Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
2.
J Sci Food Agric ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984980

RESUMO

BACKGROUND: Human serum albumin (HSA) is the most abundant protein in plasma, playing crucial roles in regulating osmotic pressure and maintaining protein homeostasis. It is widely applied in the clinical treatment of various diseases. HSA can be purified from plasma or produced using recombinant DNA technology. Due to the improved efficiency and reduced costs, a growing body of research has focused on enhancing albumin production through bacterial strain overexpression. However, there have been few studies on the effect of albumin on the characteristics of the overexpressing-strain itself, particularly stress resistance. In this study, we utilized Lactiplantibacillus plantarum (L. plantarum) AR113 as the expression host and successfully constructed the albumin overexpression strain AR113-pLLY01 through gene editing technology. The successful expression of albumin was achieved and subsequently compared with the wild-type strain AR113-pIB184. RESULTS: The results demonstrated that the survival rate of AR113-pLLY01 was also significantly better than that of AR113-pIB184 after lyophilization. In addition, AR113-pLLY01 exhibited a significantly better protective effect than AR113-pIB184 at pH 3, indicating that albumin possesses a certain tolerance to acidic stress. At bile salt concentrations higher than 0.03%, both strains showed limited growth, but at a concentration of 0.02%, AR113-pLLY01 had a significant protective effect. CONCLUSION: This study suggest that albumin can improve strain tolerance, which has significant implications for future applications. © 2024 Society of Chemical Industry.

3.
Foodborne Pathog Dis ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959170

RESUMO

Effectively managing foodborne pathogens is imperative in food processing, where probiotics play a crucial role in pathogen control. This study focuses on the Lactiplantibacillus plantarum AR113 and its gene knockout strains, exploring their antimicrobial properties against Escherichia coli O157:H7 and Staphylococcus aureus. Antimicrobial assays revealed that the inhibitory effect of AR113 increases with its growth and the potential bacteriostatic substance is acidic. AR113Δldh, surpassed AR113Δ0273&2024, exhibited a complete absence of bacteriostatic properties, which indicates that lactic acid is more essential than acetic acid in the bacteriostatic effect of AR113. However, the exogenous acid validation test affirmed the equivalent superior bacteriostatic effect of lactic acid and acetic acid. Notably, AR113 has high lactate production and deletion of the ldh gene not only lacks lactate production but also affects acetic production. This underscores the ldh gene's pivotal role in the antimicrobial activity of AR113. In addition, among all the selected knockout strains, AR113ΔtagO and ΔccpA also had lower antimicrobial effects, suggesting the importance of tagO and ccpA genes of AR113 in pathogen control. This study contributes insights into the antimicrobial potential of AR113 and stands as the pioneering effort to use knockout strains for comprehensive bacteriostatic investigations.

4.
Nutrients ; 16(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892694

RESUMO

Certain workplaces, like deep-sea voyages, subject workers to chronic psychological stress and circadian rhythm disorders due to confined environments and frequent shifts. In this study, participants lived in a strictly controlled confined environment, and we analyzed the effects of a confined environment on gut microbiota and metabolites. The results showed that living in confined environments can significantly alter both the gut microbiota and the gut metabolome, particularly affecting lipid metabolism pathways like glycerophospholipid metabolism. There was a significant reduction in the abundance of Faecalibacterium and Bacteroides, while Blautia, Bifidobacterium, and Collinsella showed significant increases. An association analysis revealed a strong correlation between changes in the gut microbiota and the metabolome. Four upregulated lipid metabolites may serve as biomarkers for damage induced by confined environments, and certain gut microbiota alterations, such as those involving Faecalibacterium and Bacteroides, could be potential psychobiotics or therapeutic targets for enhancing mental health in a confined environment.


Assuntos
Microbioma Gastrointestinal , Metaboloma , Humanos , Microbioma Gastrointestinal/fisiologia , Masculino , Adulto , Metabolismo dos Lipídeos , Bacteroides/metabolismo , Feminino , Estresse Psicológico/microbiologia , Estresse Psicológico/metabolismo , Fezes/microbiologia , Bactérias/metabolismo , Bactérias/classificação
5.
Food Funct ; 15(14): 7416-7429, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38899520

RESUMO

Lactobacillus plantarum AR495 is a widely used probiotic for the treatment of various digestive diseases, including irritable bowel syndrome (IBS). However, the specific mechanisms of L. plantarum AR495 in alleviating IBS remain unclear. Abnormal intestinal tryptophan metabolism can cause disordered immune responses, gastrointestinal peristalsis, digestion and sensation, which is closely related to IBS pathogenesis. The aim of this study is to explore the effects and mechanisms of L. plantarum AR495 in regulating tryptophan metabolism. Primarily, tryptophan and its related metabolites in patients with IBS and healthy people were analyzed, and an IBS rat model of acetic acid enema plus restraint stress was established to explore the alleviation pathway of L. plantarum AR495 in tryptophan metabolism. It was found that the 5-HT pathway was significantly changed, and the 5-HTP and 5-HT metabolites were significantly increased in the feces of patients with IBS, which were consistent with the results obtained for the IBS rat model. Maladjusted 5-HT could increase intestinal peristalsis and lead to an increase in the fecal water content and shapeless stool in rats. On the contrary, these two metabolites could be restored to normal levels via intragastric administration of L. plantarum AR495. Further study of the metabolic pathway showed that L. plantarum AR495 could effectively reduce the abundance of 5-HT by inhibiting the expression of enterochromaffin cells rather than promoting its decomposition. In addition, the results showed that L. plantarum AR495 did not affect the expression of SERT. To sum up, L. plantarum AR495 could restore the normal levels of 5-HT by inhibiting the abnormal proliferation of enterochromaffin cells and the excessive activation of TPH1 to inhibit the intestinal peristalsis in IBS. These findings provide insights for the use of probiotics in the treatment of IBS and other diarrheal diseases.


Assuntos
Colo , Síndrome do Intestino Irritável , Lactobacillus plantarum , Probióticos , Ratos Sprague-Dawley , Serotonina , Triptofano , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/terapia , Síndrome do Intestino Irritável/microbiologia , Lactobacillus plantarum/metabolismo , Animais , Triptofano/metabolismo , Ratos , Probióticos/farmacologia , Humanos , Masculino , Colo/metabolismo , Colo/microbiologia , Serotonina/metabolismo , Feminino , Adulto , Pessoa de Meia-Idade , Modelos Animais de Doenças , Fezes/microbiologia , Adulto Jovem
6.
JAMA Intern Med ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913351

RESUMO

This case report describes a patient in their 70s with a lambda wave pattern on electrocardiography.

7.
Food Funct ; 15(11): 6028-6041, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38752307

RESUMO

Phyllanthus emblica Linn. (PE) fresh fruits contain high concentrations of polyphenolics, of which free and bound phenolics are rich in biological activities. In this study, the inhibitory activity and mechanism of PEFP and PEBP on α-glucosidase (α-GLU) were investigated using spectroscopic techniques, kinetic analysis, and molecular docking. The results showed that 13 PEFP and 12 PEBP were identified by UPLC-MS/MS analysis, and Bis-HHDP-hexose and castalagin (vesgalagin) were found for the first time in PE fresh fruits. Kinetic analysis of enzyme inhibition showed that a mixture of free and bound phenolics inhibited α-GLU, and the effect of the conformational relationship of PEFP and PEBP with α-GLU on hypoglycemia was further explored by fluorescence quenching, circular dichroism (CD) spectroscopy, and molecular docking analysis. The findings demonstrated the inhibitory activity and mechanism of free and bound phenolics on α-GLU and provided a theoretical basis for PE polyphenolics as α-GLU inhibitors for hypoglycemia.


Assuntos
Frutas , Inibidores de Glicosídeo Hidrolases , Fenóis , Phyllanthus emblica , Extratos Vegetais , alfa-Glucosidases , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Dicroísmo Circular , Frutas/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Cinética , Simulação de Acoplamento Molecular , Fenóis/química , Fenóis/farmacologia , Phyllanthus emblica/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Espectrometria de Massas em Tandem
8.
Foods ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611312

RESUMO

This study investigates the impact of urea and ß-GP on the growth of Streptococcus thermophilus S-3, a bacterium commonly used in industrial fermentation processes. Through a series of growth experiments, transcriptome, metabolome, and omics-based analyses, the research demonstrates that both urea and ß-GP can enhance the biomass of S. thermophilus, with urea showing a more significant effect. The optimal urea concentration for growth was determined to be 3 g/L in M17 medium. The study also highlights the metabolic pathways influenced by urea and ß-GP, particularly the galactose metabolism pathway, which is crucial for cell growth when lactose is the substrate. The integration of omics data into the genome-scale metabolic model of S. thermophilus, iCH502, allowed for a more accurate prediction of metabolic fluxes and growth rates. The study concludes that urea can serve as a viable substitute for ß-GP in the cultivation of S. thermophilus, offering potential cost and efficiency benefits in industrial fermentation processes. The findings are supported by validation experiments with 11 additional strains of S. thermophilus, which showed increased biomass in UM17 medium.

9.
ACS Synth Biol ; 13(4): 1365-1372, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38518262

RESUMO

Lactococcus cremoris (homotypic synonym: Lactococcus lactis) is receiving increasing attention as a prominent vehicle for the delivery of live vaccines. This can hardly be achieved without developing tools for the genetic manipulation of L. cremoris, and the paucity of studies on L. cremoris endogenous promoters has attracted our attention. Here, we report the discovery and characterization of 29 candidate promoters identified from L. cremoris subsp. cremoris NZ9000 by RNA sequencing analysis. Furthermore, 18 possible constitutive promoters were obtained by RT-qPCR screening from these 29 candidate promoters. Then, these 18 promoters were cloned and characterized by a reporter gene, gusA, encoding ß-glucuronidase. Eventually, eight endogenous constitutive promoters of L. cremoris were obtained, which can be applied to genetic manipulation of lactic acid bacteria.


Assuntos
Lactococcus lactis , Lactococcus , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Regiões Promotoras Genéticas/genética , Genes Reporter/genética , Expressão Gênica
10.
Foods ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38540885

RESUMO

Ligilactobacillus salivarius (basonym: Lactobacillus salivarius, L. salivarius) is a type of lactic acid bacteria (LAB) commonly found in the oropharyngeal-gastrointestinal tract (OGT). It has gained significant attention due to its probiotic and functional properties as well as its various health-promoting roles. L. salivarius strains exhibit strong resistance and adhesion in the OGT along with outstanding antioxidant and antimicrobial properties. Additionally, numerous L. salivarius strains have the ability to produce bacteriocins with antagonistic activity. These probiotic characteristics of L. salivarius indicate its remarkable potential in promoting favorable effects on human health. It has also been observed that L. salivarius has a positive effect on the composition of intestinal microbiota, thereby improving the metabolic profiling of intestinal microbiota, promoting a healthy and balanced internal environment. In recent years, multi-omics technologies such as genomics, transcriptomics, proteomics and metabolomics have been employed to gain a deeper understanding of the roles and mechanisms of L. salivarius associated with its functional properties. This review aims to provide an overview of the probiotic characteristics of L. salivarius, containing its specific interactions with the host microflora, as well as insights from omics studies.

11.
J Sci Food Agric ; 104(3): 1458-1469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814322

RESUMO

BACKGROUND: Streptococcus thermophilus is an important strain widely used in dairy fermentation, with distinct urea metabolism characteristics compared to other lactic acid bacteria. The conversion of urea by S. thermophilus has been shown to affect the flavor and acidification characteristics of milk. Additionally, urea metabolism has been found to significantly increase the number of cells and reduce cell damage under acidic pH conditions, resulting in higher activity. However, the physiological role of urea metabolism in S. thermophilus has not been fully evaluated. A deep understanding of this metabolic feature is of great significance for its production and application. Genome-scale metabolic network models (GEMs) are effective tools for investigating the metabolic network of organisms using computational biology methods. Constructing an organism-specific GEM can assist us in comprehending its characteristic metabolism at a systemic level. RESULTS: In the present study, we reconstructed a high-quality GEM of S. thermophilus S-3 (iCH492), which contains 492 genes, 608 metabolites and 642 reactions. Growth phenotyping experiments were employed to validate the model both qualitatively and quantitatively, yielding satisfactory predictive accuracy (95.83%), sensitivity (93.33%) and specificity (100%). Subsequently, a systematic evaluation of urea metabolism in S. thermophilus was performed using iCH492. The results showed that urea metabolism reduces intracellular hydrogen ions and creates membrane potential by producing and transporting ammonium ions. This activation of glycolytic fluxes and ATP synthase produces more ATP for biomass synthesis. The regulation of fluxes of reactions involving NAD(P)H by urea metabolism improves redox balance. CONCLUSION: Model iCH492 represents the most comprehensive knowledge-base of S. thermophilus to date, serving as a potent tool. The evaluation of urea metabolism led to novel insights regarding the role of urease. © 2023 Society of Chemical Industry.


Assuntos
Redes e Vias Metabólicas , Streptococcus thermophilus , Animais , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Fermentação , Leite/química , Ureia/metabolismo , Trifosfato de Adenosina/análise
13.
J Sci Food Agric ; 104(2): 1200-1206, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37647419

RESUMO

BACKGROUND: The two essential editing elements in the clustered regularly interspaced short palindromic repeats (CRISPR) editing system are promoter and single-guide RNA (sgRNA), the latter of which determines whether Cas protein can precisely target a specific location to edit the targeted gene. Therefore, the selection of sgRNA is crucial to the efficiency of the CRISPR editing system. Various online prediction tools for sgRNA are currently available. These tools can predict all possible sgRNAs of the targeted gene and rank sgRNAs according to certain scoring criteria according to the demands of the user. RESULTS: We designed sgRNAs for Lactococcus lactis NZ9000 LLNZ_RS02020 (ldh) and LLNZ_RS10925 (upp) individually using online prediction software - CRISPOR - and successfully constructed a series of knockout strains to allow comparison of the knockout efficiency of each sgRNA and analyze the differences between software predictions and actual experimental results. CONCLUSION: Our experimental results showed that the actual editing efficiency of the screened sgRNAs did not match the predicted results - a phenomenon that suggests that established findings from eukaryotic studies are not universally applicable to prokaryotes. Software prediction can still be used as a tool for the initial screening of sgRNAs before further selection of suitable sgRNAs through experimental experience. © 2023 Society of Chemical Industry.


Assuntos
Edição de Genes , Lactococcus lactis , Edição de Genes/métodos , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Lactococcus lactis/genética , Software
14.
DNA Cell Biol ; 42(11): 680-688, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37815547

RESUMO

Cerebral dopamine neurotrophic factor (CDNF) is a unique neurotrophic factor (NTF) that has shown significant neuroprotective and neurorestorative functions on midbrain dopaminergic neurons. The secondary structure of human CDNF protein contains eight α-helices. We previously found that two key helices, α1 and α7, regulated the intracellular trafficking and secretion of CDNF protein in different manners. The α1 mutation (M1) induced most CDNF proteins to reside in the endoplasmic reticulum and little be secreted extracellularly, while the α7 mutation (M7) caused the majority of CDNF proteins to be secreted out of the cells and little reside in the cells. However, the regulation of the two mutants on the function of CDNF remains unclear. In this study, we investigated the effects of M1 and M7 on the protective activity of CDNF in PC12 cells, which were treated with 6-hydroxydopamine (6-OHDA) to mimic Parkinson's disease. We found that both M1 and M7 could promote survival and inhibit apoptosis more effectively than Wt in 6-OHDA-lesioned PC12 cells. Therefore, these findings will advance our understanding of the important regulation of subdomains on the function of NTFs.


Assuntos
Dopamina , Doença de Parkinson , Ratos , Animais , Humanos , Oxidopamina/toxicidade , Células PC12 , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/farmacologia , Fatores de Crescimento Neural/metabolismo , Doença de Parkinson/genética
15.
Front Cardiovasc Med ; 10: 1145695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324633

RESUMO

Aims: Few studies on early recurrence (ER) focused on patients with persistent atrial fibrillation (AF). We aimed to investigate the characteristics and clinical significance of ER in patients with persistent AF after catheter ablation (CA). Methods: A total of 348 consecutive patients who underwent first-time CA for persistent and long-standing persistent AF between January 2019 and May 2022 were investigated. Results: About 5/348 (1.44%) patients who failed to convert to sinus rhythm after CA were excluded. A total of 110/343 (32.1%) patients had ER, in which 98 (89.1%) were persistent and 50.9% occurred in the first 24 h after CA. Compared with the patients without ER, those with ER were more likely to have late recurrence (LR) (92.7% vs. 1.7%, P < 0.001) during a median follow-up of 13 (IQR 6-23) months. ER was the most significant independent predictor for LR (OR 120.5, 95% CI 41.5-349.8, P < 0.001). ER as atrial flutter (AFL) had a lower risk of LR when compared with ER as AF (P = 0.011) and both AF and AFL (P = 0.003). Early intervention of the patient with ER improved the short-term outcomes (P < 0.001), not long-term outcomes. Only 22/251 (8.76%) patients of LR appears among those who had no recurrence in the first month. Conclusions: Patients with persistent AF may not have a blanking period but rather have a risk period. Clinical significance of the blanking period should be given differential treatment between paroxysmal AF and persistent AF.

16.
Microb Cell Fact ; 22(1): 112, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308875

RESUMO

Bifidobacteria are representative intestinal probiotics that have extremely high application value in the food and medical fields. However, the lack of molecular biology tools limits the research on functional genes and mechanisms of bifidobacteria. The application of an accurate and efficient CRISPR system to genome engineering can fill the gap in efficient genetic tools for bifidobacteria. In this study, CRISPR system of B. animalis AR668 was established, which successfully knocked out gene 0348 and gene 0208. The influence of different homology arms and fragments on the knockout effect of the system was explored. In addition, the inducible plasmid curing system of bifidobacteria was innovatively established. This study contributes to the genetic modification and functional mechanism analysis of bifidobacteria.


Assuntos
Bifidobacterium animalis , Probióticos , Sistemas CRISPR-Cas , Bifidobacterium , Edição de Genes
17.
J Agric Food Chem ; 71(24): 9337-9348, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37288995

RESUMO

Western diet is thought to increase susceptibility to inflammatory bowel disease (IBD), and probiotics are a potential therapeutic agent for IBD. This study revealed the effects of Lactobacillus plantarum AR113 and L. plantarum AR113Δbsh1 on a dextran sulfate sodium (DSS)-induced colitis mouse model under the Western diet (WD). After four weeks of WD and low-sugar and low-fat diet (LD) intervention, induction with 3% DSS, and intragastric administration of probiotics, we found that L. plantarum AR113 could regulate blood glucose and lipid levels and have a certain protective effect on hepatocytes. Our results suggested that the L. plantarum AR113 alleviated DSS-induced colitis under the Western diet by improving dyslipidemia, repairing intestinal barrier dysfunction, and inhibiting the TLR4/Myd88/TRAF-6/NF-κB inflammatory pathway. However, these changes were not demonstrated in the L. plantarum AR113Δbsh1, and therefore, we reasoned that the presence of bsh1 may play a crucial role in the L. plantarum AR113 exerting its anti-inflammatory function. The relationship between bile salt hydrolase (BSH) and colitis was worthy of further exploration.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Lactobacillus plantarum , Probióticos , Animais , Camundongos , Anti-Inflamatórios , Colite/induzido quimicamente , Colite/genética , Colite/terapia , Sulfato de Dextrana/efeitos adversos , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/microbiologia , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo
18.
iScience ; 26(3): 106196, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36895642

RESUMO

Bile salt hydrolases are thought to be the gatekeepers of bile acid metabolism. To study the role of BSH in colitis, we investigated the ameliorative effects of different BSH-knockout strains of Lactiplantibacillus plantarum AR113. The results showed that L. plantarum Δbsh 1 and Δbsh 3 treatments did not improve body weight and alleviate the hyperactivated myeloperoxidase activity to the DSS group. However, the findings for L. plantarum AR113, L. plantarum Δbsh 2 and Δbsh 4 treatments were completely opposite. The double and triple bsh knockout strains further confirmed that BSH 1 and BSH 3 are critical for the ameliorative effects of L. plantarum AR113. In addition, L. plantarum Δbsh 1 and Δbsh 3 did not significantly inhibit the increase in pro-inflammatory cytokines or the decrease in an anti-inflammatory cytokine. These results suggest that BSH 1 and BSH 3 in L. plantarum play important roles in alleviating enteritis symptoms.

19.
J Nutr ; 153(4): 924-939, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806451

RESUMO

Long-term exposure to adverse life events that provoke acute or chronic psychological stress (hereinafter "stress") can negatively affect physical health and even increase susceptibility to psychological illnesses, such as anxiety and depression. As a part of the hypothalamic-pituitary-adrenal axis, corticotropin-releasing factor (CRF) released from the hypothalamus is primarily responsible for the stress response. Typically, CRF disrupts the gastrointestinal system and leads to gut microbiota dysbiosis, thereby increasing risk of functional gastrointestinal diseases, such as irritable bowel syndrome. Furthermore, CRF increases oxidative damage to the colon and triggers immune responses involving mast cells, neutrophils, and monocytes. CRF even affects the differentiation of intestinal stem cells (ISCs), causing enterochromaffin cells to secrete excessive amounts of 5-hydroxytryptamine (5-HT). Therefore, stress is often accompanied by damage to the intestinal epithelial barrier function, followed by increased intestinal permeability and bacterial translocation. There are multi-network interactions between the gut microbiota and stress, and gut microbiota may relieve the effects of stress on the body. Dietary intake of probiotics can provide energy for ISCs through glycolysis, thereby alleviating the disruption to homeostasis caused by stress, and it significantly bolsters the intestinal barrier, alleviates intestinal inflammation, and maintains endocrine homeostasis. Gut microbiota also directly affect the synthesis of hormones and neurotransmitters, such as CRF, 5-HT, dopamine, and norepinephrine. Moreover, the Mediterranean diet enhances the stress resistance to some extent by regulating the intestinal flora. This article reviews recent research on how stress damages the gut and microbiota, how the gut microbiota can improve gut health by modulating injury due to stress, and how the diet relieves stress injury by interfering with intestinal microflora. This review gives insight into the potential role of the gut and its microbiota in relieving the effects of stress via the gut-brain axis.


Assuntos
Hormônio Liberador da Corticotropina , Sistema Hipotálamo-Hipofisário , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/microbiologia , Serotonina , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico , Homeostase
20.
BMC Neurol ; 23(1): 24, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36647033

RESUMO

BACKGROUND: Autonomic dysfunctions including bladder dysfunction, gastrointestinal dysfunction and orthostasis are common symptoms of autoimmune glial fibrillary acidic protein astrocytopathy (A-GFAP-A); however, cardiac autonomic dysfunction and abnormal circadian rhythm of blood pressure, which can lead to poor prognosis and even sudden cardiac death, has never been reported in A-GFAP-A patient. CASE PRESENTATION: A 68-year-old male Chinese patient presented to our hospital with headache, fever, progressive disturbance of consciousness, dysuria, and limb weakness. Abnormal heart rate variability and non-dipper circadian rhythm of blood pressure gradually developed during hospitalization, which is rare in A-GFAP-A. He had positive GFAP IgG in cerebrospinal fluid (CSF). Enhanced brian MRI showed uneven enhancement and T2 hyperintense lesions of medulla oblongata; Cervical spine MRI showed T2 hyperintense lesions in medulla oblongata and upper margin of the T2 vertebral body. A contrast-enhanced thoracic spine MRI showed uneven enhancement and T2 hyperintense lesions of T1 to T6 vertebral segments. After treatment with intravenous immunoglobulin and corticosteroids, the patient's symptoms, including autonomic dysfunction, alleviated dramatically. Finally, his heart rate variability and blood pressure variability became normal. CONCLUSIONS: Our case broadens the spectrum of expected symptoms in A-GFAP- A syndromes as it presented with heart rate variability and blood pressure variability.


Assuntos
Imunoglobulinas Intravenosas , Medula Espinal , Masculino , Humanos , Idoso , Pressão Sanguínea , Proteína Glial Fibrilar Ácida , Frequência Cardíaca , Medula Espinal/metabolismo , Autoanticorpos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA