a critical role in memory consolidation. SIGNIFICANCE STATEMENT: The hippocampus communicates with the cortex for memory transformation. Memories of previous experiences become less dependent on the hippocampus and increasingly dependent on cortical areas, such as the anterior cingulate cortex (ACC). However, little evidence is available to directly support this hippocampus-to-cortex information transduction hypothesis of memory consolidation. Here we show that a subpopulation of ACC neurons becomes active just after hippocampal ripple activity, and that electrical stimulation of the hippocampus excites the same ACC neurons. In addition, the majority of ACC neurons are activated just before ripple activity during the sleep state, but not during the awake state. These results provide evidence supporting the hypothesis of hippocampus-to-cortex information flow for memory consolidation as well as reciprocal interaction between the hippocampus and the cortex.


Assuntos
Giro do Cíngulo/fisiologia , Hipocampo/fisiologia , Sono/fisiologia , Potenciais de Ação/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Estimulação Elétrica , Eletroencefalografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vigília/fisiologia
14.
Cell Rep ; 16(10): 2699-2710, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27568569

RESUMO

The ventral tegmental area (VTA) receives phenotypically distinct innervations from the pedunculopontine tegmental nucleus (PPTg). While PPTg-to-VTA inputs are thought to play a critical role in stimulus-reward learning, direct evidence linking PPTg-to-VTA phenotypically distinct inputs in the learning process remains lacking. Here, we used optogenetic approaches to investigate the functional contribution of PPTg excitatory and inhibitory inputs to the VTA in appetitive Pavlovian conditioning. We show that photoinhibition of PPTg-to-VTA cholinergic or glutamatergic inputs during cue presentation dampens the development of anticipatory approach responding to the food receptacle during the cue. Furthermore, we employed in vivo optetrode recordings to show that photoinhibition of PPTg cholinergic or glutamatergic inputs significantly decreases VTA non-dopamine (non-DA) neural activity. Consistently, photoinhibition of VTA non-DA neurons disrupts the development of cue-elicited anticipatory approach responding. Taken together, our study reveals a crucial regulatory mechanism by PPTg excitatory inputs onto VTA non-DA neurons during appetitive Pavlovian conditioning.


Assuntos
Apetite/fisiologia , Condicionamento Clássico/fisiologia , Neurônios Dopaminérgicos/fisiologia , Aprendizagem , Núcleo Tegmental Pedunculopontino/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Apetite/efeitos da radiação , Condicionamento Clássico/efeitos da radiação , Sinais (Psicologia) , Neurônios Dopaminérgicos/efeitos da radiação , Glutamatos/metabolismo , Luz , Masculino , Camundongos Endogâmicos C57BL , Núcleo Tegmental Pedunculopontino/efeitos da radiação , Recompensa , Área Tegmentar Ventral/efeitos da radiação
15.
Nat Neurosci ; 18(5): 728-35, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25867120

RESUMO

Sharp wave-associated field oscillations (∼200 Hz) of the hippocampus, referred to as ripples, are believed to be important for consolidation of explicit memory. Little is known about how ripples are regulated by other brain regions. We found that the median raphe region (MnR) is important for regulating hippocampal ripple activity and memory consolidation. We performed in vivo simultaneous recording in the MnR and hippocampus of mice and found that, when a group of MnR neurons was active, ripples were absent. Consistently, optogenetic stimulation of MnR neurons suppressed ripple activity and inhibition of these neurons increased ripple activity. Notably, using a fear conditioning procedure, we found that photostimulation of MnR neurons interfered with memory consolidation. Our results demonstrate a critical role of the MnR in regulating ripples and memory consolidation.


Assuntos
Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Núcleos da Rafe/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Relógios Biológicos , Região CA1 Hipocampal/fisiologia , Condicionamento Clássico/fisiologia , Medo , Neurônios GABAérgicos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética , Estimulação Luminosa , Distribuição Aleatória , Neurônios Serotoninérgicos/fisiologia
16.
Front Behav Neurosci ; 8: 155, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24834037

RESUMO

Midbrain dopamine neurons are implicated in motivation and learning. However, it is unclear how phasic excitation of dopamine neurons, which is implicated in learning, is involved in motivation. Here we used a self-stimulation procedure to examine how mice seek for optogenetically-induced phasic excitation of dopamine neurons, with an emphasis on the temporal dimension. TH-Cre transgenic mice received adeno-associated viral vectors encoding channelrhodopsin-2 into the ventral tegmental area, resulting in selective expression of the opsin in dopamine neurons. These mice were trained to press on a lever for photo-pulse trains that phasically excited dopamine neurons. They learned to self-stimulate in a fast, constant manner, and rapidly reduced pressing during extinction. We first determined effective parameters of photo-pulse trains in self-stimulation. Lever-press rates changed as a function of the manipulation of pulse number, duration, intensity, and frequency. We then examined effects of interval and ratio schedules of reinforcement on photo-pulse train reinforcement, which was contrasted with food reinforcement. Reinforcement with food inhibited lever pressing for a few seconds, after which pressing was robustly regulated in a goal-directed manner. In contrast, phasic excitation of dopamine neurons robustly potentiated the initiation of lever pressing; however, this effect did not last more than 1 s and quickly diminished. Indeed, response rates markedly decreased when lever pressing was reinforced with inter-reinforcement interval schedules of 3 or 10 s or ratio schedules requiring multiple responses per reinforcement. Thus, phasic excitation of dopamine neurons briefly potentiates the initiation of approach behavior with apparent lack of long-term motivational regulation.

17.
PLoS One ; 6(4): e18739, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21494567

RESUMO

The amygdala is a key area in the brain for detecting potential threats or dangers, and further mediating anxiety. However, the neuronal mechanisms of anxiety in the amygdala have not been well characterized. Here we report that in freely-behaving mice, a group of neurons in the basolateral amygdala (BLA) fires tonically under anxiety conditions in both open-field and elevated plus-maze tests. The firing patterns of these neurons displayed a characteristic slow onset and progressively increased firing rates. Specifically, these firing patterns were correlated to a gradual development of anxiety-like behaviors in the open-field test. Moreover, these neurons could be activated by any impoverished environment similar to an open-field; and introduction of both comfortable and uncomfortable stimuli temporarily suppressed the activity of these BLA neurons. Importantly, the excitability of these BLA neurons correlated well with levels of anxiety. These results demonstrate that this type of BLA neuron is likely to represent anxiety and/or emotional values of anxiety elicited by anxiogenic environmental stressors.


Assuntos
Potenciais de Ação/fisiologia , Tonsila do Cerebelo/fisiopatologia , Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Etologia/métodos , Neurônios/fisiologia , Animais , Exposição Ambiental , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL
18.
PLoS One ; 6(2): e17047, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21347237

RESUMO

Dopamine neurons in the ventral tegmental area (VTA) have been traditionally studied for their roles in reward-related motivation or drug addiction. Here we study how the VTA dopamine neuron population may process fearful and negative experiences as well as reward information in freely behaving mice. Using multi-tetrode recording, we find that up to 89% of the putative dopamine neurons in the VTA exhibit significant activation in response to the conditioned tone that predict food reward, while the same dopamine neuron population also respond to the fearful experiences such as free fall and shake events. The majority of these VTA putative dopamine neurons exhibit suppression and offset-rebound excitation, whereas ∼25% of the recorded putative dopamine neurons show excitation by the fearful events. Importantly, VTA putative dopamine neurons exhibit parametric encoding properties: their firing change durations are proportional to the fearful event durations. In addition, we demonstrate that the contextual information is crucial for these neurons to respectively elicit positive or negative motivational responses by the same conditioned tone. Taken together, our findings suggest that VTA dopamine neurons may employ the convergent encoding strategy for processing both positive and negative experiences, intimately integrating with cues and environmental context.


Assuntos
Neurônios Dopaminérgicos/citologia , Motivação/fisiologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia , Animais , Medo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
19.
PLoS One ; 6(1): e16528, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21304590

RESUMO

The ventral tegmental area (VTA) plays an essential role in reward and motivation. How the dopamine (DA) and non-DA neurons in the VTA engage in motivation-based locomotor behaviors is not well understood. We recorded activity of putative DA and non-DA neurons simultaneously in the VTA of awake mice engaged in motivated voluntary movements such as wheel running. Our results revealed that VTA non-DA neurons exhibited significant rhythmic activity that was correlated with the animal's running rhythms. Activity of putative DA neurons also correlated with the movement behavior, but to a lesser degree. More importantly, putative DA neurons exhibited significant burst activation at both onset and offset of voluntary movements. These findings suggest that VTA DA and non-DA neurons conjunctively process locomotor-related motivational signals that are associated with movement initiation, maintenance and termination.


Assuntos
Atividade Motora/fisiologia , Neurônios/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Dopamina , Camundongos , Motivação/fisiologia , Movimento/fisiologia , Recompensa , Área Tegmentar Ventral/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA