Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 33(6): 7103-7112, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884252

RESUMO

Farnesoid X receptor (FXR) is a nuclear receptor that has emerged as a key regulator in the maintenance of hepatic steatosis, inflammation, and fibrosis. However, the role of FXR in renal fibrosis remains to be established. Here, we investigate the effects of the FXR agonist EDP-305 in a mouse model of tubulointerstitial fibrosis via unilateral ureteral obstruction (UUO). Male C57Bl/6 mice received a UUO on their left kidney. On postoperative d 4, mice received daily treatment by oral gavage with either vehicle control (0.5% methylcellulose) or 10 or 30 mg/kg EDP-305. All animals were euthanized on postoperative d 12. EDP-305 dose-dependently decreased macrophage infiltration as measured by the F4/80 staining area and proinflammatory cytokine gene expression. EDP-305 also dose-dependently reduced interstitial fibrosis as assessed by morphometric quantification of the collagen proportional area and kidney hydroxyproline levels. Finally, yes-associated protein (YAP) activation, a major driver of fibrosis, increased after UUO injury and was diminished by EDP-305 treatment. Consistently, EDP-305 decreased TGF-ß1-induced YAP nuclear localization in human kidney 2 cells by increasing inhibitory YAP phosphorylation. YAP inhibition may be a novel antifibrotic mechanism of FXR agonism, and EDP-305 could be used to treat renal fibrosis.-Li, S., Ghoshal, S., Sojoodi, M., Arora, G., Masia, R., Erstad, D. J., Ferriera, D. S., Li, Y., Wang, G., Lanuti, M., Caravan, P., Or, Y. S., Jiang, L.-J., Tanabe, K. K., Fuchs, B. C. The farnesoid X receptor agonist EDP-305 reduces interstitial renal fibrosis in a mouse model of unilateral ureteral obstruction.


Assuntos
Fibrose/etiologia , Fibrose/prevenção & controle , Nefropatias/etiologia , Nefropatias/prevenção & controle , Receptores Citoplasmáticos e Nucleares/agonistas , Esteroides/farmacologia , Obstrução Ureteral/complicações , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Esteroides/uso terapêutico , Proteínas de Sinalização YAP
2.
Hepatol Commun ; 2(7): 821-835, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30027140

RESUMO

We examined a novel farnesoid X receptor agonist, EDP-305, for its antifibrotic effect in bile duct ligation (BDL) and choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) models of hepatic injury. We used molecular magnetic resonance imaging with the type 1 collagen-binding probe EP-3533 and the oxidized collagen-specific probe gadolinium hydrazide to noninvasively measure treatment response. BDL rats (n = 8 for each group) were treated with either low or high doses of EDP-305 starting on day 4 after BDL and were imaged on day 18. CDAHFD mice (n = 8 for each group) were treated starting at 6 weeks after the diet and were imaged at 12 weeks. Liver tissue was subjected to pathologic and morphometric scoring of fibrosis, hydroxyproline quantitation, and determination of fibrogenic messenger RNA expression. High-dose EDP-305 (30 mg/kg) reduced liver fibrosis in both the BDL and CDAHFD models as measured by collagen proportional area, hydroxyproline analysis, and fibrogenic gene expression (all P < 0.05). Magnetic resonance signal intensity with both EP-3533 in the BDL model and gadolinium hydrazide in the CDAHFD model was reduced with EDP-305 30 mg/kg treatment (P < 0.01). Histologically, EDP-305 30 mg/kg halted fibrosis progression in the CDAHFD model. Conclusion: EDP-305 reduced fibrosis progression in rat BDL and mouse CDAHFD models. Molecular imaging of collagen and oxidized collagen is sensitive to changes in fibrosis and could be used to noninvasively measure treatment response in clinical trials. (Hepatology Communications 2018;2:821-835).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA