Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37931009

RESUMO

To explore the effects of solvent-ionomer interactions in catalyst inks on the structure and performance of Cu catalyst layers (CLs) for CO2 electrolysis, we used a "like for like" rationale to select acetone and methanol as dispersion solvents with a distinct affinity for the ionomer backbone or sulfonated ionic heads, respectively, of the perfluorinated sulfonic acid (PFSA) ionomer Aquivion. First, we characterized the morphology and wettability of Aquivion films drop-cast from acetone- and methanol-based inks on flat Cu foils and glassy carbons. On a flat surface, the ionomer films cast from the Aquivion and acetone mixture were more continuous and hydrophobic than films cast from methanol-based inks. Our study's second stage compared the performance of Cu nanoparticle CLs prepared with acetone and methanol on gas diffusion electrodes (GDEs) in a flow cell electrolyzer. The effects of the ionomer-solvent interaction led to a more uniform and flooding-tolerant GDE when acetone was the dispersion solvent (acetone-CL) than when we used methanol (methanol-CL). As a result, acetone-CL yielded a higher selectivity for CO2 electrolysis to C2+ products at high current density, up to 25% greater than methanol-CL at 500 mA cm-2. Ethylene was the primary product for both CLs, with a Faradaic efficiency for ethylene of 47.4 ± 4.0% on the acetone-CL and that of 37.6 ± 5.5% on the methanol-CL at a current density of 300 mA cm-2. We attribute the enhanced C2+ selectivity of the acetone-CL to this electrode's better resistance to electrolyte flooding, with zero seepage observed at tested current densities. Our findings reveal the critical role of solvent-ionomer interaction in determining the film structure and hydrophobicity, providing new insights into the CL design for enhanced multicarbon production in high current densities in CO2 electrolysis processes.

2.
J Chem Phys ; 158(8): 084309, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36859093

RESUMO

New solvents are considered to be one of the effective methods to facilitate the reaction rate and lower the reaction energy barrier. However, the common method to develop a new solvent has come to a dead end. Thus, a single atom in solvent to produce a single atom solution is designed to create the breakthrough. Eight kinds of single atom solutions are prepared as new absorbents. Experiments prove the single atom in the solutions and their charge-producing effects. A density functional theory model is developed to analyze the microscale characteristics. Meanwhile, it has been applied in carbon dioxide capture. The CO2 desorption rate is intensified in the single atom solution system due to the controlled reaction energy barrier. The results show that single atom solutions produce a maximum voltage of 2.12 V and, thus, contribute to near zero energy consumption by effectively harvesting the substantial waste heat below 373 K.

3.
Heliyon ; 9(2): e13173, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36785828

RESUMO

The Youganwo Formation oil shale located in the Maoming Basin represents a large commercially valuable lacustrine oil shale resource and a potential bio-shale gas reservoir in South China. With the aim of deepening the understanding of factors that influence organic matter enrichment, this research conducted a geochemical investigation to reconstruct the depositional paleoenvironment of bioproductivity, preservation and dilution. Youganwo Formation oil shale is mainly deposited in semi-deep to deep-lake environments with relatively warm and humid paleoclimate in the subtropical-temperate zone. The total organic carbon (TOC) content (1.46-11.85%), S2 values (4.79-115.80 mg HC/mg rock) and HI (328-1040 mg HC/mg TOC) indicate that the oil shale has a good oil source rock potential. TOC content, (S1 + S2) values and vitrinite reflectance values show that its marginally mature organic matter (OM) belongs to kerogen type I-III with good oil-generating potential. A 3rd order sequence was identified in the Yougnwo formation. Subsequently, the multiple factors including bioproductivity, preservation and dilution that control the OM enrichment of oil shale within system tracts were discussed. Moderate-quality oil shales (Oy-1) were developed in the transgressive systems tract (TST) in an oxidizing condition with abundant detrital input. High-quality oil shales (Oy-2) were deposited during the high-stand systems tract (HST) with increased accommodation space, improved preservation conditions, warm and humid climate, higher water bioproductivity and minimum detrital matter input. During the regressive systems tract (RST, Oy-3), higher detrital matter input and fresher water led to lower TOC values. Among these multiple factors, dilution condition was the major one that influences OM abundance and variation on the basis of sufficient organic matter input. Thus, OM enrichment models of Oy-1, Oy-2 and Oy-3 sub-members were established. The OM enrichment and quality in oil shale were controlled by the combined effect of bioproductivity, preservation, and dilution.

4.
ACS Appl Mater Interfaces ; 14(31): 35504-35512, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35912581

RESUMO

We report a new strategy to improve the reactivity and durability of a membrane electrode assembly (MEA)-type electrolyzer for CO2 electrolysis to CO by modifying the silver catalyst layer with urea. Our experimental and theoretical results show that mixing urea with the silver catalyst can promote electrochemical CO2 reduction (CO2R), relieve limitations of alkali cation transport from the anolyte, and mitigate salt precipitation in the gas diffusion electrode in long-term stability tests. In a 10 mM KHCO3 anolyte, the urea-modified Ag catalyst achieved CO selectivity 1.3 times better with energy efficiency 2.8-fold better than an untreated Ag catalyst, and operated stably at 100 mA cm-2 with a faradaic efficiency for CO above 85% for 200 h. Our work provides an alternative approach to fabricating catalyst interfaces in MEAs by modifying the catalyst structure and the local reaction environment for critical electrochemical applications such as CO2 electrolysis and fuel cells.

5.
Materials (Basel) ; 15(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35329460

RESUMO

Introducing CO2 electrochemical conversion technology to the iron-making blast furnace not only reduces CO2 emissions, but also produces H2 as a byproduct that can be used as an auxiliary reductant to further decrease carbon consumption and emissions. With adequate H2 supply to the blast furnace, the injection of H2 is limited because of the disadvantageous thermodynamic characteristics of the H2 reduction reaction in the blast furnace. This paper presents thermodynamic analysis of H2 behaviour at different stages with the thermal requirement consideration of an iron-making blast furnace. The effect of injecting CO2 lean top gas and CO2 conversion products H2-CO gas through the raceway and/or shaft tuyeres are investigated under different operating conditions. H2 utilisation efficiency and corresponding injection volume are studied by considering different reduction stages. The relationship between H2 injection and coke rate is established. Injecting 7.9-10.9 m3/tHM of H2 saved 1 kg/tHM coke rate, depending on injection position. Compared with the traditional blast furnace, injecting 80 m3/tHM of H2 with a medium oxygen enrichment rate (9%) and integrating CO2 capture and conversion reduces CO2 emissions from 534 to 278 m3/tHM. However, increasing the hydrogen injection amount causes this iron-making process to consume more energy than a traditional blast furnace does.

6.
ChemSusChem ; 14(12): 2601-2611, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33908158

RESUMO

Interactions of electrolyte ions at electrocatalyst surfaces influence the selectivity of electrochemical CO2 reduction (CO2 R) to chemical feedstocks like CO. We investigated the effects of anion type in aqueous choline halide solutions (ChCl, ChBr, and ChI) on the selectivity of CO2 R to CO over an Ag foil cathode. Using an H-type cell, we observed that halide-specific adsorption at the Ag surface limits CO faradaic efficiency (FECO ) at potentials more positive than -1.0 V vs. reversible hydrogen electrode (RHE). At these conditions, FECO increased from I- 90 %) in ChCl (at -0.75±0.06 Vvs. RHE) and ChI (at -0.78±0.17 V vs. RHE) could be achieved at a current density of 150 mA cm-2 in a continuous flow-cell electrolyser with Ag nanoparticles on a commercial gas diffusion electrode. This study provides new insights to understand the interactions of anions with catalysts and offers a new method to modify electrocatalyst surfaces.

7.
ACS Appl Mater Interfaces ; 12(20): 22760-22770, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32337964

RESUMO

Pursuing high catalytic selectivity is challenging but paramount for an efficient and low-cost CO2 electrochemical reduction (CO2R). In this work, we demonstrate a significant correlation between the selectivity of CO2R to formate and the duration of tin (Sn) electrodeposition over a cuprous oxide (Cu2O)-derived substrate. A Sn electrodeposition time of 120 s led to a cathode with a formate Faradaic efficiency of around 81% at -1.1 V vs reversible hydrogen electrode (RHE), which was more than 37% higher than those of the Sn foil and the sample treated for 684 s. This result highlights the significant role of the interface between deposited Sn and the cuprous-derived substrate in determining the selectivity of CO2R. High-resolution X-ray photoelectron spectra revealed that the residual cuprous species at the Cu/Sn interfaces could stabilize Sn species in oxidation states of 2+ and 4+, a mixture of which is essential for a selective formate conversion. Such modulation effects likely arise from the moderate electronegativity of the cuprous species that is lower than that of Sn2+ but higher than that of Sn4+. Our work highlights the significant role of the substrate in the selectivity of the deposited catalyst and provides a new avenue to advance selective electrodes for CO2 electrochemical reduction.

8.
J Nanosci Nanotechnol ; 20(8): 5260-5266, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126728

RESUMO

Syngas conversion to higher alcohols remains a very attractive alternative due to the abundance of syngas feedstock, such as renewable carbon and waste-carbon resources. Catalysts suitable for syngas conversion still show low selectivity to alcohols. In this article, we present nanostructured NiMoS2 and CoMoS2 catalysts supported on activated carbon pellets and design strategies to improve its selectivity towards higher alcohols. Activated carbon pellets were treated with concentrated HNO3 to enlarge porous channels and enable better dispersion of NiMoS2 and CoMoS2. These treatment steps lead to a formation of nanostructured NiMoS2 and CoMoS2 catalysts and promoted higher selectivity to ethanol, propanol and butanol. BET surface area of 532 m² g-1 was obtained for NiMoS2/Carbon catalysts from the nitrogen physisorption analysis. In catalytic tests, the highest CO conversion (39.1%) was achieved by the NiMoS2/Carbon, whereas the CoMoS2/Carbon showed the highest alcohol selectivity (74.4%). CoMoS2 catalysts supported on activated carbon pellets proved to be highly active towards undesired by-product "filamentous carbon."

9.
ChemSusChem ; 13(2): 282, 2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31957986

RESUMO

Invited for this month's cover is the group of Tom Rufford at the University of Queensland. The image shows how choline chloride and urea in a reline solution interact with the surface of a silver cathode to enhance the selectivity of electrochemical CO2 reduction to CO. The Full Paper itself is available at 10.1002/cssc.201902433.

10.
ChemSusChem ; 13(2): 304-311, 2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31646740

RESUMO

Achieving high product selectivities is one challenge that limits viability of electrochemical CO2 reduction (CO2 R) to chemical feedstocks. Here, it was demonstrated how interactions between Ag foil cathodes and reline (choline chloride + urea) led to highly selective CO2 R to CO with a faradaic efficiency of (96±8) % in 50 wt % aqueous reline at -0.884 V vs. the reversible hydrogen electrode (RHE), which is a 1.5-fold improvement over CO2 R in KHCO3 . In reline the Ag foil was roughened by (i) dissolution of oxide layers followed by (ii) electrodeposition of Ag nanoparticles back on cathode. This surface restructuring exposed low-coordinated Ag atoms, and subsequent adsorption of choline ions and urea at the catalyst surface limited proton availability in the double layer and stabilized key intermediates such as *COOH. These approaches could potentially be extended to other electrocatalytic metals and lower-viscosity deep eutectic solvents to achieve higher-current-density CO2 R in continuous-flow cell electrolyzers.

11.
Sci Rep ; 7(1): 14337, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085034

RESUMO

The cleat compressibility of coal is a key parameter that is extensively used in modeling the coal reservoir permeability for Coal Bed Methane (CBM) recovery. Cleat compressibility is often determined from the permeability measurement made at different confining pressures but with a constant pore pressure. Hence, this parameter ignores the sorption strain effects on the cleat compressibility. By using the transient pulse decay (TPD) technique, this study presents the results from a laboratory characterization program using coal core drilled from different bedding directions to estimate gas permeability and coal cleat compressibility under different pore pressures while maintaining effective stress constant. Cleat compressibility was determined from permeability and sorption strain measurements that are made at different pore pressures under an effective stress constant. Results show that the cleat compressibility of coal increases slightly with the increase of pore pressure. Moreover, the cleat compressibility of Sample P (representing the face cleats in coal) is larger than that of Sample C (representing the butt cleats in coal). This result suggests that cleat compressibility should not be regarded as constant in the modeling of the CBM recovery. Furthermore, the compressibility of face cleats is considerably sensitive to the sorption-induced swelling/shrinkage and offers significant effects on the coal permeability.

12.
Phys Chem Chem Phys ; 19(20): 13230-13244, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28492649

RESUMO

Currently, the most promising amine absorption system for CO2 capture still faces the challenges of heavy steam consumption and a high energy penalty. Thus, a new thermal-electrochemical co-driven system (TECS) for CO2 capture was developed to resolve these problems. In the TECS, unknown electrochemical behaviors are quite essential to assess the CO2 capture performance. Electrochemical experiments were designed using response surface methodology (RSM) to identify electrochemical effects. The results show that the cathode process is slow and difficult, which is the main limitation in improving the performance of the TECS. Forced convection is necessary to improve the diffusion-controlled process and accelerate desorption. Four factors (Cu(ii) molality, CO2 loading, temperature, KNO3 molality) play an auxo-action role in determining anode and cathode reaction rates. A regression model is developed based on the experimental data, and optimum operating conditions are obtained. Regeneration energy consumption reaches about 1.3 GJ per t CO2, a decline of up to 70% compared with the traditional process. In addition, preliminary CO2 desorption experiments suggest that the mass transfer ascribed to the electrochemical process accounts for over 50% of the overall mass transfer coefficient in the CO2 desorption process.

13.
PLoS One ; 11(9): e0163613, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27662594

RESUMO

Leaf shape, including leaf size, leaf dissection index (LDI), and venation distribution, strongly impacts leaf physiology and the forces of momentum exerted on leaves or the canopy under windy conditions. Yet, little has been known about how leaf shape affects the morphological response of trees to wind load. We studied eight Quercus species, with different leaf shapes, to determine the morphological response to simulated wind load. Quercus trees with long elliptical leaves, were significantly affected by wind load (P< 0.05), as indicted by smaller specific leaf area (SLA), stem base diameter and stem height under windy conditions when compared to the control. The Quercus trees with leaves characterized by lanceolate or sinuous edges, showed positive morphological responses to wind load, such as bigger leaf thickness, larger stem diameter, allocation to root biomass, and smaller stem height (P< 0.05). These morphological responses to wind can reduce drag and increase the mechanical strength of the tree. Leaf dissection index (LDI), an important index of leaf shape, was correlated with morphological response to wind load (P< 0.05), including differences in SLA, in stem base diameter and in allocation to root biomass. These results suggest that trees with higher LDI, such as those with more and/or deeper lobes, are better adapted to wind load.

14.
Ecol Evol ; 6(16): 5854-66, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27547360

RESUMO

In order to explore how plant autotoxicity changes with climate warming, the autotoxicity of P. schrenkiana needles' water extract, organic extract fractions, and key allelochemical DHAP was systemically investigated at the temperature rising 2 and 4°C based on the data-monitored soil temperature during the last decade in the stage of Schrenk spruce regeneration (seed germination and seedling growth). The results showed that the criterion day and night temperatures were 12°C and 4°C for seed germination, and 14°C and 6°C for seedling growth, respectively. In the presence of water extract, the temperature rise of 2°C significantly inhibited the germination vigor and rate of P. Schrenkiana seed, and a temperature rise of 4°C significantly increased the inhibition to the seedling growth (P < 0.05). Among the three organic fractions, the low-polar fraction showed to be more phytotoxic than the other two fractions, causing significant inhibitory effects on the seed germination and growth even at low concentration of 0.1 mg/mL, and the inhibition effect was enhanced as temperature increased. The temperature rise significantly enhanced the promotion effect of DHAP, while the inhibition effect of temperature rise became less important with increasing concentration of DHAP. This investigation revealed that autotoxicity of P. schrenkiana was affected by the climate warming. As expected, it provided an insight into the mechanism and effectiveness of allelopathy in bridging the causal relationship between forest evolution and climate warming.

15.
J Mol Model ; 21(8): 188, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26149754

RESUMO

Vitrinite in coal, the mainly generating methane maceral, plays an important role in hydrocarbon generation of coal. This study aims at obtaining products formation mechanism of vitrinite pyrolysis, and hence determining the chemical bond, molecular liquefaction activity, and reactions mechanism of methane and C2-4 during pyrolysis. The ReaxFF molecular dynamics (MD) simulation was carried out at temperature of 1500 K in order to investigate the mechanism of vitrinite pyrolysis. Initially, a minimum energy conformational structure model was constrained by a combination of elemental and carbon-13 nuclear magnetic resonance ((13)C NMR) literature data. The model analysis shows the chemical and physical parameters of vitrinite pyrolysis are broadly consistent with the experimental data. Based on the molecular model, ReaxFF MD simulations further provide information of unimolecule such as bond length, and chemical shift, and hence the total population and energy of main products. Molecules bond and pyrolysis fragments, based on active bond analyzed, revealed pyrolysis products of single vitrinite molecule with aliphatic C-C bond, especially ring and chain aliphatic as liquefaction activity. The molecular cell whose density is 0.9 g/cm(3) with lowest energy accords with the experimental density 1.33 g/cm(3). The content of main products after pyrolysis, classifying as CH4, H2O, and H2, was changed along with the increasing temperature. The gas molecule, fragments and generation pathways of CO2, H2, CH4, and C2H6 were also elucidated. These results show agreement with experimental observations, implying that MD simulation can provide reasonable explanation for the reaction processes involved in coal vitrinite pyrolysis. Thus the mechanism of coal hydrocarbon generation was revealed at the molecular level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA