Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Angew Chem Int Ed Engl ; : e202404289, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712497

RESUMO

Interfacial engineering of perovskite films has been the main strategies in improving the efficiency and stability of perovskite solar cells (PSCs). In this study, three new donor-acceptor (D-A)-type interfacial dipole (DAID) molecules with hole-transporting and different anchoring units are designed and employed in PSCs. The formation of interface dipoles by the DAID molecules on the perovskite film can efficiently modulate the energy level alignment, improve charge extraction, and reduce non-radiative recombination. Among the three DAID molecules, TPA-BAM with amide group exhibits the best chemical and optoelectrical properties, achieving a champion PCE of 25.29% with the enhanced open-circuit voltage of 1.174 V and fill factor of 84.34%, due to the reduced defect density and improved interfacial hole extraction. Meanwhile, the operational stability of the unencapsulated device has been significantly improved. Our study provides a prospect for rationalized screening of interfacial dipole materials for efficient and stable PSCs.

2.
Environ Sci Technol ; 58(15): 6457-6474, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38568682

RESUMO

The circular economy (CE) aims to decouple the growth of the economy from the consumption of finite resources through strategies, such as eliminating waste, circulating materials in use, and regenerating natural systems. Due to the rapid development of data science (DS), promising progress has been made in the transition toward CE in the past decade. DS offers various methods to achieve accurate predictions, accelerate product sustainable design, prolong asset life, optimize the infrastructure needed to circulate materials, and provide evidence-based insights. Despite the exciting scientific advances in this field, there still lacks a comprehensive review on this topic to summarize past achievements, synthesize knowledge gained, and navigate future research directions. In this paper, we try to summarize how DS accelerated the transition to CE. We conducted a critical review of where and how DS has helped the CE transition with a focus on four areas including (1) characterizing socioeconomic metabolism, (2) reducing unnecessary waste generation by enhancing material efficiency and optimizing product design, (3) extending product lifetime through repair, and (4) facilitating waste reuse and recycling. We also introduced the limitations and challenges in the current applications and discussed opportunities to provide a clear roadmap for future research in this field.


Assuntos
Ciência de Dados , Gerenciamento de Resíduos , Reciclagem
3.
AMB Express ; 14(1): 37, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622373

RESUMO

This research aimed to investigate effects of different yeast culture (YC) levels on in vitro fermentation characteristics and bacterial and fungal community under high concentrate diet. A total of 5 groups were included in the experiment: control group without YC (CON), YC1 (0.5% YC proportion of substrate dry matter), YC2 (1%), YC3 (1.5%) and YC4 (2%). After 48 h of fermentation, the incubation fluids and residues were collected to analyze the ruminal fermentation parameters and bacterial and fungal community. Results showed that the ruminal fluid pH of YC2 and YC4 groups was higher (P < 0.05) than that of CON group. Compared with CON group, the microbial protein, propionate and butyrate concentrations and cumulative gas production at 48 h of YC2 group were significantly increased (P < 0.05), whereas an opposite trend of ammonia nitrogen and lactate was observed between two groups. Microbial analysis showed that the Chao1 and Shannon indexes of YC2 group were higher (P < 0.05) than those of CON group. Additionally, YC supplementation significantly decreased (P < 0.05) Succinivibrionaceae_UCG-001, Streptococcus bovis and Neosetophoma relative abundances. An opposite tendency of Aspergillus abundance was found between CON and YC treatments. Compared with CON group, the relative abundances of Prevotella, Succiniclasticum, Butyrivibrio and Megasphaera elsdenii were significantly increased (P < 0.05) in YC2 group, while Apiotrichum and unclassified Clostridiales relative abundances were decreased (P < 0.05). In conclusion, high concentrate substrate supplemented with appropriate YC (1%) can improve ruminal fermentation and regulate bacterial and fungal composition.

4.
Biofabrication ; 16(2)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38507799

RESUMO

The application of additive manufacturing (AM) technology plays a significant role in various fields, incorporating a wide range of cutting-edge technologies such as aerospace, medical treatment, electronic information, and materials. It is currently widely adopted for medical services, national defense, and industrial manufacturing. In recent years, AM has also been extensively employed to produce bone scaffolds and implant materials. Through AM, products can be manufactured without being constrained by complex internal structures. AM is particularly advantageous in the production of macroscopically irregular and microscopically porous biomimetic bone scaffolds, with short production cycles required. In this paper, AM commonly used to produce bone scaffolds and orthopedic implants is overviewed to analyze the different materials and structures adopted for AM. The applications of antibacterial bone scaffolds and bone scaffolds in biologically relevant animal models are discussed. Also, the influence on the comprehensive performance of product mechanics, mass transfer, and biology is explored. By identifying the reasons for the limited application of existing AM in the biomedical field, the solutions are proposed. This study provides an important reference for the future development of AM in the field of orthopedic healthcare. In conclusion, various AM technologies, the requirements of bone scaffolds and the important role of AM in building bridges between biomaterials, additives, and bone tissue engineering scaffolds are described and highlighted. Nevertheless, more caution should be exercised when designing bone scaffolds and conducting in vivo trials, due to the lack of standardized processes, which prevents the accuracy of results and reduces the reliability of information.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Animais , Reprodutibilidade dos Testes , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Engenharia Tecidual , Osso e Ossos
5.
Angew Chem Int Ed Engl ; 63(20): e202318754, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38407918

RESUMO

In the pursuit of highly efficient perovskite solar cells, spiro-OMeTAD has demonstrated recorded power conversion efficiencies (PCEs), however, the stability issue remains one of the bottlenecks constraining its commercial development. In this study, we successfully synthesize a novel self-polymerized spiro-type interfacial molecule, termed v-spiro. The linearly arranged molecule exhibits stronger intermolecular interactions and higher intrinsic hole mobility compared to spiro-OMeTAD. Importantly, the vinyl groups in v-spiro enable in situ polymerization, forming a polymeric protective layer on the perovskite film surface, which proves highly effective in suppressing moisture degradation and ion migration. Utilizing these advantages, poly-v-spiro-based device achieves an outstanding efficiency of 24.54 %, with an enhanced open-circuit voltage of 1.173 V and a fill factor of 81.11 %, owing to the reduced defect density, energy level alignment and efficient interfacial hole extraction. Furthermore, the operational stability of unencapsulated devices is significantly enhanced, maintaining initial efficiencies above 90 % even after 2000 hours under approximately 60 % humidity or 1250 hours under continuous AM 1.5G sunlight exposure. This work presents a comprehensive approach to achieving both high efficiency and long-term stability in PSCs through innovative interfacial design.

6.
Heliyon ; 10(3): e25196, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322845

RESUMO

A hybrid laser composed of infrared and blue laser is applied in fabricating TiB2/AlSi7Mg composites on AlSi7Mg substrate by LPBF. The effect on formability, molten pool morphology, molten pool size and microstructure under infrared, blue and hybrid laser were compared. It was confirmed that hybrid laser can make up for the unbalanced energy distribution of infrared laser and the low energy density of blue laser. The increased energy input improves the molten pool size and cellular dendrites size. Therefore, the hybrid laser can improve the formability and forming stability in the LPBF process of low absorption rate alloys.

7.
Nat Commun ; 14(1): 3216, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270581

RESUMO

Although the power conversion efficiency values of perovskite solar cells continue to be refreshed, it is still far from the theoretical Shockley-Queisser limit. Two major issues need to be addressed, including disorder crystallization of perovskite and unbalanced interface charge extraction, which limit further improvements in device efficiency. Herein, we develop a thermally polymerized additive as the polymer template in the perovskite film, which can form monolithic perovskite grain and a unique "Mortise-Tenon" structure after spin-coating hole-transport layer. Importantly, the suppressed non-radiative recombination and balanced interface charge extraction benefit from high-quality perovskite crystals and Mortise-Tenon structure, resulting in enhanced open-circuit voltage and fill-factor of the device. The PSCs achieve certified efficiency of 24.55% and maintain >95% initial efficiency over 1100 h in accordance with the ISOS-L-2 protocol, as well as excellent endurance according to the ISOS-D-3 accelerated aging test.

8.
Nat Commun ; 14(1): 573, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732540

RESUMO

Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively.

9.
ACS Appl Mater Interfaces ; 14(47): 53331-53339, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36395380

RESUMO

To date, numbers of polymeric hole-transporting materials (HTMs) have been developed to improve interfacial charge transport to achieve high-performance inverted perovskite solar cells (PSCs). However, molecular design for passivating the underlying surface defects between perovskite and HTMs is a neglected issue, which is a major bottleneck to further enhance the performance of the inverted devices. Herein, we design and synthesize a new polymeric HTM PsTA-mPV with the methylthiol group, in which a lone pair of electrons of sulfur atoms can passivate the underlying interface defects of the perovskite more efficiently by coordinating Pb2+ vacancies. Furthermore, PsTA-mPV exhibits a deeper highest occupied molecular orbital (HOMO) level aligned with perovskite due to the π-acceptor capability of sulfur, which improves interfacial charge transfer between perovskite and the HTM layer. Using PsTA-mPV as a dopant-free HTM, the inverted PSCs show 20.2% efficiency and long-term stability, which is ascribed to surface defect passivation, well energy-level matching with perovskite, and efficient charge extraction.

10.
Rev Sci Instrum ; 93(7): 071501, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922306

RESUMO

Welding has been widely used in industry for hundreds of years, and pursuing higher weld quality requires a better understanding of the welding process. The x-ray imaging technique is a powerful tool to in situ observe the inner characteristics of the melt pool in the welding process. Here, current progress in in situ x-ray imaging of the welding process is concluded, including the experiments based on the laboratory-based single x-ray imaging system, the laboratory-based double x-ray imaging system, and the synchrotron radiation tomography system. The corresponding experimental results with the in situ x-ray imaging technique about the formation and evolution of the keyhole, melt pool, pore, solidification crack, etc., have been introduced. A new understanding of welding based on the current progress in in situ x-ray imaging of additive manufacturing is concluded. In addition, the future development trend of applying x-ray imaging technology in the field of monitoring the welding process is proposed.

11.
Nat Commun ; 13(1): 4392, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906218

RESUMO

Broad-spectrum resistance has great values for crop breeding. However, its mechanisms are largely unknown. Here, we report the cloning of a maize NLR gene, RppK, for resistance against southern corn rust (SCR) and its cognate Avr gene, AvrRppK, from Puccinia polysora (the causal pathogen of SCR). The AvrRppK gene has no sequence variation in all examined isolates. It has high expression level during infection and can suppress pattern-triggered immunity (PTI). Further, the introgression of RppK into maize inbred lines and hybrids enhances resistance against multiple isolates of P. polysora, thereby increasing yield in the presence of SCR. Together, we show that RppK is involved in resistance against multiple P. polysora isolates and it can recognize AvrRppK, which is broadly distributed and conserved in P. polysora isolates.


Assuntos
Basidiomycota , Zea mays , Basidiomycota/genética , Mapeamento Cromossômico , Clonagem Molecular , Resistência à Doença/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Puccinia , Zea mays/genética
12.
Anim Biotechnol ; 33(6): 1150-1160, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33530818

RESUMO

This study aimed to investigate the effects of active dry yeast (ADY) on growth performance, rumen microbial composition and carcass performance of beef cattle. Thirty-two finishing beef cattle (yak ♂ × cattle-yaks ♀), with an average body weight of 110 ± 12.85 kg, were randomly assigned to one of four treatments: the low plane of nutrition group (control), low plane of nutrition group + ADY 2 g/head daily (ADY2), low plane of nutrition group + ADY 4 g/head daily (ADY4) and the high plane of nutrition group (HPN). Supplementation of ADY increased average daily gain compared to the control group. The neutral detergent fiber and acid detergent fiber apparent digestibility in HPN group was greater than that in control group. The propionic acid concentration in the rumen in ADY2, ADY4, and HPN groups was greater than that in control group. The Simpson and Shannon indexes in control and HPN groups were higher than that in ADY4 group. At the phylum level, the relative abundance of Firmicutes in the HPN group was higher than that in ADY4 group. The relative abundance of Ruminococcaceae UCG-002 in ADY4 group was higher than that in control and HPN groups. In conclusion, supplementation ADY 4 g/head daily shift the rumen microbial composition of beef cattle fed low plane of nutrition to a more similar composition with cattle fed with HPN diet and produce the similar carcass weight with HPN diet.HighlightsThe ADY can improve the utilization of nitrogen and decrease the negative impact on the environment in beef cattle.Cattle fed low plane of nutrition diet supplemented with ADY 4 g/head daily increased growth performance.Supplementation ADY 4 g/head daily in low plane of nutrition diet might be produced comparable carcass weight to HPN diet.


Assuntos
Microbiota , Rúmen , Bovinos , Animais , Rúmen/metabolismo , Saccharomyces cerevisiae , Fermentação , Ração Animal/análise , Detergentes/metabolismo , Dieta/veterinária , Suplementos Nutricionais
13.
Mol Plant ; 14(11): 1846-1863, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271176

RESUMO

Natural alleles that control multiple disease resistance (MDR) are valuable for crop breeding. However, only one MDR gene has been cloned in maize, and the molecular mechanisms of MDR remain unclear in maize. In this study, through map-based cloning we cloned a teosinte-derived allele of a resistance gene, Mexicana lesion mimic 1 (ZmMM1), which causes a lesion mimic phenotype and confers resistance to northern leaf blight (NLB), gray leaf spot (GLS), and southern corn rust (SCR) in maize. Strong MDR conferred by the teosinte allele is linked with polymorphisms in the 3' untranslated region of ZmMM1 that cause increased accumulation of ZmMM1 protein. ZmMM1 acts as a transcription repressor and negatively regulates the transcription of specific target genes, including ZmMM1-target gene 3 (ZmMT3), which functions as a negative regulator of plant immunity and associated cell death. The successful isolation of the ZmMM1 resistance gene will help not only in developing broad-spectrum and durable disease resistance but also in understanding the molecular mechanisms underlying MDR.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas Repressoras/genética , Zea mays/genética , Alelos , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Fenótipo , Doenças das Plantas/genética , Proteínas de Plantas/fisiologia , RNA de Plantas/genética , RNA de Plantas/fisiologia , RNA não Traduzido/genética , RNA não Traduzido/fisiologia , Proteínas Repressoras/fisiologia
14.
Front Vet Sci ; 8: 657816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055948

RESUMO

There is a growing interest in the use of yeast (Saccharomyces cerevisiae) culture (YC) for the enhancement of growth performance and general animal health. Grain-based pelleted total mixed rations (TMR) are emerging in intensive sheep farming systems, but it is uncertain if the process of pelleting results in YC becoming ineffective. This study aimed to examine the effects of YC supplemented to pelleted TMR at two proportions of corn in the diet on animal performance, feed digestion, blood parameters, rumen fermentation, and microbial community in fattening lambs. A 2 × 2 factorial design was adopted with two experimental factors and two levels in each factor, resulting in four treatments: (1) low proportion of corn in the diet (LC; 350 g corn/kg diet) without YC, (2) LC with YC (5 g/kg diet), (3) high proportion of corn in the diet (HC; 600 g corn/kg diet) without YC, and (4) HC with YC. Fifty-six 3-month-old male F2 hybrids of thin-tailed sheep and Northeast fine-wool sheep with a liveweight of 19.9 ± 2.7 kg were randomly assigned to the four treatment groups with an equal number of animals in each group. The results showed that live yeast cells could not survive during pelleting, and thus, any biological effects of the YC were the result of feeding dead yeast and the metabolites of yeast fermentation rather than live yeast cells. The supplementation of YC resulted in 31.1 g/day more average daily gain regardless of the proportion of corn in the diet with unchanged feed intake during the 56-day growth measurement period. The digestibility of neutral detergent fibre and acid detergent fibre was increased, but the digestibility of dry matter, organic matter, and crude protein was not affected by YC. The supplementation of YC altered the rumen bacterial population and species, but the most abundant phyla Bacteroidetes, Firmicutes, and Proteobacteria remained unchanged. This study indicates that YC products can be supplemented to pelleted TMR for improved lamb growth performance, although live yeast cells are inactive after pelleting. The improved performance could be attributed to improved fibre digestibility.

15.
Materials (Basel) ; 13(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182718

RESUMO

Though selective laser melting (SLM) has a rapidly increasing market these years, the quality of the SLM-fabricated part is extremely dependent on the process parameters. However, the current metallographic examination method to find the parameter window is time-consuming and involves subjective assessments of the experimenters. Here, we proposed a supervised machine learning (ML) method to detect the track defect and predict the printability of material in SLM intelligently. The printed tracks were classified into five types based on the measured surface morphologies and characteristics. The classification results were used as the target output of the ML model. Four indicators had been calculated to evaluate the quality of the tracks quantitatively, serving as input variables of the model. The data-driven model can determine the defect-free process parameter combination, which significantly improves the efficiency in searching the process parameter window and has great potential for the application in the unmanned factory in the future.

16.
Materials (Basel) ; 13(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076227

RESUMO

In recent years, the motor has been increasingly used to replace the conventional gasoline engine for carbon emission reduction, and the high-performance motor is urgently required. The stator and rotor in a motor are made of hundreds of joined and laminated electrical steels. This paper covers the current research in joining the laminated electrical steels for the motor application, together with the critical assessment of our understanding. It includes the representative joining method, modeling of the joining process, microstructure of the weld zone, mechanical strength and magnetic properties. The gaps in the scientific understanding, and the research needs for the expansion of joining laminated electrical steels, are provided.

17.
Animals (Basel) ; 10(9)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842565

RESUMO

The yak rumen microflora has more efficient fiber-degrading and energy-harvesting abilities than that of low-altitude cattle; however, few studies have investigated the effects of dietary energy levels on the rumen bacterial populations and the relationship between rumen bacteria and the intramuscular fatty acid profile of fattening yaks. In this study, thirty yaks were randomly assigned to three groups. Each group received one of the three isonitrogenous diets with low (3.72 MJ/kg), medium (4.52 MJ/kg), and high (5.32 MJ/kg) levels of net energy for maintenance and fattening. After 120 days of feeding, results showed that increasing dietary energy significantly increased ruminal propionate fermentation and reduced ammonia concentration. The 16S rDNA sequencing results showed that increasing dietary energy significantly increased the ratio of Firmicutes to Bacteroidetes and stimulated the relative abundance of Succiniclasticum, Saccharofermentans, Ruminococcus, and Blautia populations. The quantitative real-time PCR analysis showed that high dietary energy increased the abundances of Streptococcus bovis, Prevotella ruminicola, and Ruminobacter amylophilus at the species level. Association analysis showed that ruminal acetate was positively related to some intramuscular saturated fatty acid (SFA) contents, and Prevotella was significantly positively related to intramuscular total polyunsaturated fatty acid content and negatively related to intramuscular total SFA content. This study showed that high dietary energy mainly increased ruminal amylolytic and propionate-producing bacteria populations, which gave insights into how the effects of dietary energy on rumen bacteria are related to intramuscular fat fatty acids of fattening yaks.

18.
Vet Med Sci ; 6(4): 755-765, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32588563

RESUMO

This research aimed to investigate the effects of dietary energy concentration (combined net energy, Nemf) on growth performance and meat quality of yaks raised by barn feeding. In all, 30 male yaks (3-year old and 114.57 ± 21.56 kg of body weight) were allocated to one of three isonitrogenous dietary treatments that had different Nemf concentrations (low 3.72 MJ/kg, middle 4.52 MJ/kg and high 5.32 MJ/kg, respectively). The yaks were fed for 120 days. The results showed that the final weight, average daily gain, dressing percentage, backfat thickness and loin muscle area were significantly improved (p < .05) with the increase in dietary energy concentration. However, an opposite trend of feed:gain ratio, cooking loss, driage, shear force and moisture content was found. A significant improvement (p < .05) of intramuscular fat content was observed in the high-energy group. Additionally, the proportion of polyunsaturated fatty acid was increased (p < .05) at the expense of the saturated fatty acids. The mRNA expressions of lipogenic genes fatty acid synthase, acetyl-CoA carboxylase, sterol regulatory element-binding protein 1, stearoyl-CoA desaturase, peroxisome proliferator-activated receptor γ, lipoprotein lipase and heart fatty acid-binding proteins increased (p < .05) in a dose-dependent manner. However, the mRNA expressions of lipolytic genes carnitine palmitoyltransferase-1 and hormone-sensitive lipase correspondingly decreased (p < .05) with increased dietary energy level. In summary, the growth performance, meat production and meat quality improvement of finishing yaks can be achieved by increasing the dietary energy concentration. The intramuscular fat accumulation of yaks was achieved through up-regulation of intramuscular lipogenic gene expression as well as fatty acid transport gene expression and down-regulation of lipolytic gene expression by promoting dietary energy concentration.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Expressão Gênica , Lipogênese/genética , Carne/análise , Músculos/metabolismo , Animais , Bovinos/genética , Bovinos/crescimento & desenvolvimento , Masculino
19.
Fundam Clin Pharmacol ; 33(6): 621-633, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30951217

RESUMO

Felbamate is an anticonvulsant used in the treatment of epilepsy. In this study, we investigated the antidepressant-like actions of felbamate in mice. The effects of felbamate were first assessed using the forced swimming test (FST) and tail suspension test (TST), and then investigated in the chronic unpredictable mild stress (CUMS) and chronic social defeat stress (CSDS) models of depression. The changes in the hippocampal brain-derived neurotrophic factor (BDNF) signaling cascade after chronic stress and felbamate treatment were also examined. It was found that felbamate exhibited antidepressant-like activities in the FST and TST without affecting the locomotor activity of mice. Felbamate was also effective in both the CUMS and CSDS models of depression. Moreover, felbamate administration fully restored the decreased hippocampal BDNF signaling pathway in both the CUMS-stressed and CSDS-stressed mice. Collectively, felbamate has antidepressant-like actions in mice involving the hippocampal BDNF system.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Felbamato/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Modelos Animais de Doenças , Elevação dos Membros Posteriores , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico
20.
Nat Commun ; 9(1): 4819, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446661

RESUMO

The colour of water-jet rewritable paper (WJRP) is difficult to be expanded via single hydrochromic molecule, especially black. Here, inspired by the amazing phenomenon of bound-water in cells enabling various biological transformations via facilitating synergistic inter-/intra-molecular proton transfer, we present a simple strategy toward WJRP based on binary systems containing less-sensitive acidochromic dyes and mild proton donors (or developers). With such a binary system containing commercial black dye as the colouring agent, benzyl 4-hydroxybenzoate as the developer, and biomimetic bound-water as proton-transferring medium, we successfully achieve the long-awaited black WJRP. Printed images on such WJRP have excellent performances and long retaining time (>1 month). In addition, the robustness, durability and reversibility of WJRP could be increased distinctly by using polyethylene terephthalate as substrate. This strategy significantly expands hydrochromic colours to entire visible range in an eco-friendly way, which opens an avenue of smart materials for practical needs and industrialization.


Assuntos
Materiais Biomiméticos , Corantes/química , Papel , Impressão/métodos , Cor , Humanos , Parabenos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA