Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Front Microbiol ; 13: 896588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406412

RESUMO

Hepatitis C virus (HCV) NS3/4A protease is an attractive target for direct-acting antiviral agents. Real-time tracking of the NS3/4A protease distribution and activity is useful for clinical diagnosis and disease management. However, no approach has been developed that can systemically detect NS3/4A protease activity or distribution. We designed a protease-activatable retention probe for tracking HCV NS3/4A protease activity via positron emission topography (PET) imaging. A cell-penetrating probe was designed that consisted of a cell-penetrating Tat peptide, HCV NS3/4A protease substrate, and a hydrophilic domain. The probe was labeled by fluorescein isothiocyanate (FITC) and 124I in the hydrophilic domain to form a TAT-ΔNS3/4A-124I-FITC probe. Upon cleavage at NS3/4A substrate, the non-penetrating hydrophilic domain is released and accumulated in the cytoplasm allowing PET or optical imaging. The TAT-ΔNS3/4A-FITC probe selectively accumulated in NS3/4A-expressing HCC36 (NS3/4A-HCC36) cells/tumors and HCV-infected HCC36 cells. PET imaging showed that the TAT-ΔNS3/4A-124I-FITC probe selectively accumulated in the NS3/4A-HCC36 xenograft tumors and liver-implanted NS3/4A-HCC36 tumors, but not in the control HCC36 tumors. The TAT-ΔNS3/4A-124I-FITC probe can be used to represent NS3/4 protease activity and distribution via a clinical PET imaging system allowing. This strategy may be extended to detect any cellular protease activity for optimization the protease-based therapies.

2.
Gels ; 8(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35323293

RESUMO

Transarterial radioembolization (TARE) is an emerging treatment for patients with unresectable hepatocellular carcinoma (HCC). This study successfully developed radiometal-labeled chitosan microspheres (111In/177Lu-DTPA-CMS) with a diameter of 36.5 ± 5.3 µm for TARE. The radiochemical yields of 111In/177Lu-DTPA-CMS were greater than 90% with high radiochemical purities (>98%). Most of the 111In/177Lu-DTPA-CMS were retained in the hepatoma and liver at 1 h after intraarterial (i.a.) administration. Except for liver accumulation, radioactivity in each normal organ was less than 1% of the injected radioactivity (%IA) at 72 h after injection. At 10 days after injection of 177Lu-DTPA-CMS (18.6 ± 1.3 MBq), the size of the hepatoma was significantly reduced by around 81%, while that of the rats in the control group continued to grow. This study demonstrated the effectiveness of 177Lu-DTPA-CMS in the treatment of N1-S1 hepatoma. 111In/177Lu-DTPA-CMS have the potential to be a superior theranostic pair for the treatment of clinical hepatoma.

3.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208566

RESUMO

Regarding the increased incidence and high mortality rate of malignant melanoma, practical early-detection methods are essential to improve patients' clinical outcomes. In this study, we successfully prepared novel picolinamide-benzamide (18F-FPABZA) and nicotinamide-benzamide (18F-FNABZA) conjugates and determined their biological characteristics. The radiochemical yields of 18F-FPABZA and 18F-FNABZA were 26 ± 5% and 1 ± 0.5%, respectively. 18F-FPABZA was more lipophilic (log P = 1.48) than 18F-FNABZA (log P = 0.68). The cellular uptake of 18F-FPABZA in melanotic B16F10 cells was relatively higher than that of 18F-FNABZA at 15 min post-incubation. However, both radiotracers did not retain in amelanotic A375 cells. The tumor-to-muscle ratios of 18F-FPABZA-injected B16F10 tumor-bearing mice increased from 7.6 ± 0.4 at 15 min post-injection (p.i.) to 27.5 ± 16.6 at 3 h p.i., while those administered with 18F-FNABZA did not show a similarly dramatic increase throughout the experimental period. The results obtained from biodistribution studies were consistent with those derived from microPET imaging. This study demonstrated that 18F-FPABZA is a promising melanin-targeting positron emission tomography (PET) probe for melanotic melanoma.


Assuntos
Radioisótopos de Flúor , Melanoma Experimental/diagnóstico por imagem , Niacinamida , Ácidos Picolínicos , Compostos Radiofarmacêuticos , Animais , Linhagem Celular Tumoral , Radioisótopos de Flúor/química , Melaninas/metabolismo , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Niacinamida/química , Ácidos Picolínicos/química , Tomografia por Emissão de Pósitrons , Ligação Proteica , Compostos Radiofarmacêuticos/química , Distribuição Tecidual
4.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916962

RESUMO

Malignant melanoma is the most harmful type of skin cancer and its incidence has increased in this past decade. Early diagnosis and treatment are urgently desired. In this study, we conjugated picolinamide/nicotinamide with the pharmacophore of 131I-MIP-1145 to develop 131I-iodofluoropicolinamide benzamide (131I-IFPABZA) and 131I-iodofluoronicotiamide benzamide (131I-IFNABZA) with acceptable radiochemical yield (40 ± 5%) and high radiochemical purity (>98%). We also presented their biological characteristics in melanoma-bearing mouse models. 131I-IFPABZA (Log P = 2.01) was more lipophilic than 131I-IFNABZA (Log P = 1.49). B16F10-bearing mice injected with 131I-IFNABZA exhibited higher tumor-to-muscle ratio (T/M) than those administered with 131I-IFPABZA in planar γ-imaging and biodistribution studies. However, the imaging of 131I-IFNABZA- and 131I-IFPABZA-injected mice only showed marginal tumor uptake in A375 amelanotic melanoma-bearing mice throughout the experiment period, indicating the high binding affinity of these two radiotracers to melanin. Comparing the radiation-absorbed dose of 131I-IFNABZA with the melanin-targeted agents reported in the literature, 131I-IFNABZA exerts lower doses to normal tissues on the basis of similar tumor dose. Based on the in vitro and in vivo studies, we clearly demonstrated the potential of using 131I-IFNABZA as a theranostic agent against melanoma.


Assuntos
Benzamidas/uso terapêutico , Radioisótopos do Iodo/uso terapêutico , Melanoma Experimental/terapia , Neoplasias Cutâneas/terapia , Animais , Benzamidas/química , Linhagem Celular Tumoral , Humanos , Radioisótopos do Iodo/química , Melaninas/metabolismo , Melanoma Experimental/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Niacinamida/química , Ácidos Picolínicos/química , Medicina de Precisão , Cintilografia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias Cutâneas/diagnóstico por imagem , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cells ; 9(5)2020 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397494

RESUMO

Microbial proteins have recently been found to have more benefits in clinical disease treatment because of their better-developed strategy and properties than traditional medicine. In this study, we investigated the effectiveness of a truncated peptide synthesized from the C-terminal sequence of pneumolysin, i.e., C70PLY4, in Streptococcus pneumoniae, in treating chronic inflammatory conditions. It has been shown that C70PLY4 significantly blocks the transendothelial migration of neutrophils and attenuates the formation of atherosclerotic plaque and the secretion of soluble forms of the intercellular adhesion molecule-1 (ICAM-1), the vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in high-fat-diet/streptozotocin-induced inflammatory rats. The mechanism and the docking simulation analysis further indicated that C70PLY4 might serve as a Toll-like receptor 4 (TLR4) antagonist by competing for the binding site of MD2, an indispensable protein for lipopolysaccharide (LPS)-TLR4 interaction signaling, on the TLR4 structure. Moreover, compared to the full-length PLY, C70PLY4 seems to have no cytotoxicity in human vascular endothelial cells. Our study elucidated a possible therapeutic efficacy of C70PLY4 in reducing chronic inflammatory conditions and clarified the underlying mechanism. Thus, our findings identify a new drug candidate that, by blocking TLR4 activity, could be an effective treatment for patients with chronic inflammatory diseases.


Assuntos
Inflamação/tratamento farmacológico , Proteínas Mutantes/farmacologia , Proteínas Mutantes/uso terapêutico , Streptococcus pneumoniae/metabolismo , Estreptolisinas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/farmacologia , Sítios de Ligação , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dieta Hiperlipídica , Selectina E/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos , Camundongos , Simulação de Acoplamento Molecular , Proteínas Mutantes/química , NF-kappa B/metabolismo , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Solubilidade , Estreptolisinas/química , Estreptozocina , Receptor 4 Toll-Like/metabolismo , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/metabolismo
6.
J Neurooncol ; 146(3): 417-426, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32020472

RESUMO

INTRODUCTION: The failure of immune checkpoint inhibitor (ICPi) on glioblastoma (GBM) treatment underscores the need for improving therapeutic strategy. We aimed to change tumor associated macrophage (TAM) from M2 type (anti-inflammatory) to M1 (pro-inflammatory) type to increase the therapeutic response of ICPi. We proposed that combined rapamycin (R) and hydroxychloroquine (Q) preferentially induce M2 cells death, as fatty acid oxidation was their major source of energy. METHODS: Macrophage polarization was characterized on mice and human macrophage cell lines by specific cytokines stimulation with or without RQ treatment under single culture or co-culture with GBM cell lines. Tumor sizes were evaluated on subcutaneous and intracranial GL261 mice models with or without RQ, anti-PD1 mAb treatment. Tumor volumes assessed by MRI scan and proportions of tumor infiltrating immune cells analyzed by flow cytometry were compared. RESULTS: In vitro RQ treatment decreased the macrophages polarization of M2, increased the phagocytic ability, and increased the lipid droplets accumulation. RQ treatment decreased the expression levels of CD47 and SIRPα on tumor cells and macrophage cells in co-culture experiments. The combination of RQ and anti-PD1 treatment was synergistic in action. Enhanced the intra-tumoral M1/M2 ratio, the CD8/CD4 ratio in the intracranial GL261 tumor model after RQ treatment were evident. CONCLUSION: We provide a rationale for manipulating the macrophage phenotype and increased the therapeutic effect of ICPi. To re-educate and re-empower the TAM/microglia opens an interesting avenue for GBM treatment.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Hidroxicloroquina/administração & dosagem , Macrófagos/efeitos dos fármacos , Sirolimo/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Encefálicas/metabolismo , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Glioblastoma/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores
7.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093290

RESUMO

Prodrug activator gene therapy mediated by murine leukemia virus (MLV)-based retroviral replicating vectors (RRV) was previously shown to be highly effective in killing glioma cells both in culture and in vivo. To avoid receptor interference and enable dual vector co-infection with MLV-RRV, we have developed another RRV based on gibbon ape leukemia virus (GALV) that also shows robust replicative spread in a wide variety of tumor cells. We evaluated the potential of GALV-based RRV as a cancer therapeutic agent by incorporating yeast cytosine deaminase (CD) and E. coli nitroreductase (NTR) prodrug activator genes into the vector. The expression of CD and NTR genes from GALV-RRV achieved highly efficient delivery of these prodrug activator genes to RG-2 glioma cells, resulting in enhanced cytotoxicity after administering their respective prodrugs 5-fluorocytosine and CB1954 in vitro. In an immune-competent intracerebral RG-2 glioma model, GALV-mediated CD and NTR gene therapy both significantly suppressed tumor growth with CB1954 administration after a single injection of vector supernatant. However, NTR showed greater potency than CD, with control animals receiving GALV-NTR vector alone (i.e., without CB1954 prodrug) showing extensive tumor growth with a median survival time of 17.5 days, while animals receiving GALV-NTR and CB1954 showed significantly prolonged survival with a median survival time of 30 days. In conclusion, GALV-RRV enabled high-efficiency gene transfer and persistent expression of NTR, resulting in efficient cell killing, suppression of tumor growth, and prolonged survival upon CB1954 administration. This validates the use of therapeutic strategies employing this prodrug activator gene to arm GALV-RRV, and opens the door to the possibility of future combination gene therapy with CD-armed MLV-RRV, as the latter vector is currently being evaluated in clinical trials.


Assuntos
Aziridinas/farmacologia , Neoplasias Encefálicas/terapia , Flucitosina/farmacologia , Terapia Genética , Vetores Genéticos , Glioma/terapia , Neoplasias Experimentais/terapia , Pró-Fármacos/farmacologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Citosina Desaminase/biossíntese , Citosina Desaminase/genética , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Vírus da Leucemia do Macaco Gibão , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Nitrorredutases/biossíntese , Nitrorredutases/genética , Ratos Endogâmicos F344 , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética
8.
J Nucl Cardiol ; 27(3): 819-828, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-30324328

RESUMO

BACKGROUND: Short imaging protocol to quantify myocardial blood flow (MBF) and myocardial flow reserve (MFR) may enhance the clinical application of 13N-ammonia cardiac PET. We assessed the flow quantitation of 13N-ammonia PET implementing simple retention model and two-compartment model. METHODS: Fourteen healthy volunteers (HVT) and twenty-three clinical patients received 13N-ammonia PET/CT. The simple retention model used the first 7-minute image to quantify MBF. Global and regional MBF and MFR of the two models were compared. RESULTS: Global and regional MBF and MFR of these two models were highly correlated with mildly inferior correlation in RCA territory (global R2: rest MBF = 0.79, stress MBF = 0.65, MFR = 0.77; regional R2: rest MBF ≥ 0.72, stress MBF ≥ 0.52, MFR ≥ 0.68). There were significant differences for MFR (4.04 ± 0.72, 3.66 ± 0.48, p = .02) and rest MBF (0.69 ± 0.12, 0.78 ± 0.12, p = .02) between the two models in the HVT group. CONCLUSIONS: 13N-ammonia global and regional MBF and MFR from the simple retention model demonstrate strong correlations with that from the two-compartment model. Significant differences of MFR and rest MBF are noted in the HVT group, with a proposed normal reference value for the 13N-ammonia short simple retention protocol.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Circulação Coronária , Coração/diagnóstico por imagem , Coração/fisiopatologia , Radioisótopos de Nitrogênio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Amônia , Artérias/diagnóstico por imagem , Feminino , Reserva Fracionada de Fluxo Miocárdico , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Imagem de Perfusão do Miocárdio/métodos , Miocárdio , Compostos Radiofarmacêuticos
9.
J Mater Chem B ; 8(1): 65-77, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31768514

RESUMO

Gold nanostars (AuNSs), with unique physicochemical properties, are thought to be a promising agent for photothermal therapy (PTT). In this study, we prepared PEGylated gold nanostars (pAuNSs) using the HEPES-reduction method. The high photothermal conversion efficiency (∼80%) and photothermal stability of pAuNSs were demonstrated in vitro and in vivo. 111In-DTPA-pAuNSs were prepared as a radioactive surrogate for the biodistribution studies of pAuNSs. In both microSPECT/CT images and the biodistribution study, the tumor-to-muscle (T/M) ratio reached a maximum at 24 h post intravenous injection of 111In-DTPA-pAuNSs. The high linear correlation between the 111In radioactivity and the gold content in the tumors (R2 0.86-0.99) indicated that 111In-DTPA-pAuNSs were appropriate for noninvasively tracking pAuNSs in vivo after systemic administration. Histological examination after silver enhancement staining clearly illustrated that the accumulated pAuNSs in the tumors were mainly located on the luminal surface of vessels. The mice bearing a SKOV-3 xenograft exhibited remarkable therapeutic efficacy with negligible organ damage after receiving pAuNS-mediated photothermal therapy. Our findings suggested that pAuNSs, together with their radioactive surrogate 111In-DTPA-pAuNSs, are promising for applications in image-guided photothermal therapy.


Assuntos
Ouro/farmacocinética , Nanopartículas Metálicas/uso terapêutico , Neoplasias/terapia , Fototerapia/métodos , Polietilenoglicóis/farmacocinética , Nanomedicina Teranóstica/métodos , Animais , Linhagem Celular Tumoral , Feminino , Ouro/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos BALB C
10.
Small ; 15(49): e1903296, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31709707

RESUMO

Irinotecan is one of the main chemotherapeutic agents for colorectal cancer (CRC). MicroRNA-200 (miR-200) has been reported to inhibit metastasis in cancer cells. Herein, pH-sensitive and peptide-modified liposomes and solid lipid nanoparticles (SLN) are designed for encapsulation of irinotecan and miR-200, respectively. These peptides include one cell-penetrating peptide, one ligand targeted to tumor neovasculature undergoing angiogenesis, and one mitochondria-targeting peptide. The peptide-modified nanoparticles are further coated with a pH-sensitive PEG-lipid derivative with an imine bond. These specially-designed nanoparticles exhibit pH-responsive release, internalization, and intracellular distribution in acidic pH of colon cancer HCT116 cells. These nanoparticles display low toxicity to blood and noncancerous intestinal cells. Delivery of miR-200 by SLN further increases the cytotoxicity of irinotecan-loaded liposomes against CRC cells by triggering apoptosis and suppressing RAS/ß-catenin/ZEB/multiple drug resistance (MDR) pathways. Using CRC-bearing mice, the in vivo results further indicate that irinotecan and miR-200 in pH-responsive targeting nanoparticles exhibit positive therapeutic outcomes by inhibiting colorectal tumor growth and reducing systemic toxicity. Overall, successful delivery of miR and chemotherapy by multifunctional nanoparticles may modulate ß-catenin/MDR/apoptosis/metastasis signaling pathways and induce programmed cancer cell death. Thus, these pH-responsive targeting nanoparticles may provide a potential regimen for effective treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais/metabolismo , Irinotecano/uso terapêutico , MicroRNAs/administração & dosagem , MicroRNAs/uso terapêutico , Nanopartículas/química , Animais , Apoptose/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Endocitose/fisiologia , Células HCT116 , Humanos , Concentração de Íons de Hidrogênio , Marcação In Situ das Extremidades Cortadas , Irinotecano/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Polietilenoglicóis/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
12.
PLoS Biol ; 17(6): e3000286, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194726

RESUMO

During rheumatoid arthritis (RA) treatment, long-term injection of antitumor necrosis factor α antibodies (anti-TNFα Abs) may induce on-target toxicities, including severe infections (tuberculosis [TB] or septic arthritis) and malignancy. Here, we used an immunoglobulin G1 (IgG1) hinge as an Ab lock to cover the TNFα-binding site of Infliximab by linking it with matrix metalloproteinase (MMP) -2/9 substrate to generate pro-Infliximab that can be specifically activated in the RA region to enhance the selectivity and safety of treatment. The Ab lock significantly inhibits the TNFα binding and reduces the anti-idiotypic (anti-Id) Ab binding to pro-Infliximab by 395-fold, 108-fold compared with Infliximab, respectively, and MMP-2/9 can completely restore the TNFα neutralizing ability of pro-Infliximab to block TNFα downstream signaling. Pro-Infliximab was only selectively activated in the disease site (mouse paws) and presented similar pharmacokinetics (PKs) and bio-distribution to Infliximab. Furthermore, pro-Infliximab not only provided equivalent therapeutic efficacy to Infliximab but also maintained mouse immunity against Listeria infection in the RA mouse model, leading to a significantly higher survival rate (71%) than that of the Infliximab treatment group (0%). The high-selectivity pro-Infliximab maintains host immunity and keeps the original therapeutic efficiency, providing a novel strategy for RA therapy.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Infliximab/farmacologia , Animais , Artrite Reumatoide/fisiopatologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/uso terapêutico , Infliximab/metabolismo , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
13.
Biomed Pharmacother ; 116: 109032, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31163381

RESUMO

Non-small cell lung cancer (NSCLC) is a malignant lung cancer type with poor prognosis. NF-κB, the oncogenic transcription factor, has been recognized as an important mediator in progression of NSCLC. Regorafenib, a multikinase inhibitor, was demonstrated to inhibit tumor progression through suppression of ERK/NF-κB signaling in hepatocellular carcinoma cells in vitro and in vivo. However, whether regorafenib inhibit progression of NSCLC is ambiguous. Thus, the major purpose of present study was to evaluate anticancer efficacy and underlying mechanism of regorafenib on tumor progression in NSCLC in vitro and in vivo. CL-1-5-F4 cells were treated with regorafenib, NF-κB (QNZ) or AKT (LY294002) inhibitor for 24 or 48 h. Then, we performed cell viability assay, NF-κB reporter gene assay, transwell invasion assay and apoptosis related flow cytometry assay on cellular level to verify anti-cancer effect and mechanism of regorafenib. CL-1-5-F4 bearing animal model was treated with vehicle or regorafenib for 28 days. The therapeutic efficacy and mechanism of regorafenib in CL-1-5-F4 bearing animal model were investigated by tumor size evaluation, whole body computer tomography (CT) scan, Haemotoxylin and Eosin (H&E) stain and immunohistochemistry (IHC) stain. Our results demonstrated regorafenib significantly inhibited tumor growth and induced apoptosis through extrinsic/intrinsic pathways in NSCLC in vitro and in vivo. Furthermore, we also found the suppression of AKT/NF-κB signaling was required for regorafenib inhibited expression of progression-related and invasion-related proteins. Our finding indicated apoptosis induction and suppression of AKT/NF-κB signaling were associated with regorafenib-inhibited progression of NSCLC in vitro and in vivo.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas/patologia , Progressão da Doença , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Compostos de Fenilureia/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Receptores de Morte Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Nucl Med Commun ; 40(6): 639-644, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30932968

RESUMO

BACKGROUND: Mycobacterium tuberculosis (TB) infection is one of the deadliest infectious diseases worldwide and is responsible for 1.7 million deaths per year. The increase in multidrug-resistant TB poses formidable challenges to the global control of tuberculosis. TB infection could easily yield false-positive results in fluorine-18-fluorodeoxyglucose ([F]FDG) PET imaging for cancer detection because of its high [F]FDG uptake. We describe the combined [F]FDG PET with fluorine-18-fluoroacetate ([F]FAC), a promising analog of carbon-11-acetate, for targeting glycolysis and de novo lipogenesis, respectively, to determine the metabolic differences between chronic TB infection and acute infection. MATERIALS AND METHODS: Six-month-old BALB/c mice were inoculated with Mycobacterium bovis to induce chronic TB infection, and Escherichia coli as well as Staphylococcus aureus to induce acute infection for an in-vivo imaging study. Eighteen days after inoculation for chronic TB infection and 5 days for acute infection, both [F]FDG and [F]FAC micro-PET were performed on the infected mice. Analysis of variance and the Tukey honest ad-hoc test were carried out to determine differences among treatment with different bacterial infections. RESULTS: TB infection showed much lower [F] FAC accumulation than acute infection. However, both TB infection and acute infection exhibited high [F]FAC accumulation. CONCLUSION: The marked metabolic differences in de novo lipogenesis and glycolysis in [F]FDG and [F]FAC uptakes in micro-PET imaging, respectively, help to differentiate chronic TB infection from acute infection.


Assuntos
Fluoracetatos , Fluordesoxiglucose F18 , Mycobacterium tuberculosis/fisiologia , Tomografia por Emissão de Pósitrons , Tuberculose/diagnóstico por imagem , Doença Aguda , Animais , Doença Crônica , Diagnóstico Diferencial , Modelos Animais de Doenças , Glicólise , Camundongos , Camundongos Endogâmicos BALB C , Tuberculose/metabolismo
15.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626093

RESUMO

Colorectal cancer is one of the major causes of cancer-related death in Taiwan and worldwide. Patients with peritoneal metastasis from colorectal cancer have reduced overall survival and poor prognosis. Hybrid protein-inorganic nanoparticle systems have displayed multifunctional applications in solid cancer theranostics. In this study, a gold nanocore-encapsulated human serum albumin nanoparticle (Au@HSANP), which is a hybrid protein-inorganic nanoparticle, and its radioactive surrogate 111In-labeled Au@HSANP (111In-Au@HSANP), were developed and their biological behaviors were investigated in a tumor/ascites mouse model. 111In-Au@HSANP was injected either intravenously (iv) or intraperitoneally (ip) in CT-26 tumor/ascites-bearing mice. After ip injection, a remarkable and sustained radioactivity retention in the abdomen was noticed, based on microSPECT images. After iv injection, however, most of the radioactivity was accumulated in the mononuclear phagocyte system. The results of biodistribution indicated that ip administration was significantly more effective in increasing intraperitoneal concentration and tumor accumulation than iv administration. The ratios of area under the curve (AUC) of the ascites and tumors in the ip-injected group to those in the iv-injected group was 93 and 20, respectively. This study demonstrated that the ip injection route would be a better approach than iv injections for applying gold-albumin nanoparticle in peritoneal metastasis treatment.


Assuntos
Ascite/patologia , Ouro/administração & dosagem , Nanopartículas/administração & dosagem , Albumina Sérica Humana/administração & dosagem , Administração Intravenosa , Animais , Área Sob a Curva , Sobrevivência Celular , Modelos Animais de Doenças , Difusão Dinâmica da Luz , Radioisótopos de Índio/química , Radioisótopos de Índio/farmacocinética , Injeções Intraperitoneais , Injeções Intravenosas , Camundongos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Albumina Sérica Humana/farmacocinética , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
16.
ACS Appl Bio Mater ; 2(8): 3573-3581, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35030743

RESUMO

The efficacy of gold nanoparticle (AuNP)-assisted radiofrequency (RF)-induced hyperthermia employing the Kanzius device remains controversial. Different from the Kanzius device, modulated electro-hyperthermia (mEHT) utilizes the capacitive-impedance coupled 13.56 MHz radiofrequency (RF) current and has been approved for clinical cancer treatment. In this study, we investigated the heating characteristics of spherical-, urchin-, and rod-like AuNPs of a similar 50 nm size upon exposure to a 13.56 MHz radiofrequency using the LabEHY-105CL, an in vivo mEHT device. We found that, regardless of the AuNPs' sphere-, urchin- or rod-like shape, purified gold nanoparticle solution would not promote heat generation. The temperature elevation during radiofrequency irradiation was solely attributed to the ionic background of the solution. The AuNPs present in the medium (≤25 ppm) showed no effect on selective cell killing of malignant cells, whereas the AuNPs incorporated in the cells diminished the cell selectivity as well as cell death and acted as protectors in mEHT cancer treatment. Our study suggested that (1) the temperature elevation induced by 50 nm AuNPs in the 13.56 MHz radiofrequency field was negligible and was shape-independent, and (2) the presence of AuNPs would alter the cell-killing effect of modulated electro-hyperthermia.

17.
Cell Death Discov ; 4: 100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30393570

RESUMO

Human head and neck squamous cell carcinoma (HNSCC) is usually treated with chemoradiotherapy, but the therapeutic efficacy could be hampered by intrinsic radioresistance and early relapse. Repeated administrations of rhenium-188 (188Re)-conjugated radiopharmaceutical has been reported to escalate the radiation doses for better control of advanced human cancers. Here we found that high dosage of 188Re-liposome, the liposome-encapsulated 188Re nanoparticles exhibited significant killing effects on HNSCC FaDu cells and SAS cells but not on OECM-1 cells. To investigate the biological and pharmaceutical responses of high 188Re-liposomal dosage in vivo, repeated doses of 188Re-liposome was injected into the orthotopic tumor model. FaDu cells harboring luciferase reporter genes were implanted in the buccal positions of nude mice followed by intravenous injection of 188Re-liposome. The Cerenkov luminescence imaging (CLI) was performed to demonstrate an increased accumulation of 188Re-liposome in the tumor lesion of nude mice with repeated doses compared to a single dose. Repeated doses also enhanced tumor growth delay and elongated the survival of tumor-bearing mice. These observations were associated with significant loss of Ki-67 proliferative marker and epithelial-mesenchymal transition (EMT) markers in excised tumor cells. The body weights of mice were not significantly changed using different doses of 188Re-liposome, yet repeated doses led to lower blood counts than a single dose. Furthermore, the pharmacokinetic analysis showed that the internal circulation of repeated 188Re-liposomal therapy was elongated. The biodistribution analysis also demonstrated that accumulations of 188Re-liposome in tumor lesions and bone marrow were increased using repeated doses. The absorbed dose of repeated doses over a single dose was about twofold estimated for a 1 g tumor. Together, these data suggest that the radiopharmacotherapy of 188Re-liposome can enhance tumor suppression, survival extension, and internal circulation without acute toxicity using repeated administrations.

18.
Theranostics ; 8(11): 3164-3175, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896310

RESUMO

Rationale: Increasing frequency of human exposure to PEG-related products means that healthy people are likely to have pre-existing anti-PEG antibodies (pre-αPEG Ab). However, the influence of pre-αPEG Abs on the pharmacokinetics (PK) and therapeutic efficacy of LipoDox is unknown. Methods: We generated two pre-αPEG Ab mouse models. First, naïve mice were immunized with PEGylated protein to generate an endogenous αPEG Ab titer (endo αPEG). Second, monoclonal αPEG Abs were passively transferred (αPEG-PT) into naïve mice to establish a αPEG titer. The naïve, endo αPEG and αPEG-PT mice were intravenously injected with 111in-labeled LipoDox to evaluate its PK. Tumor-bearing naïve, endo αPEG and αPEG-PT mice were intravenously injected with 111in-labeled LipoDox to evaluate its biodistribution. The therapeutic efficacy of LipoDox was estimated in the tumor-bearing mice. Results: The areas under the curve (AUC)last of LipoDox in endo αPEG and αPEG-PT mice were 11.5- and 15.6- fold less, respectively, than that of the naïve group. The biodistribution results suggested that pre-αPEG Ab can significantly reduce tumor accumulation and accelerate blood clearance of 111In-labeled LipoDox from the spleen. The tumor volumes of the tumor-bearing endo αPEG and αPEG-PT mice after treatment with LipoDox were significantly increased as compared with that of the tumor-bearing naïve mice. Conclusions: Pre-αPEG Abs were found to dramatically alter the PK and reduce the tumor accumulation and therapeutic efficacy of LipoDox. Pre-αPEG may have potential as a marker to aid development of personalized therapy using LipoDox and achieve optimal therapeutic efficacy.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Anticorpos/imunologia , Doxorrubicina/análogos & derivados , Neoplasias Experimentais/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/imunologia , Antibióticos Antineoplásicos/farmacocinética , Anticorpos/sangue , Doxorrubicina/imunologia , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Feminino , Lipossomos/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/uso terapêutico
19.
Biosci Rep ; 38(3)2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29535278

RESUMO

Regorafenib has been demonstrated in our previous study to trigger apoptosis through suppression of extracellular signal-regulated kinase (ERK)/nuclear factor-κB (NF-κB) activation in hepatocellular carcinoma (HCC) SK-Hep1 cells in vitro However, the effect of regorafenib on NF-κB-modulated tumor progression in HCC in vivo is ambiguous. The aim of the present study is to investigate the effect of regorafenib on NF-κB-modulated tumor progression in HCC bearing mouse model. pGL4.50 luciferase reporter vector transfected SK-Hep1 (SK-Hep1/luc2) and Hep3B 2.1-7 tumor bearing mice were established and used for the present study. Mice were treated with vehicle or regorafenib (20 mg/kg/day by gavage) for 14 days. Effects of regorafenib on tumor growth and protein expression together with toxicity of regorafenib were evaluated with digital caliper and bioluminescence imaging (BLI), ex vivo Western blotting immunohistochemistry (IHC) staining, and measurement of body weight and pathological examination of liver tissue, respectively, in SK-Hep1/luc2 and Hep3B 2.1-7 tumor bearing mice. The results indicated regorafenib significantly reduced tumor growth and expression of phosphorylated ERK, NF-κB p65 (Ser536), phosphorylated AKT, and tumor progression-associated proteins. In addition, we found regorafenib induced both extrinsic and intrinsic apoptotic pathways. Body weight and liver morphology were not affected by regorafenib treatment. Our findings present the mechanism of tumor progression inhibition by regorafenib is linked to suppression of ERK/NF-κB signaling in SK-Hep1/luc2 and Hep3B 2.1-7 tumor bearing mice.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , NF-kappa B/genética , Compostos de Fenilureia/administração & dosagem , Piridinas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Oncotarget ; 9(6): 6883-6896, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29467937

RESUMO

Glioblastoma (GBM) cells are characterized by high phagocytosis, lipogenesis, exocytosis activities, low autophagy capacity and high lysosomal demand are necessary for survival and invasion. The lysosome stands at the cross roads of lipid biosynthesis, transporting, sorting between exogenous and endogenous cholesterol. We hypothesized that three already approved drugs, the autophagy inducer, sirolimus (rapamycin, Rapa), the autophagy inhibitor, chloroquine (CQ), and DNA alkylating chemotherapy, temozolomide (TMZ) could synergize against GBM. This repurposed triple therapy combination induced GBM apoptosis in vitro and inhibited GBM xenograft growth in vivo. Cytotoxicity is caused by induction of lysosomal membrane permeabilization and release of hydrolases, and may be rescued by cholesterol supplementation. Triple treatment inhibits lysosomal function, prevents cholesterol extraction from low density lipoprotein (LDL), and causes clumping of lysosome associated membrane protein-1 (LAMP-1) and lipid droplets (LD) accumulation. Co-treatment of the cell lines with inhibitor of caspases and cathepsin B only partially reverse of cytotoxicities, while N-acetyl cysteine (NAC) can be more effective. A combination of reactive oxygen species (ROS) generation from cholesterol depletion are the early event of underling mechanism. Cholesterol repletion abolished the ROS production and reversed the cytotoxicity from QRT treatment. The shortage of free cholesterol destabilizes lysosomal membranes converting aborted autophagy to apoptosis through either direct mitochondria damage or cathepsin B release. This promising anti-GBM triple therapy combination severely decreases mitochondrial function, induces lysosome-dependent apoptotic cell death, and is now poised for further clinical testing and validation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA