Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 387
Filtrar
1.
Front Immunol ; 15: 1384946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835784

RESUMO

Breast cancer has a high incidence and a heightened propensity for metastasis. The absence of precise targets for effective intervention makes it imperative to devise enhanced treatment strategies. Exosomes, characterized by a lipid bilayer and ranging in size from 30 to 150 nm, can be actively released by various cells, including those in tumors. Exosomes derived from distinct subsets of immune cells have been shown to modulate the immune microenvironment within tumors and influence breast cancer progression. In addition, tumor-derived exosomes have been shown to contribute to breast cancer development and progression and may become a new target for breast cancer immunotherapy. Tumor immunotherapy has become an option for managing tumors, and exosomes have become therapeutic vectors that can be used for various pathological conditions. Edited exosomes can be used as nanoscale drug delivery systems for breast cancer therapy, contributing to the remodeling of immunosuppressive tumor microenvironments and influencing the efficacy of immunotherapy. This review discusses the regulatory role of exosomes from different cells in breast cancer and the latest applications of exosomes as nanoscale drug delivery systems and immunotherapeutic agents in breast cancer, showing the development prospects of exosomes in the clinical treatment of breast cancer.


Assuntos
Neoplasias da Mama , Exossomos , Imunoterapia , Microambiente Tumoral , Exossomos/imunologia , Exossomos/metabolismo , Humanos , Neoplasias da Mama/terapia , Neoplasias da Mama/imunologia , Feminino , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Animais , Sistemas de Liberação de Medicamentos
2.
ACS Appl Mater Interfaces ; 16(21): 27969-27978, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752539

RESUMO

Terahertz (THz) waves have garnered significant interest across various fields, particularly in high-sensitivity sensing applications. Metamaterials can be employed in THz sensors, specifically for refractive index sensing and pesticide detection due to their high-sensitivity characteristics. In this Article, a dual-band flexible THz metamaterial sensor based on polyimide is proposed for refractive index and pesticide sensing, which is fabricated using ultraviolet (UV) lithography technology and measured by a THz time-domain spectroscope (TDS) system. The resonant frequencies of the sensor are at 0.37 and 1.13 THz, with transmission rates of 2.9% and 0.3%, respectively. With an analyte layer attached to the sensor's surface, the sensitivity of refractive index sensing can be calculated as 0.09 and 0.28 THz/RIU (refractive index unit) at the two resonant frequencies. In order to validate the exceptional pesticide sensing performance of the sensor, chlorpyrifos-methyl acetone solutions with various concentrations are added on it. Furthermore, a monolayer of graphene is coated on the sensor's surface, which is proved capable of improving pesticide sensing sensitivity at low concentrations due to strong π-π stacking interactions with π-electrons in chlorpyrifos-methyl solutions. Therefore, the graphene-coated sensor can be utilized in detecting pesticide solutions with low concentrations, and the sensor without graphene is preferred for high concentration detection. This work provides a novel option for the THz metamaterial sensor with high sensitivity covering a wide pesticide concentration range.

3.
Arch Microbiol ; 206(6): 273, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772954

RESUMO

Acid protease is widely used in industries such as food processing and feed additives. In the study, low frequency magnetic field (LF-MF) as an aid enhances acid protease production by Aspergillus niger (A. niger). The study assessed mycelial biomass, the enzymic activity of the acidic protease and underlying mechanism. At low intensities, alternating magnetic field (AMF) is more effective than static magnetic fields (SMF). Under optimal magnetic field conditions, acid protease activity and biomass increased by 91.44% and 16.31%, as compared with the control, respectively. Maximum 19.87% increase in enzyme activity after magnetic field treatment of crude enzyme solution in control group. Transcriptomics analyses showed that low frequency alternating magnetic field (LF-AMF) treatment significantly upregulated genes related to hydrolases and cell growth. Our results showed that low-frequency magnetic fields can enhance the acid protease production ability of A. niger, and the effect of AMF is better at low intensities. The results revealed that the effect of magnetic field on the metabolic mechanism of A. niger and provided a reference for magnetic field-assisted fermentation of A. niger.


Assuntos
Aspergillus niger , Campos Magnéticos , Peptídeo Hidrolases , Aspergillus niger/enzimologia , Aspergillus niger/genética , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Biomassa , Micélio/enzimologia , Micélio/crescimento & desenvolvimento , Micélio/genética
4.
Compr Rev Food Sci Food Saf ; 23(3): e13353, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38660747

RESUMO

Deterioration of bread quality, characterized by the staling of bread crumb, the softening of bread crust and the loss of aroma, has caused a huge food waste and economic loss, which is a bottleneck restriction to the development of the breadmaking industry. Various bread improvers have been widely used to alleviate the issue. However, it is noteworthy that the sourdough technology has emerged as a pivotal factor in this regard. In sourdough, the metabolic breakdown of carbohydrates, proteins, and lipids leads to the production of exopolysaccharides, organic acids, aroma compounds, or prebiotics, which contributes to the preeminent ability of sourdough to enhance bread attributes. Moreover, sourdough exhibits a "green-label" feature, which satisfies the consumers' increasing demand for additive-free food products. In the past two decades, there has been a significant focus on sourdough with in situ produced dextran due to its exceptional performance. In this review, the behaviors of bread crucial compositions (i.e., starch and gluten) during dough mixing, proofing, baking and bread storing, as well as alterations induced by the acidic environment and the presence of dextran are systemically summarized. From the viewpoint of starch and gluten, results obtained confirm the synergistic amelioration on bread quality by the coadministration of acidity and dextran, and also highlight the central role of acidification. This review contributes to establishing a theoretical foundation for more effectively enhancing the quality of wheat breads through the application of in situ produced dextran.


Assuntos
Pão , Dextranos , Glutens , Amido , Triticum , Pão/análise , Pão/normas , Amido/química , Glutens/química , Dextranos/química , Triticum/química , Fermentação , Manipulação de Alimentos/métodos , Qualidade dos Alimentos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38686439

RESUMO

BACKGROUND AND AIM: The purpose of the current study was to investigate the predictive value of hepatitis B core-related antigen (HBcrAg) on the occurrence and recurrence of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). METHODS: We searched PubMed, Embase, Scopus, and Web of Science from database inception to April 6, 2023. Pooled hazard ratio (HR) or odds ratio (OR) with 95% confidence interval (CI) was calculated for the occurrence and recurrence of HCC. RESULTS: Of the 464 articles considered, 18 articles recruiting 10 320 patients were included. The pooled results showed that high serum HBcrAg level was an independent risk factor for the occurrence of HCC in CHB patients (adjusted HR = 3.12, 95% CI: 2.40-4.06, P < 0.001, I2 = 43.2%, P = 0.043; OR = 5.65, 95% CI: 3.44-5.82, P < 0.001, I2 = 0.00%, P = 0.42). Further subgroup analysis demonstrated that the predictive ability of HBcrAg for the occurrence of HCC is not influenced by the hepatitis B e antigen (HBeAg) status or the use of nucleoside/nucleotide analogs (NAs). In addition, our meta-analysis also suggests that HBcrAg is a predictor of HCC recurrence (adjusted HR = 1.71, 95% CI: 1.26-2.32, P < 0.001, I2 = 7.89%, P = 0.031). CONCLUSIONS: For patients with CHB, serum HBcrAg may be a potential predictive factor for the occurrence of HCC, regardless of HBeAg status or NA treatment. It may also serve as a novel prognostic biomarker for the recurrence of HCC. More studies are needed to confirm our conclusions.

6.
Molecules ; 29(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38675710

RESUMO

Carbon nitride (C3N4) has gained considerable attention and has been regarded as an ideal candidate for photocatalytic hydrogen evolution. However, its photocatalytic efficiency is still unsatisfactory due to the rapid recombination rate of photo-generated carriers and restricted surface area with few active sites. Herein, we successfully synthesized a single-atom Pt cocatalyst-loaded photocatalyst by utilizing the anchoring effect of carbon dots (CDs) on C3N4. The introduction of CDs onto the porous C3N4 matrix can greatly enhance the specific surface area of C3N4 to provide more surface-active sites, increase light absorption capabilities, as well as improve the charge separation efficiency. Notably, the functional groups of CDs can efficiently anchor the single-atom Pt, thus improving the atomic utilization efficiency of Pt cocatalysts. A strong interaction is formed via the connection of Pt-N bonds, which enhances the efficiency of photogenerated electron separation. This unique structure remarkably improves its H2 evolution performance under visible light irradiation with a rate of 15.09 mmol h-1 g-1. This work provides a new approach to constructing efficient photocatalysts by using CDs for sustainable hydrogen generation, offering a practical approach to utilizing solar energy for clean fuel production.

7.
Expert Rev Anticancer Ther ; 24(5): 303-312, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38623811

RESUMO

BACKGROUND: The effect of age, sex, and eastern cooperative oncology group performance status (ECOG PS) on the efficacy and safety of immune checkpoint inhibitor (ICI) therapy among hepatocellular carcinoma (HCC) patients remains elusive. Thus, a meta-analysis was conducted to evaluate whether such effects exist. RESEARCH DESIGN AND METHODS: Eligible studies in PubMed, Embase, and Cochrane Library databases were retrieved. RESULTS: One-hundred-and-eleven studies involving 14,768 HCC patients were included. The findings indicated that the ECOG PS didn't have a significant effect on the ORR and PFS in ICI-treated HCC patients (higher ECOG PS vs. lower ECOG PS: ORR: OR = 0.78, 95%CI = 0.55-1.10; PFS: HR = 1.15, 95%CI = 0.97-1.35), while those patients with a higher ECOG PS may have a worse OS (HR = 1.52, 95% CI = 1.26-1.84). There is no significant evidence of the effect of age (older vs. younger) or sex (males vs. females) on the efficacy of ICI therapy in HCC. CONCLUSION: ICI therapy in HCC should not be restricted strictly to certain patients in age or sex categories, while HCC patients with higher ECOG PS may require closer medication or follow-up strategy during ICI therapy. PROSPERO REGISTRATION: CRD42024518407.


Assuntos
Carcinoma Hepatocelular , Inibidores de Checkpoint Imunológico , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/farmacologia , Fatores Etários , Fatores Sexuais , Masculino , Feminino , Intervalo Livre de Progressão
8.
Heliyon ; 10(8): e29291, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644851

RESUMO

Tongue squamous cell carcinoma (TSCC) occupies a high proportion of oral squamous cell carcinoma. TSCC features high lymph node metastasis rates and chemotherapy resistance with a poor prognosis. Therefore, an effective therapy strategy is needed to improve patient prognosis. Melatonin (MT) is a natural indole compound shown to have anti-tumor effects in several cancers. This study focused on the role and mechanism of MT in TSCC cells. The results of the study suggest that MT could inhibit cell proliferation in CRL-1623 cells. Western blot analysis showed the down-regulate of cyclin B1 and the up-regulate P21 protein by MT. MT was also shown to down-regulate the expression of Zeb1, Wnt5A/B, and ß-catenin protein and up-regulate E-cadherin to inhibit the migration of CRL-1623 cells. MT also promoted the expression of ATF4, ATF6, Bip, BAP31 and CHOP in CRL-1623 cells leading to endoplasmic reticulum stress, and induced autophagy and apoptosis in CRL-1623 cells. Western blots showed that MT could promote the expression of Bax, LC3, and Beclin1 proteins and inhibit the expression of p62. We screened differentially expressed long non-coding RNAs (lncRNAs) in MT-treated cells and found that the expression of MALAT1 and H19 decreased. Moreover, MT inhibited tumor growth in nude mice inoculated with CRL-1623 cells. These results suggest that MT could induce autophagy, promote apoptosis, and provide a potential natural compound for the treatment of TSCC.

9.
Sci Rep ; 14(1): 8607, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615120

RESUMO

Stellera chamaejasme (S. chamaejasme) is an important medicinal plant with heat-clearing, detoxifying, swelling and anti-inflammatory effects. At the same time, it is also one of the iconic plants of natural grassland degradation in northwest China, playing a key role in the invasion process. Plant endophytes live in healthy plant tissues and can synthesize substances needed for plant growth, induce disease resistance in host plants, and enhance plant resistance to environmental stress. Therefore, studying the root endophytes of S. chamaejasme is of great significance for mining beneficial microbial resources and biological prevention and control of S. chamaejasme. This study used Illumina MiSeq high-throughput sequencing technology to analyze the composition and diversity of endophytes in the roots of S. chamaejasme in different alpine grasslands (BGC, NMC and XGYZ) in Tibet. Research results show that the main phylum of endophytic fungi in the roots of S. chamaejasme in different regions is Ascomycota, and the main phyla of endophytic bacteria are Actinobacteria, Proteobacteria and Firmicutes (Bacteroidota). Overall, the endophyte diversity of the NMC samples was significantly higher than that of the other two sample sites. Principal coordinate analysis (PCoA) and permutational multivariate analysis of variance (PERMANOVA) results showed significant differences in the composition of endophytic bacterial and fungal communities among BGC, NMC and XGYZ samples. Co-occurrence network analysis of endophytes showed that there were positive correlations between fungi and some negative correlations between bacteria, and the co-occurrence network of bacteria was more complex than that of fungi. In short, this study provides a vital reference for further exploring and utilizing the endophyte resources of S. chamaejasme and an in-depth understanding of the ecological functions of S. chamaejasme endophytes.


Assuntos
Actinobacteria , Thymelaeaceae , Endófitos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Thymelaeaceae/genética , Análise de Variância
10.
BMC Med Educ ; 24(1): 405, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605345

RESUMO

BACKGROUND: In medical imaging courses, due to the complexity of anatomical relationships, limited number of practical course hours and instructors, how to improve the teaching quality of practical skills and self-directed learning ability has always been a challenge for higher medical education. Artificial intelligence-assisted diagnostic (AISD) software based on volume data reconstruction (VDR) technique is gradually entering radiology. It converts two-dimensional images into three-dimensional images, and AI can assist in image diagnosis. However, the application of artificial intelligence in medical education is still in its early stages. The purpose of this study is to explore the application value of AISD software based on VDR technique in medical imaging practical teaching, and to provide a basis for improving medical imaging practical teaching. METHODS: Totally 41 students majoring in clinical medicine in 2017 were enrolled as the experiment group. AISD software based on VDR was used in practical teaching of medical imaging to display 3D images and mark lesions with AISD. Then annotations were provided and diagnostic suggestions were given. Also 43 students majoring in clinical medicine from 2016 were chosen as the control group, who were taught with the conventional film and multimedia teaching methods. The exam results and evaluation scales were compared statistically between groups. RESULTS: The total skill scores of the test group were significantly higher compared with the control group (84.51 ± 3.81 vs. 80.67 ± 5.43). The scores of computed tomography (CT) diagnosis (49.93 ± 3.59 vs. 46.60 ± 4.89) and magnetic resonance (MR) diagnosis (17.41 ± 1.00 vs. 16.93 ± 1.14) of the experiment group were both significantly higher. The scores of academic self-efficacy (82.17 ± 4.67) and self-directed learning ability (235.56 ± 13.50) of the group were significantly higher compared with the control group (78.93 ± 6.29, 226.35 ± 13.90). CONCLUSIONS: Applying AISD software based on VDR to medical imaging practice teaching can enable students to timely obtain AI annotated lesion information and 3D images, which may help improve their image reading skills and enhance their academic self-efficacy and self-directed learning abilities.


Assuntos
Inteligência Artificial , Educação Médica , Humanos , Software , Aprendizagem , Tomografia Computadorizada por Raios X , Ensino
11.
Angew Chem Int Ed Engl ; 63(24): e202405288, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38588044

RESUMO

The fundamental limitation for pore preservation in a Type III porous liquid (T3PL) is the need for a small aperture from the porous filler to realize size exclusion of a bulky solvent. We present a dual-layer surface weaving strategy that can disregard this limitation and achieve micro- and mesoporous metal-organic framework (MOF)-based T3PLs even with apertures much larger than the solvent molecules. By first weaving a tight network of poly(tert-butyl methacrylate) on the MOF surface, the poly(dimethylsiloxane) (PDMS) solvent can be effectively excluded from the pores while smaller guest molecules such as CO2, C2H4, and H2O can freely access the interior, as confirmed by low-pressure adsorption isotherms. Further application of a PDMS-containing polymer coating helps lower the viscosity of the PL due to increased particle dispersibility. This strategy has resulted in the successful construction of T3PLs with aperture sizes up to 3.1 nm.

12.
Front Biosci (Landmark Ed) ; 29(3): 96, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38538257

RESUMO

BACKGROUND: Type 1 diabetes mellitus (T1D) represents a severe threat to human health. Persistent hyperglycemia and dyslipidemia can lead to damaged liver function, while effective interventions for these complications are currently lacking. Deer antler stem cells (AnSCs), a novel type of adult stem cells, significantly reduced liver injury, which was speculated to be achieved through the paracrine pathway. METHODS: In this study, AnSC-conditioned medium (AnSC-CM) was used to treat C57BL/6 mice with T1D symptoms induced by streptozotocin (STZ). The therapeutic effects of AnSC-CM on T1D were evaluated, and the underlying mechanism was investigated. RESULTS: It was shown that AnSC-CM alleviated the T1D symptom: decreased body weight, increased blood glucose levels and islet lesions, and reduced insulin secretion. Moreover, AnSC-CM treatment improved liver function and mitigated liver injury in T1D mice. Impressively, the therapeutic effects of AnSC-CM on T1D were better than those of bone marrow mesenchymal stem cell-CM (BMSC-CM). The mechanistic study revealed that AnSC-CM significantly downregulated the NF-κB signaling pathway in both pancreatic and liver tissues. CONCLUSIONS: Therapeutic effects of AnSC-CM on STZ-induced T1D and liver injury may be achieved through targeting the NF-κB signaling pathway.


Assuntos
Chifres de Veado , Cervos , Diabetes Mellitus Tipo 1 , Adulto , Animais , Humanos , Camundongos , Chifres de Veado/citologia , Chifres de Veado/metabolismo , Meios de Cultivo Condicionados/farmacologia , Diabetes Mellitus Tipo 1/terapia , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
13.
Endocr Connect ; 13(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466634

RESUMO

Chronic inflammation induced by obesity plays a crucial role in the pathogenesis of insulin resistance. The infiltration of macrophages into adipose tissues contributes to adipose tissue inflammation and insulin resistance. Kaempferol, a flavonoid present in various vegetables and fruits, has been shown to possess remarkable anti-inflammatory properties. In this study, we used leptin receptor-deficient obese mice (db/db) as an insulin-resistant model and investigated the effects of kaempferol treatment on obesity-induced insulin resistance. Our findings revealed that the administration of kaempferol (50 mg/kg/day, for 6 weeks) significantly reduced body weight, fat mass, and adipocyte size. Moreover, it effectively ameliorated abnormal glucose tolerance and insulin resistance in db/db mice. In the adipose tissue of obese mice treated with kaempferol, we observed a reduction in macrophage infiltration and a downregulation of mRNA expression of M1 marker genes TNF-α and IL-1ß, accompanied by an upregulation of Arg1 and IL-10 mRNA expression. Additionally, kaempferol treatment significantly inhibited the STING/NLRP3 signaling pathway in adipose tissue. In vitro experiments, we further discovered that kaempferol treatment suppressed LPS-induced inflammation through the activation of NLRP3/caspase 1 signaling in RAW 264.7 macrophages. Our results suggest that kaempferol may effectively alleviate inflammation and insulin resistance in the adipose tissue of db/db mice by modulating the STING/NLRP3 signaling pathway.

14.
Int J Surg ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518083

RESUMO

The landscape of current tumor treatment has been revolutionized by the advent of immunotherapy based on PD-1/PD-L1 inhibitors. Leveraging its capacity to mobilize systemic anti-tumor immunity, which is primarily mediated by T cells, there is growing exploration and expansion of its potential value in various stages of clinical tumor treatment. Neoadjuvant immunotherapy induces a robust immune response against tumors prior to surgery, effectively facilitating tumor volume reduction, early eradication or suppression of tumor cell activity, and control of potential metastatic spread, to improve curative surgical resection rates and prevent tumor recurrence. This review delineates the theoretical basis of neoadjuvant immunotherapy from preclinical research evidence, discusses specific challenges in clinical application, and provides a comprehensive overview of clinical research progress in neoadjuvant immunotherapy for gastrointestinal tumors. These findings suggest that neoadjuvant immunotherapy has the potential to ameliorate immunosuppressive states and enhance cytotoxic T cell function while preserving lymphatic drainage in the preoperative period. However, further investigations are needed on specific treatment regimens, suitable patient populations, and measurable endpoints. Despite numerous studies demonstrating the promising efficacy and manageable adverse events of neoadjuvant immunotherapy in gastrointestinal tumors, the availability of high-quality randomized controlled trials is limited, which highlights the necessity for further research.

15.
Front Nutr ; 11: 1371401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510712

RESUMO

Proteins and polyphenols are abundant in the daily diet of humans and their interactions influence, among other things, the texture, flavor, and bioaccessibility of food. There are two types of interactions between them: non-covalent interactions and covalent interactions, the latter being irreversible and more powerful. In this review, we systematically summarized advances in the investigation of possible mechanism underlying covalent polyphenols-proteins interaction in food processing, effect of different processing methods on covalent interaction, methods for characterizing covalent complexes, and impacts of covalent interactions on protein structure, function and nutritional value, as well as potential bioavailability of polyphenols. In terms of health promotion of the prepared covalent complexes, health effects such as antioxidant, hypoglycemic, regulation of intestinal microbiota and regulation of allergic reactions have been summarized. Also, the possible applications in food industry, especially as foaming agents, emulsifiers and nanomaterials have also been discussed. In order to offer directions for novel research on their interactions in food systems, nutritional value, and health properties in vivo, we considered the present challenges and future perspectives of the topic.

16.
Int J Biol Macromol ; 264(Pt 1): 130502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428779

RESUMO

Hepatic stellate cell (HSC) activation is a crucial step in the development of liver fibrosis. Previous studies have shown that antler stem cells (AnSCs) inhibited HSC activation, suggesting that this may be achieved through secreting or releasing peptides. This study aimed to investigate whether AnSC-derived peptides (AnSC-P) could reduce liver fibrosis. The results showed that AnSC-P effectively reduced liver fibrosis in rats. Furthermore, we found that thymosin ß10 (Tß-10) was rich in AnSC-P, which may be the main component of AnSC-P contributing to the reduction in liver fibrosis. A further study showed that Tß-10 reduced liver fibrosis in rats, with a reduction in HYP and MDA levels in the liver tissues, a decrease in the serum levels of ALP, ALT, AST, and TBIL and an increase in TP and ALB. Moreover, Tß-10 decreased the expression levels of the genes related to the TGF-ß/SMAD signaling pathway in vivo. In addition, Tß-10 also inhibited TGF-ß1-induced HSC activation and decreased the expression levels of the TGF-ß/SMAD signaling pathway-related genes in HSCs in vitro. In conclusion, antler Tß-10 is a potential drug candidate for the treatment of liver fibrosis, the effect of which may be achieved via inhibition of the TGFß/SMAD signaling pathway.


Assuntos
Chifres de Veado , Timosina , Fator de Crescimento Transformador beta1 , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Chifres de Veado/metabolismo , Proteínas Smad/metabolismo , Células Estreladas do Fígado , Cirrose Hepática/induzido quimicamente , Fator de Crescimento Transformador beta/metabolismo
17.
Food Funct ; 15(4): 2181-2196, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315103

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol in tea and exerts several health-promoting effects. It easily autoxidizes into complex polymers and becomes deactivated due to the presence of multiple phenolic hydroxyl structures. Nonetheless, the morphology and biological activity of complex EGCG polymers are yet to be clarified. The present study demonstrated that EGCG autoxidation self-assembled nanoparticles (ENPs) exhibit antioxidant activity in vitro and hepatic REDOX homeostasis regulation activity in vivo. Also, the formation of ENPs during the EGCG autoxidation process was based on the intermolecular interaction forces that maintain the stability of the nanoparticles. Similar to EGCG, ENPs are scavengers of reactive oxygen species and hydroxyl radicals in vitro and also regulate hepatic REDOX activity through liver redox enzymes, including thioredoxin reductase (TrxR), thioredoxin (Trx), glutathione reductase (GR), glutaredoxin (Grx), and glutathione S-transferase (GST) in vivo. Moreover, ENPs activate the NRF2 antioxidant-responsive element pathway, exerting a detoxification effect at high doses. Unlike EGCG, ENPs do not cause liver damage at low doses and also maintain liver biosafety at high doses through self-assembly, forming large particles, which is supported by the unchanged levels of liver damage biomarkers, including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver γ-phosphorylated histone 2AX (γ-H2AX), and P53-related genes (Thbs, MDM2, P53, and Bax). Collectively, these findings revealed that ENPs, with adequate biosafety and regulation of hepatic redox activity in vivo, may serve as substitutes with significant potential for antioxidant applications or as food additives to overcome the instability and liver toxicity of EGCG.


Assuntos
Catequina , Catequina/análogos & derivados , Nanopartículas , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fígado/metabolismo , Oxirredução , Catequina/farmacologia , Catequina/metabolismo , Polímeros/farmacologia
18.
Stem Cell Res Ther ; 15(1): 43, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38360659

RESUMO

BACKGROUND: Ischemia-reperfusion injury to the central nervous system often causes severe complications. The activation of endogenous neural stem cells (NSCs) is considered a promising therapeutic strategy for nerve repair. However, the specific biological processes and molecular mechanisms of NSC activation remain unclear, and the role of N6-methyladenosine (m6A) methylation modification in this process has not been explored. METHODS: NSCs were subjected to hypoxia/reoxygenation (H/R) to simulate ischemia-reperfusion in vivo. m6A RNA methylation quantitative kit was used to measure the total RNA m6A methylation level. Quantitative real-time PCR was used to detect methyltransferase and demethylase mRNA expression levels. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were conducted for NSCs in control and H/R groups, and the sequencing results were analyzed using bioinformatics. Finally, the migration ability of NSCs was identified by wound healing assays, and the proliferative capacity of NSCs was assessed using the cell counting kit-8, EdU assays and cell spheroidization assays. RESULTS: Overall of m6A modification level and Mettl14 mRNA expression increased in NSCs after H/R treatment. The m6A methylation and expression profiles of mRNAs in NSCs after H/R are described for the first time. Through the joint analysis of MeRIP-seq and RNA-seq results, we verified the proliferation of NSCs after H/R, which was regulated by m6A methylation modification. Seven hub genes were identified to play key roles in the regulatory process. Knockdown of Mettl14 significantly inhibited the proliferation of NSCs. In addition, separate analysis of the MeRIP-seq results suggested that m6A methylation regulates cell migration and differentiation in ways other than affecting mRNA expression. Subsequent experiments confirmed the migration ability of NSCs was suppressed by knockdown of Mettl14. CONCLUSION: The biological behaviors of NSCs after H/R are closely related to m6A methylation of mRNAs, and Mettl14 was confirmed to be involved in cell proliferation and migration.


Assuntos
Hipóxia , Células-Tronco Neurais , Camundongos , Animais , Metilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Diferenciação Celular/genética , Hipóxia/metabolismo
19.
Biochem Biophys Res Commun ; 702: 149627, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340655

RESUMO

Rupture of vulnerable plaque and secondary thrombosis caused by atherosclerosis are one of the main causes of acute cardiovascular and cerebrovascular events, and it is urgent to develop an in-situ, noninvasive, sensitive and targeted detection method at molecular level. We chose CD44, a specific receptor highly expressed on the surface of macrophages, as the target of the molecular probe, and modified the CD44 ligand HA onto the surface of Gd2O3@MSN, constructing the MRI imaging nanoprobe HA-Gd2O3@MSN for targeted recognition of atherosclerosis. The fundamental properties of HA-Gd2O3@MSN were initially investigated. The CCK-8, hemolysis, hematoxylin-eosin staining tests and blood biochemical assays confirmed that HA-Gd2O3@MSN possessed excellent biocompatibility. Laser confocal microscopy, cellular magnetic resonance imaging, flow cytometry and immunohistochemistry were used to verify that the nanoprobes had good targeting properties. The in vivo targeting performance of the nanoprobes was further validated by employing a rabbit atherosclerosis animal model. In summary, the synthesized HA-Gd2O3@MSN nanoprobes have excellent biocompatibility properties as well as good targeting properties. It could provide a new technical tool for early identification of atherosclerosis.


Assuntos
Aterosclerose , Nanopartículas , Animais , Coelhos , Ácido Hialurônico/química , Nanopartículas/química , Dióxido de Silício/química , Linhagem Celular Tumoral , Aterosclerose/diagnóstico por imagem
20.
Mol Cancer ; 23(1): 15, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225603

RESUMO

Mounting evidence suggests a strong association between tumor immunity and epigenetic regulation. The histone-lysine N-methyltransferase 2 (KMT2) family plays a crucial role in the methylation of histone H3 at lysine 4. By influencing chromatin structure and DNA accessibility, this modification serves as a key regulator of tumor progression and immune tolerance across various tumors. These findings highlight the potential significance of the KMT2 family in determining response to immune checkpoint inhibitor (ICI) therapy, which warrants further exploration. In this study, we integrated four ICI-treated cohorts (n = 2069) across 10 cancer types and The Cancer Genome Atlas pan-cancer cohort and conducted a comprehensive clinical and bioinformatic analysis. Our study indicated that patients with KMT2 family gene mutations benefited more from ICI therapy in terms of overall survival (P < 0.001, hazard ratio [HR] = 0.733 [95% confidence interval (CI): 0.632-0.850]), progression-free survival (P = 0.002, HR = 0.669 [95% CI: 0.518-0.864]), durable clinical benefit (P < 0.001, 54.1% vs. 32.6%), and objective response rate (P < 0.001, 40.6% vs. 22.0%). Through a comprehensive analysis of the tumor microenvironment across different KMT2 mutation statuses, we observed that tumors harboring the KMT2 mutation exhibited enhanced immunogenicity, increased infiltration of immune cells, and higher levels of immune cell cytotoxicity, suggesting a propensity towards a "hot tumor" phenotype. Therefore, our study indicates a potential association between KMT2 mutations and a more favorable response to ICI therapy and implicates different tumor microenvironments associated with ICI therapy response.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA