Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.923
Filtrar
1.
Int J Environ Health Res ; : 1-10, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022824

RESUMO

To explore the association between fluoride exposure and depression / anxiety in adults, the 1,169 participants were recruited. The demographic information of participants was obtained through questionnaire survey and physical measurements. Morning urine samples were collected, and urinary fluoride (UF) level was determined. Changes in depression and anxiety levels were evaluated using the Patient Health Questionnaire-2 and General Anxiety Disorder-2 scales. The association between psychiatric disorders and UF levels was analyzed. In the total population, the prevalence of depression and anxiety were 3.17% and 4.19%, respectively. These results showed no significant association between depression / anxiety scale scores and UF levels. Logistic regression suggested no significant association between depression / anxiety levels, and UF levels, but there was an interaction between UF and income on depression. Our findings highlighted the interaction between fluoride exposure and monthly income, which may affect depression in adults.

2.
Plants (Basel) ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38999603

RESUMO

Both melatonin and hydrogen sulfide (H2S) mitigate chromium (Cr) toxicity in plants, but the specific interaction between melatonin and H2S in Cr detoxification remains unclear. In this study, the interaction between melatonin and H2S in Cr detoxification was elucidated by measuring cell wall polysaccharide metabolism and antioxidant enzyme activity in maize. The findings revealed that exposure to Cr stress (100 µM K2Cr2O7) resulted in the upregulation of L-/D-cysteine desulfhydrase (LCD/DCD) gene expression, leading to a 77.8% and 27.3% increase in endogenous H2S levels in maize leaves and roots, respectively. Similarly, the endogenous melatonin system is activated in response to Cr stress. We found that melatonin had a significant impact on the relative expression of LCD/DCD, leading to a 103.3% and 116.7% increase in endogenous H2S levels in maize leaves and roots, respectively. In contrast, NaHS had minimal effects on the relative mRNA expression of serotonin-Nacetyltransferase (SNAT) and endogenous melatonin levels. The production of H2S induced by melatonin is accompanied by an increase in Cr tolerance, as evidenced by elevated gene expression, elevated cell wall polysaccharide content, increased pectin methylesterase activity, and improved antioxidant enzyme activity. The scavenging of H2S decreases the melatonin-induced Cr tolerance, while the inhibitor of melatonin synthesis, p-chlorophenylalanine (p-CPA), has minimal impact on H2S-induced Cr tolerance. In conclusion, our findings suggest that H2S serves as a downstream signaling molecule involved in melatonin-induced Cr tolerance in maize.

3.
Angew Chem Int Ed Engl ; : e202411298, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011619

RESUMO

The engineering of tunable photoluminescence (PL) in single materials with a full-spectrum emission represents a highly coveted objective but poses a formidable challenge. In this context, the realization of near-full-spectrum PL emission, spanning the visible light range from 424 to 620 nm, in a single-component two-dimensional (2D) hybrid lead halide perovskite, (ETA)2PbBr4 (ETA+ = (HO)(CH2)2NH3+), is reported, achieved through high-pressure treatment. A pressure-induced phase transition occurs upon compression, transforming the crystal structure from an orthorhombic phase under ambient conditions to a monoclinic structure at high pressure. This phase transition driven by the adaptive and dynamic configuration changes of organic amine cations enables an effective and continuous narrowing of the bandgap in this halide crystal. The hydrogen bonding interactions between inorganic layers and organic amine cations (N-H…Br and O-H…Br hydrogen bonds) efficiently modulate the organic amine cations penetration and the octahedral distortion. Consequently, this phenomenon induces a phase transition and results in red-shifted PL emissions, leading to the near-full-spectrum emission. This work opens a possibility for achieving wide PL emissions with coverage across the visible light spectrum by employing high pressure in single halide perovskites.

4.
World J Gastrointest Surg ; 16(6): 1601-1608, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38983328

RESUMO

BACKGROUND: This study was designed to investigate the clinical efficacy and safety of Gamma Knife® combined with transarterial chemoembolization (TACE) and immunotherapy in the treatment of primary liver cancer. AIM: To investigate the clinical efficacy and safety of Gamma Knife® combined with TACE and immune-targeted therapy in the treatment of primary liver cancer. METHODS: Clinical data from 51 patients with primary liver cancer admitted to our hospital between May 2018 and October 2022 were retrospectively collected. All patients underwent Gamma Knife® treatment combined with TACE and immunotherapy. The clinical efficacy, changes in liver function, overall survival (OS), and progression-free survival (PFS) of patients with different treatment responses were evaluated, and adverse reactions were recorded. RESULTS: The last follow-up for this study was conducted on October 31, 2023. Clinical evaluation of the 51 patients with primary liver cancer revealed a partial response (PR) in 27 patients, accounting for 52.94% (27/51); stable disease (SD) in 16 patients, accounting for 31.37% (16/51); and progressive disease (PD) in 8 patients, accounting for 15.69% (8/51). The objective response rate was 52.94%, and the disease control rate was 84.31%. Alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alpha-fetoprotein isoform levels decreased after treatment compared with pretreatment (all P = 0.000). The median OS was 26 months [95% confidence interval (95%CI): 19.946-32.054] in the PR group and 19 months (95%CI: 14.156-23.125) in the SD + PD group, with a statistically significant difference (P = 0.015). The median PFS was 20 months (95%CI: 18.441-34.559) in the PR group and 12 months (95%CI: 8.745-13.425) in the SD + PD group, with a statistically significant difference (P = 0.002). Common adverse reactions during treatment included nausea and vomiting (39.22%), thrombocytopenia (27.45%), and leukopenia (25.49%), with no treatment-related deaths reported. CONCLUSION: Gamma Knife® combined with TACE and immune-targeted therapy is safe and effective in the treatment of primary liver cancer and has a good effect on improving the clinical benefit rate and liver function of patients.

6.
Small ; : e2403804, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973112

RESUMO

In the pursuit of efficient singlet oxygen generation in Fenton-like catalysis, the utilization of single-atom catalysts (SACs) emerges as a highly desired strategy. Here, a discovery is reported that the single-atom Fe coordinated with five N-atoms on N-doped porous carbon, denoted as Fe-N5/NC, outperform its counterparts, those coordinated with four (Fe-N4/NC) or six N-atoms (Fe-N6/NC), as well as state-of-the-art SACs comprising other transition metals. Thus, Fe-N5/NC exhibits exceptional efficacy in activating peroxymonosulfate for the degradation of organic pollutants. The coordination number of N-atoms can be readily adjusted by pyrolysis of pre-assembly structures consisting of Fe3+ and various isomers of phenylenediamine. Fe-N5/NC displayed outstanding tolerance to environmental disturbances and minimal iron leaching when incorporated into a membrane reactor. A mechanistic study reveals that the axial ligand N reduces the contribution of Fe-3d orbitals in LUMO and increases the LUMO energy of Fe-N5/NC. This, in turn, reduces the oxophilicity of the Fe center, promoting the reactivity of *OO intermediate-a pivotal step for yielding singlet oxygen and the rate-determining step. These findings unveil the significance of manipulating the oxophilicity of metal atoms in single-atom catalysis and highlight the potential to augment Fenton-like catalysis performance using Fe-SACs.

7.
Research (Wash D C) ; 7: 0411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974011

RESUMO

Molecular materials possessing switchable magneto-optical properties are of great interest due to their potential applications in spintronics and molecular devices. However, switching their photoluminescence (PL) and single-molecule magnet (SMM) behavior via light-induced structural changes still constitutes a formidable challenge. Here, a series of cubane structures were synthesized via self-assembly of 9-anthracene carboxylic acid (HAC) and rare-earth ions. All complexes exhibited obvious photochromic phenomena and complete PL quenching upon Xe lamp irradiation, which were realized via the synergistic effect of photogenerated radicals and [4 + 4] photocycloaddition of the AC components. The quenched PL showed the largest fluorescence intensity change (99.72%) in electron-transfer photochromic materials. A reversible decoloration process was realized via mechanical grinding, which is unexpectedly in the electron-transfer photochromic materials. Importantly, an SMM behavior of the Dy analog was observed after room-temperature irradiation due to the photocycloaddition of AC ligands and the photogenerated stable radicals changed the electrostatic ligand field and magnetic coupling. Moreover, based on the remarkably photochromic and photoluminescent properties of these compounds, 2 demos were applied to support their application in information anti-counterfeiting and inkless printing. This work, for the first time utilizing the simultaneous modulation of photocycloaddition and photogenerated radicals in one system, realizes complete PL quenching and light-induced SMM behavior, providing a dynamical switch for the construction of multifunctional polymorphic materials with optical response and optical storage devices.

8.
Dev Cell ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39025063

RESUMO

The ubiquitin-proteasome system (UPS) plays crucial roles in cellular processes including plant growth, development, and stress responses. In this study, we report that a pair of E3 ubiquitin ligases, AvrPiz-t-interaction protein 6 (APIP6) and IPA1-interaction protein 1 (IPI1), intricately target early flowering3 (ELF3) paralogous proteins to control rice immunity and flowering. APIP6 forms homo-oligomers or hetero-oligomers with IPI1. Both proteins interact with OsELF3-2, promoting its degradation to positively control resistance against the rice blast fungus (Magnaporthe oryzae). Intriguingly, overexpression of IPI1 in Nipponbare caused significantly late-flowering phenotypes similar to the oself3-1 mutant. Except for late flowering, oself3-1 enhances resistance against M. oryzae. IPI1 also interacts with and promotes the degradation of OsELF3-1, a paralog of OsELF3-2. Notably, IPI1 and APIP6 synergistically modulate OsELF3s degradation, finely tuning blast disease resistance by targeting OsELF3-2, while IPI1 controls both disease resistance and flowering by targeting OsELF3-1. This study unravels multiple functions for a pair of E3 ligases in rice.

9.
J Asian Nat Prod Res ; : 1-6, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860491

RESUMO

Three new flavonoids including two isoflavanones sophortones A and B (1 and 2), and one chalcone sophortone C (3) were isolated from the roots of Sophora tonkinensis. Their structures were established by UV, IR, HRESIMS, and NMR data. The absolute configurations of 1 and 2 were determined by electronic circular dichroism (ECD) calculations.

10.
Cell Signal ; 121: 111258, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866351

RESUMO

Adenosine deaminases acting on RNA 1(ADAR1), an RNA editing enzyme that converts adenosine to inosine by deamination in double-stranded RNAs, plays an important role in occurrence and progression of various types of cancer. Ferroptosis has emerged as a hot topic of cancer research in recent years. We have previously reported that ADAR1 promotes breast cancer progression by regulating miR-335-5p and METTL3. However, whether ADAR1 has effects on ferroptosis in breast cancer cells is largely unknown. In this study, we knocked down ADAR1 using CRISPR-Cas9 technology or over-expressed ADAR1 protein using plasmid expressing ADAR1 in MCF-7 and MDA-MB-231 breast cancer cell lines, then detected cell viability, and levels of ROS, MDA, GSH, Fe2+, GPX4 protein and miR-335-5p. We showed that the cell proliferation was inhibited, levels of ROS, MDA, Fe2+, and miR-335-5p were increased, while GSH and GPX4 levels were decreased after loss of ADAR1, compared to the control group. The opposite effects were observed after ADAR1 overexpression in the cells. Further, we demonstrated that ADAR1-controlled miR-335-5p targeted Sp1 transcription factor of GPX4, a known ferroptosis molecular marker, leading to inhibition of ferroptosis by ADAR1 in breast cancer cells. Moreover, RNA editing activity of ADAR1 is not essential for inducing ferroptosis. Collectively, loss of ADAR1 induces ferroptosis in breast cancer cells by regulating miR-335-5p/Sp1/GPX4 pathway. The findings may provide insights into the mechanism by which ADAR1 promotes breast cancer progression via inhibiting ferroptosis.

11.
Ecotoxicol Environ Saf ; 280: 116540, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833982

RESUMO

The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 µM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 µM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.


Assuntos
Biodegradação Ambiental , Burkholderiales , Escherichia coli , Polietilenotereftalatos , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Burkholderiales/enzimologia , Escherichia coli/genética , Bacillus anthracis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Engenharia de Proteínas
12.
Biol Trace Elem Res ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910164

RESUMO

Humans are exposed to various chemical elements that have been associated with the development and progression of diseases such as coronary artery disease (CAD). Unlike previous research, we employed a multi-element approach to investigate CAD patients and those with comorbid conditions such as diabetes (CAD-DM2), high blood pressure (CAD-HBP), or high blood lipids (CAD-HBL). Plasma concentrations of 21 elements, including lithium (Li), boron (B), aluminum (Al), calcium (Ca), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), strontium (Sr), cadmium (Cd), tin (Sn), stibium (Sb), barium (Ba), and lead (Pb), were measured in CAD patients (n = 201) and healthy subjects (n = 110) using inductively coupled plasma-mass spectrometry (ICP-MS). Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) models were utilized to analyze the ionomic profiles. Spearman correlation analysis was employed to identify the interaction patterns among individual elements. We found that levels of Ba, Li, Ni, Zn and Pb were elevated in the CAD group compared to the healthy group, while Sb, Ca, Cu, Ti, Fe, and Se were lower. Furthermore, the CAD-DM2 group exhibited higher levels of Ni and Cd, while the CAD-HBP group showed lower levels of Co and Mn. In the CAD-HBL group, Ti was increased, whereas Ba, Cr, Cu, Co, Mn, and Ni were reduced. In conclusion, ionomic profiles can be utilized to differentiate CAD patients from healthy individuals, potentially providing insights for future treatment or dietary interventions.

13.
Talanta ; 278: 126485, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38943767

RESUMO

Although nanozyme engineering has made tremendous progress, there is a huge gap between them and natural enzymes due to the enormous challenge of precisely adjusting the geometric and electronic structure of active sites. Considering that intentionally adjusting the metal-carrier interactions may bring the promising catalytic activity, in this work, a novel Mo atom nanocluster is successfully synthesized using nitrogen-doped Mxene (MoACs/N-MXene) nanozymes as carriers. The constructed MoACs/N-MXene displays excellent peroxidase-like catalytic activity and kinetics, outweighing its N-MXene and Mo nanoparticles (NPs)-MXene references and natural horse radish peroxidase. This work not only reports a successful example of MoACs/N-MXene nanozyme as a guide for achieving peroxidase-mimic performance of nanozymes for colorimetric glutathione sensing at 0.29 µM, but also expands the application prospects of two-dimensional MXene nanosheets by reasonably introducing metal atomic clusters and nonmetal atom doping and exploring related nanozyme properties.

14.
Biology (Basel) ; 13(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38927240

RESUMO

Flooding and drought are the two most devastating natural hazards limiting maize production. Exogenous glycinebetaine (GB), an osmotic adjustment agent, has been extensively used but there is limited research on its role in mitigating the negative effects of different abiotic stresses. This study aims to identify the different roles of GB in regulating the diverse defense regulation of maize against drought and flooding. Hybrids of Yindieyu 9 and Heyu 397 grown in pots in a ventilated greenhouse were subjected to flooding (2-3 cm standing layer) and drought (40-45% field capacity) at the three-leaf stage for 8 d. The effects of different concentrations of foliar GB (0, 0.5, 1.0, 5.0, and 10.0 mM) on the physiochemical attributes and growth of maize were tested. Greater drought than flooding tolerance in both varieties to combat oxidative stress was associated with higher antioxidant activities and proline content. While flooding decreased superoxide dismutase and guaiacol peroxidase (POD) activities and proline content compared to normal water, they all declined with stress duration, leading to a larger reactive oxygen species compared to drought. It was POD under drought stress and ascorbate peroxidase under flooding stress that played crucial roles in tolerating water stress. Foliar GB further enhanced antioxidant ability and contributed more effects to POD to eliminate more hydrogen peroxide than the superoxide anion, promoting growth, especially for leaves under water stress. Furthermore, exogenous GB made a greater increment in Heyu 397 than Yindieyu 9, as well as flooding compared to drought. Overall, a GB concentration of 5.0 mM, with a non-toxic effect on well-watered maize, was determined to be optimal for the effective mitigation of water-stress damage to the physiochemical characteristics and growth of maize.

15.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38842255

RESUMO

The origins and extreme morphological evolution of the modern dog breeds are poorly studied because the founder populations are extinct. Here, we analyse eight 100 to 200 years old dog fur samples obtained from traditional North Swedish clothing, to explore the origin and artificial selection of the modern Nordic Lapphund and Elkhound dog breeds. Population genomic analysis confirmed the Lapphund and Elkhound breeds to originate from the local dog population, and showed a distinct decrease in genetic diversity in agreement with intense breeding. We identified eleven genes under positive selection during the breed development. In particular, the MSRB3 gene, associated with breed-related ear morphology, was selected in all Lapphund and Elkhound breeds, and functional assays showed that a SNP mutation in the 3'UTR region suppresses its expression through miRNA regulation. Our findings demonstrate analysis of near-modern dog artifacts as an effective tool for interpreting the origin and artificial selection of the modern dog breeds.


Assuntos
Pelo Animal , Seleção Genética , Animais , Cães/genética , Polimorfismo de Nucleotídeo Único , Cruzamento , Suécia , Variação Genética , MicroRNAs/genética
16.
Sensors (Basel) ; 24(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38931680

RESUMO

For mobile robots, the high-precision integrated calibration and structural robustness of multi-sensor systems are important prerequisites for ensuring healthy operations in the later stage. Currently, there is no well-established validation method for the calibration accuracy and structural robustness of multi-sensor systems, especially for dynamic traveling situations. This paper presents a novel validation method for the calibration accuracy and structural robustness of a multi-sensor mobile robot. The method employs a ground-object-air cooperation mechanism, termed the "ground surface simulation field (GSSF)-mobile robot -photoelectric transmitter station (PTS)". Firstly, a static high-precision GSSF is established with the true north datum as a unified reference. Secondly, a rotatable synchronous tracking system (PTS) is assembled to conduct real-time pose measurements for a mobile vehicle. The relationship between each sensor and the vehicle body is utilized to measure the dynamic pose of each sensor. Finally, the calibration accuracy and structural robustness of the sensors are dynamically evaluated. In this context, epipolar line alignment is employed to assess the accuracy of the evaluation of relative orientation calibration of binocular cameras. Point cloud projection and superposition are utilized to realize the evaluation of absolute calibration accuracy and structural robustness of individual sensors, including the navigation camera (Navcam), hazard avoidance camera (Hazcam), multispectral camera, time-of-flight depth camera (TOF), and light detection and ranging (LiDAR), with respect to the vehicle body. The experimental results demonstrate that the proposed method offers a reliable means of dynamic validation for the testing phase of a mobile robot.

17.
Trends Plant Sci ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38902122

RESUMO

Cell-penetrating peptides (CPPs) are short (typically 5-30 amino acids), cationic, amphipathic, or hydrophobic peptides that facilitate the cellular uptake of diverse cargo molecules by eukaryotic cells via direct translocation or endocytosis across the plasma membrane. CPPs can deliver a variety of bioactive cargos, including proteins, peptides, nucleic acids, and small molecules into the cell. Once inside, the delivered cargo may function in the cytosol, nucleus, or other subcellular compartments. Numerous CPPs have been used for studies and drug delivery in mammalian systems. Although CPPs have many potential uses in plant research and agriculture, the application of CPPs in plants remains limited. Here we review the structures and mechanisms of CPPs and highlight their potential applications for sustainable agriculture.

19.
Opt Lett ; 49(12): 3428-3431, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875637

RESUMO

All-dielectric metasurface perfect absorbers (MPAs) based on quasibound states in the continuum (QBICs) play a crucial role in optical and photonic devices as they can excite high-Q resonances. These structures require adding back reflectors or placing at least two asymmetric elements in each unit to break the absorption limit of 50%, which will increase the design complexity. In this work, we propose a high-Q monolayer MPA (MMPA) composed of a tilted Si nanocube array. By tuning the tilted angle of the nanocube, dual-QBIC modes at two different wavelengths are excited, which corresponds to magnetic quadrupole (MQ) and toroidal dipole (TD) modes, respectively. The high-reflection but low-Q magnetic dipole (MD) background mode excited by such a dual-band structure can decrease the radiative loss of transmission of MQ and TD modes, enabling the structure to break the absorption limit of 50%. The maximum absorption achieves 94% simultaneously at the wavelength of 933 and 961 nm, with the Q factors of 759 and 986, respectively. Our work provides a simple paradigm for designing dual-band high-Q MMPAs, which would greatly expand their range of applications, such as multiplexed optical nanodevices.

20.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1177-1186, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886415

RESUMO

The radial growth of trees in alpine timberline is particularly sensitive to climate change. We sampled and disposed tree-ring cores of three coniferous tree species including Juniperus saltuaria, Abies forrestii, and Larix potaninii at alpine timberline in Yading Nature Reserve. The standard tree-ring chronology was used to explore the response of radial growth of different timberline species to climate change. The results showed that radial growth of L. potaninii increased after 2000, while that of A. forrestii declined after 2002, and J. saltuaria showed a significant decreasing growth trend in the past 10 years. Such results indicated divergent growth responses to climate factors among the three tree species at alpine timberline. The radial growth of J. saltuaria was sensitive to temperature, and was positively correlated with the minimum temperature from previous October to current August, the mean tempera-ture from previous November to current April and from current July to October, but was negatively associated with the relative humidity from current July to October. The radial growth of A. forrestii showed negative correlation with mean temperature and the maximum temperature from May to June in the current year, while it exhibited positive association with the relative humidity and the Palmer drought severity index from May to June in the current year. L. potaninii radial growth was positively associated with mean temperature and the maximum temperature of November-December in the previous year, the maximum temperature of current March and mean temperature of current August. The temporal stability of climate-growth relationship varied among different timberline species. The positive correlation between radial growth of A. forrestii and J. saltuaria and temperature gradually decreased, while the posi-tive relationship of L. potaninii radial growth and temperature gradually increased. Under the background of climate warming, rapid rise in surface air temperatures may promote the radial growth of L. potaninii, while inhibit that of J. saltuaria and A. forrestii, which may change the position of regional timberline.


Assuntos
Mudança Climática , Larix , China , Larix/crescimento & desenvolvimento , Juniperus/crescimento & desenvolvimento , Abies/crescimento & desenvolvimento , Ecossistema , Árvores/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Temperatura , Caules de Planta/crescimento & desenvolvimento , Altitude
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA