Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mar Drugs ; 22(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38786607

RESUMO

Microalgal lipids hold significant potential for the production of biodiesel and dietary supplements. To enhance their cost-effectiveness and commercial competitiveness, it is imperative to improve microalgal lipid productivity. Metabolic engineering that targets the key enzymes of the fatty acid synthesis pathway, along with transcription factor engineering, are effective strategies for improving lipid productivity in microalgae. This review provides a summary of the advancements made in the past 5 years in engineering the fatty acid biosynthetic pathway in eukaryotic microalgae. Furthermore, this review offers insights into transcriptional regulatory mechanisms and transcription factor engineering aimed at enhancing lipid production in eukaryotic microalgae. Finally, the review discusses the challenges and future perspectives associated with utilizing microalgae for the efficient production of lipids.


Assuntos
Ácidos Graxos , Engenharia Metabólica , Microalgas , Microalgas/metabolismo , Engenharia Metabólica/métodos , Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Biocombustíveis , Vias Biossintéticas , Fatores de Transcrição/metabolismo , Animais , Humanos
2.
Bioresour Technol ; 385: 129452, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37406830

RESUMO

Strategies for enhancing biomass accumulation and increasing the production of fatty acids and ß-carotene in Schizochytrium are hindered by the lack of suitable targets. In this study, S-R, a RING (really interesting new gene) finger domain-containing protein, was identified in Schizochytrium, with homologs found in the family Thraustochytriaceae. Transgenic strains overexpressing S-R showed a minor improvement in cell growth but a significant increase in total fatty acids content by 1.29- to 1.36-fold. Almost all individual saturated fatty acids exhibited significant increases, with the greatest increase observed in the C14:0 content, by 1.52- to 1.78-fold. Additionally, the ß-carotene content of S-R strains was significantly upregulated. Overexpression of s-r conferred hypersaline tolerance in Schizochytrium, with a significant increase in dry cell weight, total fatty acids and ß-carotene, likely due to the upregulation of glycerol and proline. This study provides a feasible strategy to engineer Thraustochytriaceae for efficient biomass and biochemical production.


Assuntos
Ácidos Graxos , Estramenópilas , Ácidos Graxos/metabolismo , beta Caroteno/metabolismo , Biomassa , Estramenópilas/genética , Estramenópilas/metabolismo , Glicerol/metabolismo
3.
Front Bioeng Biotechnol ; 10: 1052785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452206

RESUMO

Polyunsaturated fatty acids (PUFAs) are important nutrients that play important roles in human health. In eukaryotes, PUFAs can be de novo synthesized through two independent biosynthetic pathways: the desaturase/elongase pathway and the PUFA synthase pathway. Among them, PUFAs synthesized through the PUFA synthase pathway typically have few byproducts and require fewer reduction equivalents. In the past 2 decades, numerous studies have been carried out to identify, analyze and engineer PUFA synthases from eukaryotes. These studies showed both similarities and differences between the eukaryotic PUFA synthase pathways and those well studied in prokaryotes. For example, eukaryotic PUFA synthases contain the same domain types as those in prokaryotic PUFA synthases, but the number and arrangement of several domains are different; the basic functions of same-type domains are similar, but the properties and catalytic activities of these domains are somewhat different. To further utilize the PUFA synthase pathway in microbial cell factories and improve the productivity of PUFAs, many challenges still need to be addressed, such as incompletely elucidated PUFA synthesis mechanisms and the difficult genetic manipulation of eukaryotic hosts. In this review, we provide an updated introduction to the eukaryotic PUFA synthase pathway, summarize the functions of domains and propose the possible mechanisms of the PUFA synthesis process, and then provide future research directions to further elucidate and engineer the eukaryotic PUFA synthase pathway for the maximal benefits of humans.

4.
Comput Biol Chem ; 101: 107769, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36182867

RESUMO

Inference of gene regulatory networks (GRNs) is one of the major challenges in molecular biology, understanding of which can reveal the regulatory relationship between transcription factors (TFs) and target genes. Although in the past decades many methods were developed to reconstruct GRNs, the accuracy of traditional methods can be further improved. In this work, we proposed a new method, GRN-LightGBM (Light Gradient Boosting Machine), to reconstruct GRNs. GRN-LightGBM is a non-linear. Ordinary differential equations (ODEs) model established by LightGBM, which is considering regulatory and target genes for a specific gene. Furthermore, GRN-LightGBM utilizes time-series data, steady-state data, and temporal time-delay data together to evaluate the features of regulatory genes important for target genes. GRN-LightGBM is evaluated both in the DREAM4 simulated datasets and Escherichia coli real datasets. The results show that the proposed method outperforms other popular inference algorithms in terms of area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPR).


Assuntos
Algoritmos , Redes Reguladoras de Genes , Redes Reguladoras de Genes/genética , Escherichia coli/genética , Área Sob a Curva , Curva ROC , Biologia Computacional/métodos
5.
Front Microbiol ; 13: 824189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308368

RESUMO

Docosahexaenoic acid (DHA, 22:6n-3) plays significant roles in enhancing human health and preventing human diseases. The heterotrophic marine dinoflagellate Crypthecodinium cohnii is a good candidate to produce high-quality DHA. To overcome the inhibition caused by the fermentation supernatant in the late fermentation stage of DHA-producing C. cohnii, fermentation supernatant-based adaptive laboratory evolution (FS-ALE) was conducted. The cell growth and DHA productivity of the evolved strain (FS280) obtained after 280 adaptive cycles corresponding to 840 days of evolution were increased by 161.87 and 311.23%, respectively, at 72 h under stress conditions and increased by 19.87 and 51.79% without any stress compared with the starting strain, demonstrating the effectiveness of FS-ALE. In addition, a comparative proteomic analysis identified 11,106 proteins and 910 differentially expressed proteins, including six stress-responsive proteins, as well as the up- and downregulated pathways in FS280 that might contribute to its improved cell growth and DHA accumulation. Our study demonstrated that FS-ALE could be a valuable solution to relieve the inhibition of the fermentation supernatant at the late stage of normal fermentation of heterotrophic microalgae.

6.
Front Microbiol ; 13: 1106265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36845976

RESUMO

The effects of propanol and 1, 3-propanediol on fatty acid and biomass accumulation in Schizochytrium ATCC 20888 were explored. Propanol increased the contents of saturated fatty acids and total fatty acids by 55.4 and15.3%, while 1, 3-propanediol elevated the polyunsaturated fatty acids, total fatty acids and biomass contents by 30.7, 17.0, and 6.89%. Although both of them quench ROS to increase fatty acids biosynthesis, the mechanisms are different. The effect of propanol did not reflect on metabolic level while 1, 3-propanediol elevated osmoregulators contents and activated triacylglycerol biosynthetic pathway. The triacylglycerol content and the ratio of polyunsaturated fatty acids to saturated fatty acids were significantly increased by 2.53-fold, which explained the higher PUFA accumulation in Schizochytrium after adding 1, 3- propanediol. At last, the combination of propanol and 1, 3-propanediol further elevated total fatty acids by approximately 1.2-fold without compromising cell growth. These findings are valuable for scale-up production of designed Schizochytrium oil for various application purposes.

7.
Front Bioeng Biotechnol ; 9: 738052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869256

RESUMO

High DHA production cost caused by low DHA titer and productivity of the current Schizochytrium strains is a bottleneck for its application in competition with traditional fish-oil based approach. In this study, atmospheric and room-temperature plasma with iodoacetic acid and dehydroepiandrosterone screening led to three mutants, 6-8, 6-16 and 6-23 all with increased growth and DHA accumulations. A LC/MS metabolomic analysis revealed the increased metabolism in PPP and EMP as well as the decreased TCA cycle might be relevant to the increased growth and DHA biosynthesis in the mutants. Finally, the mutant 6-23, which achieved the highest growth and DHA accumulation among all mutants, was evaluated in a 5 L fermentor. The results showed that the DHA concentration and productivity in mutant 6-23 were 41.4 g/L and 430.7 mg/L/h in fermentation for 96 h, respectively, which is the highest reported so far in literature. The study provides a novel strain improvement strategy for DHA-producing Schizochytrium.

8.
J Law Biosci ; 8(1): lsab019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150309

RESUMO

The Biosecurity Law has laid down a regulatory framework on bioethics in China, from raising awareness through education, requiring researchers to conform to ethical principles and conduct ethical reviews on biomedical research, to giving special attention to human genetic resources. The law constructively leaves a wide range of discretion to medical institutions and professionals in ethical decision-making, adaptive to the biotechnology-ethics-regulation dynamics. This regulatory strategy poses crucial institutional challenges in its implementation, particularly on how to safeguard institutional review boards (IRB), a core mechanism in the governance, to effectively protect human subjects but not unnecessarily hinder the progress of biomedical research. Further measures need to clarify important issues on the IRB-based governance, including legal status of the IRB review decision, potential liabilities, and protections of the IRB members.

9.
Artigo em Inglês | MEDLINE | ID: mdl-32528943

RESUMO

The fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 (Syn2973) is a promising candidate for photosynthetic microbial factory. Seawater utilization is necessary for large-scale cultivation of Syn2973 in the future. However, Syn2973 is sensitive to salt stress, making it necessary to improve its salt tolerance. In this study, 21 exogenous putative transporters were individually overexpressed in Syn2973 to evaluate their effects on salt tolerance. The results showed the overexpression of three Mrp antiporters significantly improved the salt tolerance of Syn2973. Notably, overexpressing the Mrp antiporter from Synechococcus sp. PCC 7002 improved cell growth by 57.7% under 0.4 M NaCl condition. In addition, the metabolomics and biomass composition analyses revealed the possible mechanisms against salt stress in both Syn2973 and the genetically engineered strain. The study provides important engineering strategies to improve salt tolerance of Syn2973 and is valuable for understanding mechanisms of salt tolerance in cyanobacteria.

10.
Microb Cell Fact ; 19(1): 91, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299433

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA) is essential for human diet. However, high production cost of DHA using C. cohnii makes it currently less competitive commercially, which is mainly caused by low DHA productivity. In recent years, repeated fed-batch strategies have been evaluated for increasing the production of many fermentation products. The reduction in terms of stability of culture system was one of the major challenges for repeated fed-batch fermentation. However, the possible mechanisms responsible for the decreased stability of the culture system in the repeated fed-batch fermentation are so far less investigated, restricting the efforts to further improve the productivity. In this study, a repeated fed-batch strategy for DHA production using C. cohnii M-1-2 was evaluated to improve DHA productivity and reduce production cost, and then the underlying mechanisms related to the gradually decreased stability of the culture system in repeated fed-batch culture were explored through LC- and GC-MS metabolomic analyses. RESULTS: It was discovered that glucose concentration at 15-27 g/L and 80% medium replacement ratio were suitable for the growth of C. cohnii M-1-2 during the repeated fed-batch culture. A four-cycle repeated fed-batch culture was successfully developed and assessed at the optimum cultivation parameters, resulting in increasing the total DHA productivity by 26.28% compared with the highest DHA productivity of 57.08 mg/L/h reported using C. cohnii, including the time required for preparing seed culture and fermentor. In addition, LC- and GC-MS metabolomics analyses showed that the gradually decreased nitrogen utilization capacity, and down-regulated glycolysis and TCA cycle were correlated with the decreased stability of the culture system during the long-time repeated fed-batch culture. At last, some biomarkers, such as Pyr, Cit, OXA, FUM, L-tryptophan, L-threonine, L-leucine, serotonin, and 4-guanidinobutyric acid, correlated with the stability of culture system of C. cohnii M-1-2 were identified. CONCLUSIONS: The study proved that repeated fed-batch cultivation was an efficient and energy-saving strategy for industrial production of DHA using C. cohnii, which could also be useful for cultivation of other microbes to improve productivity and reduce production cost. In addition, the mechanisms study at metabolite level can also be useful to further optimize production processes for C. cohnii and other microbes.


Assuntos
Técnicas de Cultura Celular por Lotes , Ácidos Docosa-Hexaenoicos/biossíntese , Metabolômica , Microalgas/metabolismo , Meios de Cultura/metabolismo , Ácidos Docosa-Hexaenoicos/química , Microalgas/química
11.
Biotechnol Adv ; 40: 107497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31830520

RESUMO

Long-chain polyunsaturated fatty acids (LC-PUFAs) especially ω-3 fatty acids provide significant health benefits for human beings. However, ω-3 LC-PUFAs cannot be synthesized de novo in mammals. Traditionally, ω-3 LC-PUFAs are extracted from marine fish, and their production depends on sea fishing, which has not met ever-increasing global demand. To address the challenges, innovative cellular engineering strategies need to be developed. In nature, many fungi and microalgae are rich in ω-3 LC-PUFAs, representing promising sources of ω-3 LC-PUFAs. The latest progress in developing new cellular engineering strategies toward sustainable ω-3 LC-PUFAs production using fungi and microalga has demonstrated that they can to some extent address the supply shortage. In this review, we critically summarize the recent progress in enhancing the productivity in various ω-3 LC-PUFAs-producing organisms, as well as the latest efforts of biosynthesizing PUFAs in heterogenous biosystems. In addition, we also provide future perspectives in developing genetic toolkits for LC-PUFAs producing microbes so that cut-edging biotechnology such as gene stacking and genome editing can be further applied to increase the productivity of ω-3 LC-PUFAs.


Assuntos
Engenharia Celular , Microalgas , Animais , Ácidos Graxos Ômega-3 , Ácidos Graxos Insaturados , Humanos , Engenharia Metabólica
12.
Biotechnol Biofuels ; 12: 244, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636703

RESUMO

BACKGROUND: Trichoderma reesei is widely used for cellulase production and accepted as an example for cellulase research. Cre1-mediated carbon catabolite repression (CCR) can significantly inhibit the transcription of cellulase genes during cellulase fermentation in T. reesei. Early efforts have been undertaken to modify Cre1 for the release of CCR; however, this approach leads to arrested hyphal growth and decreased biomass accumulation, which negatively affects cellulase production. RESULTS: In this study, novel fusion transcription factors (fTFs) were designed to release or attenuate CCR inhibition in cellulase transcription, while Cre1 was left intact to maintain normal hyphal growth. Four designed fTFs were introduced into the T. reesei genome, which generated several transformants, named Kuace3, Kuclr2, Kuace2, and Kuxyr1. No obvious differences in growth were observed between the parent and transformant strains. However, the transcription levels of cel7a, a major cellulase gene, were significantly elevated in all the transformants, particularly in Kuace2 and Kuxyr1, when grown on lactose as a carbon source. This suggested that CCR inhibition was released or attenuated in the transformant strains. The growth of Kuace2 and Kuxyr1 was approximately equivalent to that of the parent strain in fed-batch fermentation process. However, we observed a 3.2- and 2.1-fold increase in the pNPCase titers of the Kuace2 and Kuxyr1 strains, respectively, compared with that of the parent strain. Moreover, we observed a 6.1- and 3.9-fold increase in the pNPCase titers of the Kuace2 and Kuxyr1 strains, respectively, compared with that of Δcre1 strain. CONCLUSIONS: A new strategy based on fTFs was successfully established in T. reesei to improve cellulase titers without impairing fungal growth. This study will be valuable for lignocellulosic biorefining and for guiding the development of engineering strategies for producing other important biochemical compounds in fungal species.

13.
Front Microbiol ; 10: 2035, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551972

RESUMO

Characterizing and engineering microbial communities for lignocellulosic biofuel production has received widespread attention. Previous research has established that Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17 coculture significantly improves overall cellulosic biofuel production efficiency. Here, we investigated this interaction and revealed the mechanism underlying the improved efficiency observed. In contrast to the previously reported mutualistic relationship, a harmful effect toward C. thermocellum JN4 was observed in these microbial consortia. Although T. thermosaccharolyticum GD17 relieves the carbon catabolite repression of C. thermocellum JN4 regarding obtaining more cellobiose or glucose released from lignocellulose, T. thermosaccharolyticum GD17 significantly hampers the growth of C. thermocellum JN4 in coculture. The increased formation of end products is due to the strong competitive metabolic advantage of T. thermosaccharolyticum GD17 over C. thermocellum JN4 in the conversion of glucose or cellobiose into final products. The possibility of controlling and rebalancing these microbial consortia to modulate cellulose degradation was achieved by adding T. thermosaccharolyticum GD17 stimulants into the system. As cellulolytic bacteria are usually at a metabolic disadvantage, these discoveries may apply to a large proportion of cellulosic biofuel-producing microbial consortia. These findings provide a reference for engineering efficient and modular microbial consortia for modulating cellulosic conversion.

14.
Microorganisms ; 7(9)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450827

RESUMO

Dinoflagellates are important primary producers for marine ecosystems and are also responsible for certain essential components in human foods. However, they are also notorious for their ability to form harmful algal blooms, and cause shellfish poisoning. Although much work has been devoted to dinoflagellates in recent decades, our understanding of them at a molecular level is still limited owing to some of their challenging biological properties, such as large genome size, permanently condensed liquid-crystalline chromosomes, and the 10-fold lower ratio of protein to DNA than other eukaryotic species. In recent years, omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, have been applied to the study of marine dinoflagellates and have uncovered many new physiological and metabolic characteristics of dinoflagellates. In this article, we review recent application of omics technologies in revealing some of the unusual features of dinoflagellate genomes and molecular mechanisms relevant to their biology, including the mechanism of harmful algal bloom formations, toxin biosynthesis, symbiosis, lipid biosynthesis, as well as species identification and evolution. We also discuss the challenges and provide prospective further study directions and applications of dinoflagellates.

15.
Biotechnol Biofuels ; 12: 141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31182976

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA, C22:6) and odd-chain fatty acids (OCFAs, C15:0 and C17:0) have attracted great interest, since they have been widely used in food and therapeutic industries, as well as chemical industry, such as biodiesel production and improvement. The oil-producing heterotrophic microalgae Schizochytrium sp. 31 is one of main DHA-producing strains. Recently, it was found that Schizochytrium can also synthesize OCFAs; however, contents and titers of DHA and OCFAs in Schizochytrium are still low, which limit its practical application. RESULTS: In this study, we found that acetyl-CoA carboxylase suffered from a feedback inhibition by C16-CoA in Schizochytrium, and relief of the inhibition resulted in improved both lipid content and the ratio of OCFAs in total fatty acids. Based on this finding, a novel strategy for elevating both DHA and OCFAs contents was established. First, the total lipid accumulation was increased by overexpressing a malic enzyme from Crypthecodinium cohnii to elevate NADPH supply. Second, the inhibition effect on acetyl-CoA carboxylase was relieved by overexpressing a codon-optimized ELO3 gene from Mortierella alpina, which encodes an elongase enzyme responsible for converting C16 into C18 fatty acids. After the above two-step engineering, contents of DHA and OCFAs were increased by 1.39- and 3.30-fold, reaching a level of 26.70 and 25.08% of dry cell weight, respectively, which are the highest contents reported so far for Schizochytrium. The titers of DHA and OCFAs were elevated by 1.08- and 2.57-fold, reaching a level of 3.54 and 3.32 g/L, respectively. Notably, the OCFAs titer achieved was 2.66-fold higher than the highest reported in Escherichia coli (1.25 g/L), implying potential value for industry application. To reveal the potential metabolic mechanism for the enhanced biosynthesis of both DHA and OCFAs, LC-MS metabolomic analysis was employed and the results showed that the pentose phosphate pathway and the glycolysis pathway were strengthened and intracellular propionyl-CoA concentration were also significantly increased in the engineered Schizochytrium, suggesting an increased supply of NADPH, acetyl-CoA, and propionyl-CoA for DHA and OCFAs accumulation. CONCLUSIONS: The discovery provides a new source of OCFAs production, and proposes a new strategy to improve contents and titers of both DHA and OCFAs in Schizochytrium. These will be valuable for improving commercial potential of Schizochytrium and guiding the engineering strategy in other fatty acids producing heterotrophic microalga.

16.
Metab Eng ; 51: 88-98, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30393203

RESUMO

Dietary omega-3 long-chain polyunsaturated fatty acids docosahexaenoic acid (DHA, C22:6) can be synthesized in microalgae Crypthecodinium cohnii; however, its productivity is still low. Here, we established a new protocol termed as "chemical modulator based adaptive laboratory evolution" (CM-ALE) to enhance lipid and DHA productivity in C. cohnii. First, ACCase inhibitor sethoxydim based CM-ALE was applied to redirect carbon equivalents from starch to lipid. Second, CM-ALE using growth modulator sesamol as selection pressure was conducted to relive negative effects of sesamol on lipid biosynthesis in C. cohnii, which allows enhancement of biomass productivity by 30% without decreasing lipid content when sesamol was added. After two-step CM-ALE, the lipid and DHA productivity in C. cohnii was respectively doubled to a level of 0.046 g/L/h and 0.025 g/L/h in culture with addition of 1 mM sesamol, demonstrating that this two-step CM-ALE could be a valuable approach to maximize the properties of microalgae.


Assuntos
Dinoflagellida/metabolismo , Evolução Molecular Direcionada/métodos , Lipídeos/biossíntese , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Acetil-CoA Carboxilase/metabolismo , Benzodioxóis/farmacologia , Biomassa , Carbono/metabolismo , Cicloexanonas/farmacologia , Ácidos Docosa-Hexaenoicos/biossíntese , Malonil Coenzima A/metabolismo , Fenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Amido/metabolismo
17.
J Agric Food Chem ; 66(40): 10640-10650, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30226986

RESUMO

It is well-known that high-nitrogen content inhibits cell growth and docosahexaenoic acid (DHA) biosynthesis in heterotrophic microalgae Crypthecodinium cohnii. In this study, two nitrogen feeding strategies, pulse-feeding and continuous-feeding, were evaluated to alleviate high-nitrogen inhibition effects on C. cohnii. The results showed that continuous-feeding with a medium solution containing 50% ( w/v) yeast extract at 2.1 mL/h during 12-96 h was the optimal nitrogen feeding strategy for the fermentation process, when glucose concentration was maintained at 15-27 g/L during the same period. With the optimized strategy, 71.2 g/L of dry cell weight and DHA productivity of 57.1 mg/L/h were achieved. In addition, metabolomic analysis was applied to determine the metabolic changes during different nitrogen feeding conditions, and the changes in amino acids, polysaccharides, purines, and pentose phosphate pathway were observed, providing valuable metabolite-level information for exploring the mechanism of the high-nitrogen inhibition effect and further improving DHA productivity in C. cohnii.


Assuntos
Dinoflagellida/metabolismo , Ácidos Docosa-Hexaenoicos/biossíntese , Microalgas/metabolismo , Nitrogênio/metabolismo , Biomassa , Meios de Cultura/química , Meios de Cultura/metabolismo , Dinoflagellida/química , Dinoflagellida/crescimento & desenvolvimento , Fermentação , Metabolômica , Microalgas/química , Microalgas/crescimento & desenvolvimento
18.
Front Microbiol ; 9: 956, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867861

RESUMO

The heterotrophic microalga Crypthecodinium cohnii has attracted considerable attention due to its capability of accumulating lipids with a high fraction of docosahexaenoic acid (DHA). In our previous study, ethanolamine (ETA) was identified as an effective chemical modulator for lipid accumulation in C. cohnii. In this study, to gain a better understanding of the lipid metabolism and mechanism for the positive effects of modulator ETA, metabolic flux analysis was performed using 13C-labeled glucose with and without 1 mM ETA modulator. The analysis of flux distribution showed that with the addition of ETA, flux in glycolysis pathway and citrate pyruvate cycle was strengthened while flux in pentose phosphate pathway was decreased. In addition, flux in TCA cycle was slightly decreased compared with the control without ETA. The enzyme activity of malic enzyme (ME) was significantly increased, suggesting that NADP+-dependent ME might be the major source of NADPH for lipid accumulation. The flux information obtained by this study could be valuable for the further efforts in improving lipid accumulation and DHA production in C. cohnii.

19.
Appl Microbiol Biotechnol ; 100(19): 8607-20, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27538932

RESUMO

Lignocellulosic biohydrogen is a promising renewable energy source that could be a potential alternative to the unsustainable fossil fuel-based energy. Biohydrogen production could be performed by Clostridium thermocellum that is the fastest known cellulose-degrading bacterium. Previous investigations have shown that the co-culture of C. thermocellum JN4 and a non-cellulolytic bacterium Thermoanaerobacterium thermosaccharolyticum GD17 produces more hydrogen than the C. thermocellum JN4 mono-culture, but the mechanism of this improvement is unknown. In this work, we carried out genomic and evolutionary analysis of hydrogenase-coding genes in C. thermocellum and T. thermosaccharolyticum, identifying one Ech-type [NiFe] hydrogenase complex in each species, and, respectively, five and four monomeric or multimeric [FeFe] hydrogenases in the two species. Further transcriptional analysis showed hydrogenase-coding genes in C. thermocellum are regulated by carbon sources, while hydrogenase-coding genes in T. thermosaccharolyticum are not. However, comparison between transcriptional abundance of hydrogenase-coding genes in mono- and co-cultures showed the co-culturing condition leads to transcriptional changes of hydrogenase-coding genes in T. thermosaccharolyticum but not C. thermocellum. Further metabolic analysis showed T. thermosaccharolyticum produces H2 at a rate 4-12-fold higher than C. thermocellum. These findings lead to the suggestion that the improvement of H2 production in the co-culture over mono-culture should be attributed to changes in T. thermosaccharolyticum but not C. thermocellum. Further suggestions can be made that C. thermocellum and T. thermosaccharolyticum perform highly specialized tasks in the co-culture, and optimization of the co-culture for more lignocellulosic biohydrogen production should be focused on the improvement of the non-cellulolytic bacterium.


Assuntos
Celulose/metabolismo , Clostridium thermocellum/crescimento & desenvolvimento , Clostridium thermocellum/metabolismo , Hidrogênio/metabolismo , Thermoanaerobacterium/crescimento & desenvolvimento , Thermoanaerobacterium/metabolismo , Clostridium thermocellum/enzimologia , Clostridium thermocellum/genética , Técnicas de Cocultura , Evolução Molecular , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Hidrogenase/genética , Hidrogenase/metabolismo , Thermoanaerobacterium/enzimologia , Thermoanaerobacterium/genética
20.
Front Microbiol ; 7: 485, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148179

RESUMO

The lack of selective markers has been a key problem preventing multistep genetic engineering in filamentous fungi, particularly for industrial species such as the lignocellulose degrading Penicillium oxalicum JUA10-1(formerly named as Penicillium decumbens). To resolve this problem, we constructed a genetic manipulation system taking advantage of two established genetic systems: the Cre-loxP system and Tet-on system in P. oxalicum JUA10-1. This system is efficient and convenient. The expression of Cre recombinase was activated by doxycycline since it was controlled by Tet-on system. Using this system, two genes, ligD and bglI, were sequentially disrupted by loxP flanked ptrA. The successful application of this procedure will provide a useful tool for genetic engineering in filamentous fungi. This system will also play an important role in improving the productivity of interesting products and minimizing by-product when fermented by filamentous fungi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA