Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.215
Filtrar
1.
Medicine (Baltimore) ; 103(19): e38146, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728446

RESUMO

Breast cancer is a prevalent ailment among women, and the inflammatory response plays a crucial role in the management and prediction of breast cancer (BRCA). However, the new subtypes based on inflammation in BRCA research are still undefined. The databases including The Cancer Genome Atlas and gene expression omnibus were utilized to gather clinical data and somatic mutation information for approximately 1069 BRCA patients. Through Consensus Clustering, novel subtypes linked to inflammation were identified. A comparative analysis was conducted on the prognosis, and immune cell infiltration, and somatic mutation of the new subtypes. Additionally, an investigation into drug therapy and immunotherapy was conducted to distinguish high-risk individuals from low-risk ones. The findings of this investigation proposed the categorization of BRCA into innovative subtypes predicated on the inflammatory response and 6 key genes were a meaningful approach. Specifically, the low-, medium-, and high-inflammation subtypes exhibited varying degrees of association with clinicopathological features, tumor microenvironment, and prognosis. Notably, the high-inflammation subtype was characterized by a strong correlation with immunosuppressive microenvironments and a higher frequency of somatic mutations, which was an indication of poorer health. This study revealed that a brand-new classification could throw new light on the effective prognosis. The integration of multiple key genes was a new characterization that could promote more immunotherapy strategies and contribute to predicting the efficacy of the chemotherapeutic drugs.


Assuntos
Neoplasias da Mama , Inflamação , Microambiente Tumoral , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Feminino , Inflamação/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Prognóstico , Mutação , Imunoterapia/métodos , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética
2.
Discov Oncol ; 15(1): 153, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730061

RESUMO

Parthanatos, a cell death mechanism triggered by PARP-1 activation, is implicated in oncogenic processes, yet their role in low-grade gliomas (LGG) remains poorly understood. This research investigates Parthanatos-related miRNAs' prognostic and immunomodulatory potential, alongside their influence on therapeutic outcomes in LGGs. Comprehensive miRNA and mRNA profiles of LGG patients were extracted from TCGA and CGGA databases, integrating clinical parameters to identify Parthanatos-associated miRNAs. IHC data validated the expression levels of Parthanatos-related genes in glioma versus normal brain tissues. Protein-protein interaction networks and Spearman correlation analysis facilitated the identification of key miRNAs. Parthanatos-related miRNA indices (PMI) were screened using Lasso and assessed for their accuracy in predicting prognosis, comparing their associated potential molecular functions and heterogeneity of the immune microenvironment. Drug sensitivity was assessed between different groups and optimal therapeutic agents were predicted. Validate the expression levels of key miRNAs by qPCR. Ninety-one miRNAs significantly associated with Parthanatos were screened, through which a PMI prognosis model of nine miRNAs was constructed. The PMI score was able to independently predict the prognosis of patients with LGG, and the nomogram constructed based on the PMI provided a practical tool for clinical prediction of patient prognosis. The proportion of immune response was lower in patients in the high-risk group, and there were significant differences in drug sensitivity between different risk classes, while drugs such as Fasudil were identified as the most promising therapeutic agents for patients in the high-risk group. Our findings highlight the critical role of Parthanatos-associated miRNAs in the progression and treatment of LGG, offering novel insights into their prognostic value and therapeutic potential.

3.
Phys Rev Lett ; 132(17): 176801, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38728736

RESUMO

Ferroelastic twin walls in nonpolar materials can give rise to a spontaneous polarization due to symmetry breaking. Nevertheless, the bistable polarity of twin walls and its reversal have not yet been demonstrated. Here, we report that the polarity of SrTiO_{3} twin walls can be switched by an ultralow strain gradient. Using first-principles-based machine-learning potential, we demonstrate that the twin walls can be deterministically rotated and realigned in specific directions under the strain gradient, which breaks the inversion symmetry of a sequence of walls and leads to a macroscopic polarization. The system can maintain polarity even after the constraint is removed. As a result, the polarization of twin walls can exhibit a ferroelectriclike hysteresis loop upon cyclic bending, namely flexoferroelectricity. Finally, we propose a scheme to experimentally detect the polarity of the twin wall by measuring the bulk photovoltaic responses. Our findings suggest a twin-wall-mediated flexoferroelectricity in SrTiO_{3}, which could be potentially exploited as functional elements in nanoelectronic devices design.

4.
Eur J Med Chem ; 271: 116453, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701713

RESUMO

Neonatal hypoxia-ischemia encephalopathy (NHIE), an oxygen deprivation-mediated brain injury due to birth asphyxia or reduced cerebral blood perfusion, often leads to lifelong sequelae, including seizures, cerebral palsy, and mental retardation. NHIE poses a significant health challenge, as one of the leading causes of neonatal morbidity and mortality globally. Despite this, available therapies are limited. Numerous studies have recently demonstrated that ferroptosis, an iron-dependent non-apoptotic regulated form of cell death characterized by lipid peroxidation (LPO) and iron dyshomeostasis, plays a role in the genesis of NHIE. Moreover, recently discovered compounds have been shown to exert potential therapeutic effects on NHIE by inhibiting ferroptosis. This comprehensive review summarizes the fundamental mechanisms of ferroptosis contributing to NHIE. We focus on various emerging therapeutic compounds exhibiting characteristics of ferroptosis inhibition and delineate their pharmacological benefits for the treatment of NHIE. This review suggests that pharmacological inhibition of ferroptosis may be a potential therapeutic strategy for NHIE.


Assuntos
Ferroptose , Hipóxia-Isquemia Encefálica , Ferroptose/efeitos dos fármacos , Humanos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Animais , Recém-Nascido , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/síntese química
5.
Int J Clin Exp Pathol ; 17(4): 121-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716350

RESUMO

Yang-deficiency constitution (YADC) is linked to a higher vulnerability to various diseases, such as cold coagulation and blood stasis (CCBS) syndrome and infertility. Endometrial hyperplastic processes (EHPs) are a leading cause of infertility in women and are characterized by CCBS. However, it remains unclear whether YADC is related to the development of EHPs. METHODS: We recruited 202 EHPs patients including 147 with YADC (YEH group) and 55 with non-YADC (NYEH group). Fecal samples were collected from 8 YEH patients and 3 NYEH patients and analyzed using 16S rRNA V3-V4 sequencing for gut microbiota analysis. We obtained constitution survey data and a differential gut microbiota dataset from the literature for further analysis. Bioinformatics analysis was conducted using gut microbiota-related genes from public databases. RESULTS: YADC was significantly more prevalent in EHPs than non-YADC (P < 0.001), suggesting it as a potential risk factor for EHPs occurrence (ORpopulation survey = 13.471; ORhealthy women = 5.173). The YEH group had higher levels of inflammation, estrogen, and tamoxifen-related flora compared to NYEH and healthy YADC groups. There was an interaction between inflammation, estrogen, differential flora, and EHPs-related genes, particularly the TNF gene (related to inflammation) and the EGFR gene (related to estrogen), which may play a crucial role in EHPs development. CONCLUSION: YEH individuals exhibit significant changes in their gut microbiota compared to NYEH and healthy YADC. The interaction between specific microbiota and host genes is believed to play a critical role in the progression of EHPs.

6.
Adv Ther ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722537

RESUMO

INTRODUCTION: Spinal muscular atrophy (SMA) is a rare, autosomal recessive, neuromuscular disease that leads to progressive muscular weakness and atrophy. Nusinersen, an antisense oligonucleotide, was approved for SMA in China in February 2019. We report interim results from a post-marketing surveillance phase 4 study, PANDA (NCT04419233), that collects data on the safety, efficacy, and pharmacokinetics of nusinersen in children with SMA in routine clinical practice in China. METHODS: Participants enrolled in PANDA will be observed for 2 years following nusinersen treatment initiation. The primary endpoint is the incidence of adverse events (AEs)/serious AEs (SAEs) during the treatment period. Efficacy assessments include World Health Organization (WHO) Motor Milestones assessment, the Hammersmith Infant Neurological Examination (HINE), and ventilation support. Plasma and cerebrospinal fluid (CSF) concentrations of nusinersen are measured at each dose visit. RESULTS: Fifty participants were enrolled as of the January 4, 2023, data cutoff: 10 with infantile-onset (≤ 6 months) and 40 with later-onset (> 6 months) SMA. All 50 participants have received at least one dose of nusinersen; 6 have completed the study. AEs were experienced by 45 (90%) participants and were mostly mild/moderate; no AEs led to nusinersen discontinuation or study withdrawal. Eleven participants experienced SAEs, most commonly pneumonia (n = 9); none were considered related to study treatment. Stability or gain of WHO motor milestone was observed and mean HINE-2 scores improved in both subgroups throughout the study. No serious respiratory events occurred, and no permanent ventilation support was initiated during the study. Pre-dose nusinersen CSF concentrations increased steadily through the loading-dose period, with no accumulation in plasma after multiple doses. CONCLUSION: Nusinersen was generally well tolerated with an acceptable overall safety profile, consistent with the known safety of nusinersen. Efficacy, safety, and nusinersen exposure are consistent with prior observations. These results support continuing PANDA and evaluation of nusinersen in Chinese participants with SMA. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT04419233.

7.
Sci Total Environ ; 931: 172938, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703850

RESUMO

Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.

8.
Front Oncol ; 14: 1374696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706607

RESUMO

Introduction: Prolyl 3-hydroxylases (P3H) are crucial enzymes in collagen biosynthesis and are known to be involved in a variety of physiological processes. However, their specific roles in cancer progression, modulation of the tumor microenvironment (TME), and impact on patient prognosis remain areas that require further investigation. Methods: The investigation involved a comprehensive analysis of expression profiles and clinical data obtained from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases. This included the assessment of genetic variation, gene expression, and the prognostic significance of P3H family genes. P3H scores were calculated using various databases and R-based tools, followed by correlation analyses with the TME, immune cell infiltration, drug sensitivity and immunotherapy.Variations in P3H gene expression patterns were observed across different tumor types and prognoses, suggesting that most genes within the family were risk factors, especially P3H1 and P3H4. The P3H score was associated with immune infiltration and drug resistance. Notably, individuals with elevated expression of P3H2, P3H3, and CRTAP exhibited higher resistance to multiple anti-tumor drugs. Results: P3H family proteins play diverse roles in cancer progression, significantly impacting patient prognosis and the effectiveness of immunotherapy. Conclusions: The P3H score, identified as a potential biomarker for evaluating TME, holds promise in guiding precision medicine strategies.

9.
Ultrasonics ; 141: 107323, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38692211

RESUMO

Cased-hole logging using ultrasonic pitch-catch modality is a proven technique for cement bond evaluation in cased holes. However, complex measuring environments such as tool and casing eccentering makes it difficult to precisely separate and pick the third interface echoes from full ultrasonic Lamb waves, leading to ambiguous identification of annulus-formation interface. To overcome this problem, we propose an improved cased-hole reverse time migration approach for ultrasonic pitch-catch measurements to image the annulus-formation interface. The missing ultrasonic Lamb waveforms between far and near receivers due to insufficient spatial sampling are reconstructed based on the optimized theoretical phase velocity of zero-order anti-symmetric Lamb mode waves. Additionally, we apply the hybrid illumination imaging condition to mitigate the imaging noises around the true reflectors and sources. Data examples from a physical experimental well and a field well demonstrate that the proposed approach is an effective method for characterizing the annulus-formation interface without requiring precise knowledge of the velocity distribution in the region behind the casing. Furthermore, test on an experimental well has indicated that the method has the potential to detect the absence of cement in the annulus medium.

10.
Front Immunol ; 15: 1267624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690286

RESUMO

Inflammatory cytokines have crucial roles in the pathogenesis of tuberculosis (TB), and interleukin (IL)-27 and IL-35 have a pro-inflammatory and anti-inflammatory effect on many diseases, including infectious diseases. Therefore, we evaluated the relationship between IL-27 and IL-35 gene polymorphism, expression levels, and pulmonary TB (PTB) susceptibility. Nine single-nucleotide polymorphisms (SNPs) in the IL-27 gene (rs181206, rs153109, and rs17855750) and the IL-35 gene (rs4740, rs428253, rs9807813, rs2243123, rs2243135, and rs568408) were genotyped by the SNPscan technique in 497 patients with PTB and 501 controls. There was no significant difference regarding the genotype and allele frequencies of the above SNPs in the IL-27 and IL-35 genes between patients with PTB and controls. Haplotype analysis showed that the frequency of the GAC haplotype in the IL-35 gene was significantly decreased in patients with PTB when compared to controls (p = 0.036). Stratified analysis suggested that the frequency of the IL-27 rs17855750 GG genotype was significantly increased in patients with PTB with fever. Moreover, the lower frequency of the IL-35 rs568408 GA genotype was associated with drug-induced liver injury in patients with PTB. The IL-35 rs428253 GC genotype, as well as the rs4740 AA genotype and A allele, showed significant relationships with hypoproteinemia in patients with PTB. When compared with controls, the IL-27 level was significantly increased in patients with PTB. Taken together, IL-35 gene variation might contribute to a protective role on the susceptibility to PTB, and IL-27 and IL-35 gene polymorphisms were associated with several clinical manifestations of patients with PTB.


Assuntos
Frequência do Gene , Predisposição Genética para Doença , Interleucinas , Polimorfismo de Nucleotídeo Único , Tuberculose Pulmonar , Humanos , Interleucinas/genética , Masculino , Feminino , Tuberculose Pulmonar/genética , Adulto , Pessoa de Meia-Idade , Genótipo , Haplótipos , Estudos de Casos e Controles , Alelos , Interleucina-27/genética
11.
Oral Dis ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696515

RESUMO

OBJECTIVE: This study aimed to assess the effects of Porphyromonas gingivalis outer membrane vesicles (Pg-OMVs) in chronic periodontitis and explore the underlying mechanism involved. METHODS: In vitro, Pg-OMVs were incubated with Ea.hy926 (vessel endothelial cells, ECs) to evaluate their effects on endothelial functions and to investigate the underlying mechanism. The effects of endothelial dysfunction on MG63 osteoblast-like cells were verified using an indirect co-culture method. For in vivo studies, micro-CT was conducted to identify alveolar bone mass. Immunofluorescence staining was conducted to confirm the levels of stimulator of interferon genes (STING) in the blood vessel and the number of Runx2+ cells around the alveolar bone. RESULTS: Pg-OMVs were endocytosed by ECs, leading to endothelial dysfunction. The cGAS-STING-TBK1 pathway was activated in ECs, which subsequently inhibited MG63 migration and early osteogenesis differentiation. In vivo, Pg-OMVs promoted alveolar bone resorption, increased STING levels in the blood vessel, and decreased Runx2+ cells around the alveolar bone. CONCLUSIONS: Pg-OMVs caused endothelial dysfunction and activated the cGAS-STING-TBK1 signal cascade in ECs, thereby impairing ECs-mediated osteogenesis. Furthermore, Pg-OMVs aggregated alveolar bone loss and altered the blood vessel-mediated osteogenesis with elevated STING.

12.
Cancer Med ; 13(9): e7221, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733179

RESUMO

BACKGROUND: Cervical cancer is one of the most common gynecological cancers. Accumulated evidence shows that long non-coding RNAs (lncRNAs) play essential roles in cervical cancer occurrence and progression, but their specific functions and mechanisms remain to be further explored. METHODS: The RT-qPCR assay was used to detect the expression of NEAT1 in cervical cancer tissues and cell lines. CCK-8, colony formation, flow cytometry, western blotting, and Transwell assays were used to evaluate the impact of NEAT1 on the malignant behavior of cervical cancer cells. Glucose consumption, lactate production, ATP levels, ROS levels, MMP levels, and the mRNA expressions of glycolysis-related genes and tricarboxylic acid cycle-related genes were detected to analyze the effect of NEAT1 on metabolism reprograming in cervical cancer cells. The expressions of PDK1, ß-catenin and downstream molecules of the WNT/ß-catenin signaling pathway in cervical cancer cells and tissues were detected by western blotting, RT-qPCR, immunofluorescence and immunohistochemistry assays. RESULTS: This study investigated the role and possible molecular mechanism of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in cervical cancer. Our results showed that NEAT1 was highly expressed in cervical cancer tissues and cell lines. Downregulation of NEAT1 inhibited the proliferation, migration, invasion and glycolysis of cervical cancer cells, while overexpression of NEAT1 led to the opposite effects. Mechanistically, NEAT1 upregulated pyruvate dehydrogenase kinase (PDK1) through the WNT/ß-catenin signaling pathway, which enhanced glycolysis and then facilitated cervical cancer metastasis. Furthermore, NEAT1 maintained the protein stability of ß-catenin but did not affect its mRNA level. We also excluded the direct binding of NEAT1 to the ß-catenin protein via RNA pull-down assay. The suppressive impact of NEAT1 knockdown on cell proliferation, invasion, and migration was rescued by ß-catenin overexpression. The WNT inhibitor iCRT3 attenuated the carcinogenic effect induced by NEAT1 overexpression. CONCLUSION: In summary, these findings indicated that NEAT1 may contribute to the progression of cervical cancer by activating the WNT/ß-catenin/PDK1 signaling axis.


Assuntos
Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Longo não Codificante , Neoplasias do Colo do Útero , Via de Sinalização Wnt , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Feminino , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Linhagem Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Glicólise , Movimento Celular
13.
Chem Commun (Camb) ; 60(38): 5054-5057, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38634482

RESUMO

Three new distinct NIR α,α-NH-bridged BODIPY dimers were prepared by a direct nucleophilic substitution reaction. The synergistic effects of the nitrogen bridges and strong excitonic coupling between each BODIPY unit play major roles in enhancing the delocalization of an electron spin over the entire BODIPY dimers. The in situ formed aminyl radical dimer showed an absorption maximum at 1040 nm.

14.
Inflammation ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653920

RESUMO

Psoriasis is a common immune-mediated skin disease characterized by abnormally reactive inflammation and epidermal hyperplasia. Previous studies have shown melatonin (MLT) has powerful anti-inflammatory effects. The mechanisms that MLT regulates psoriasis-associated skin inflammation remain unclear. Here, in imiquimod-induced psoriasis-like mice, MLT supplementation reduced skin inflammation and corrected the Th17/Treg cell imbalance. Network pharmacology and proteome sequencing analyses revealed that MLT attenuates the inflammatory response in the skin of psoriatic mice by inhibiting the PI3K/Akt signaling pathway. Overall, the data suggest that MLT has a protective effect against psoriasis-like inflammation.

15.
Insects ; 15(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38667361

RESUMO

Butterflies have the ability to learn to associate olfactory information with abundant food sources during foraging. How the co-occurrence of both food and food odours affects the learning behaviour of adults and whether butterflies perceive the odour of their surroundings and develop a preference for that odour during the pupal stage have rarely been tested. We examined the effect of experience with food odour components (α-pinene and ethyl acetate) during the pupal and adult stages on the foraging behaviour of the flower-visiting butterfly Tirumala limniace. We found that α-pinene exposure during the pupal stage changed the foraging preference of newly emerged adults. T. limniace exhibits olfactory learning in the adult stage, and adult learning may influence their previous pupal memory. Moreover, adults' odour preference did not continue to increase over multiple training times. The learning ability of adults for floral odours (α-pinene) was greater than that for non-floral odours (ethyl acetate). In contrast to previous studies, we found that males learned odours more efficiently than females did. This could be attributed to differences in antennal sensilla, affecting sensitivity to compounds and nectar demand between males and females. Our study provides further insight into how olfactory learning helps flower-visiting butterflies use food odours to forage better.

16.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611767

RESUMO

As an azo dye, OG has toxic and harmful effects on ecosystems. Therefore, there is an urgent need to develop a green, environmentally friendly, and efficient catalyst to activate peroxymonosulfate (PMS) for the degradation of OG. In this study, the catalysts MIL-101(Fe) and NH2-MIL-101(Fe) were prepared using a solvothermal method to carry out degradation experiments. They were characterized by means of XRD, SEM, XPS, and FT-IR, and the results showed that the catalysts were successfully prepared. Then, a catalyst/PMS system was constructed, and the effects of different reaction systems, initial pH, temperature, catalyst dosing, PMS concentration, and the anion effect on the degradation of OG were investigated. Under specific conditions (100 mL OG solution with a concentration of 50 mg/L, pH = 7.3, temperature = 25 °C, 1 mL PMS solution with a concentration of 100 mmol/L, and a catalyst dosage of 0.02 g), the degradation of OG with MIL-101(Fe) was only 36.6% within 60 min; as a comparison, NH2-MIL-101(Fe) could reach up to 97.9%, with a reaction constant k value of 0.07245 min-1. The NH2-MIL-101 (Fe)/PMS reaction system was able to achieve efficient degradation of OG at different pH values (pH = 3~9). The degradation mechanism was analyzed using free-radical quenching tests. The free-radical quenching tests showed that SO4•-, •OH, and 1O2 were the main active species during the degradation of OG.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38662932

RESUMO

BACKGROUND: Extracellular vesicles derived from mesenchymal stem cells (MSCs) show great promise in treating osteoarthritis (OA). However, studies from the perspective of clinical feasibility that consider an accessible cell source and a scalable preparation method for MSC-extracellular vesicles are lacking. QUESTIONS/PURPOSES: (1) Does an infrapatellar fat pad obtained from patients undergoing TKA provide a suitable source to provide MSC-extracellular vesicles purified by anion exchange chromatography? Using an in vivo mouse model for OA in the knee, (2) how does injection of the infrapatellar fat pad-derived MSC-extracellular vesicles alter gait, cartilage structure and composition, protein expression (Type II collagen, MMP13, and ADAMTS5), subchondral bone remodeling and osteophytes, and synovial inflammation? METHODS: The infrapatellar fat pad was collected from three patients (all female; 62, 74, 77 years) during TKA for infrapatellar fat pad-derived MSC culturing. Patients with infection, rheumatic arthritis, and age > 80 years were excluded. MSC-extracellular vesicles were purified by anion exchange chromatography. For the animal study, we used 30 male C57BL/6 mice aged 10 weeks, divided into six groups. MSC-extracellular vesicles were injected weekly into the joint of an OA mouse model during ACL transection (ACLT). To answer our first research question, we characterized MSCs based on their proliferative potential, differentiation capacity, and surface antigen expression, and we characterized MSC-extracellular vesicles by size, morphology, protein marker expression, and miRNA profile. To answer our second research question, we evaluated the effects of MSC-extracellular vesicles in the OA mouse model with quantitative gait analysis (mean pressure, footprint area, stride length, and propulsion time), histology (Osteoarthritis Research Society International Score based on histologic analysis [0 = normal to 24 = very severe degeneration]), immunohistochemistry staining of joint sections (protein expression of Type II collagen, MMP13, and ADAMTS5), and micro-CT of subchondral bone (BV/TV and Tb.Pf) and osteophyte formation. We also examined the mechanism of action of MSC-extracellular vesicles by immunofluorescent staining of the synovium membrane (number of M1 and M2 macrophage cells) and by analyzing their influence on the expression of inflammatory factors (relative mRNA level and protein expression of IL-1ß, IL-6, and TNF-α) in lipopolysaccharide-induced macrophages. RESULTS: Infrapatellar fat pads obtained from patients undergoing TKA provide a suitable cell source for producing MSC-extracellular vesicles, and anion exchange chromatography is applicable for isolating MSC-extracellular vesicles. Cultured MSCs were spindle-shaped, proliferative at Passage 4 (doubling time of 42.75 ± 1.35 hours), had trilineage differentiation capacity, positively expressed stem cell surface markers (CD44, CD73, CD90, and CD105), and negatively expressed hematopoietic markers (CD34 and CD45). MSC-extracellular vesicles purified by anion exchange chromatography had diameters between 30 and 200 nm and a typical cup shape, positively expressed exosomal marker proteins (CD63, CD81, CD9, Alix, and TSG101), and carried plentiful miRNA. Compared with the ACLT group, the ACLT + extracellular vesicle group showed alleviation of pain 8 weeks after the injection, indicated by increased area (0.67 ± 0.15 cm2 versus 0.20 ± 0.03 cm2, -0.05 [95% confidence interval -0.09 to -0.01]; p = 0.01) and stride length (5.08 ± 0.53 cm versus 6.20 ± 0.33 cm, -1.12 [95% CI -1.86 to -0.37]; p = 0.005) and decreased propulsion time (0.22 ± 0.06 s versus 0.11 ± 0.04 s, 0.11 [95% CI 0.03 to 0.19]; p = 0.007) in the affected hindlimb. Compared with the ACLT group, the ACLT + extracellular vesicles group had lower Osteoarthritis Research Society International scores after 4 weeks (8.80 ± 2.28 versus 4.80 ± 2.28, 4.00 [95% CI 0.68 to 7.32]; p = 0.02) and 8 weeks (16.00 ± 3.16 versus 9.60 ± 2.51, 6.40 [95% CI 2.14 to 10.66]; p = 0.005). In the ACLT + extracellular vesicles group, there was more-severe OA at 8 weeks than at 4 weeks (9.60 ± 2.51 versus 4.80 ± 2.28, 4.80 [95% CI 0.82 to 8.78]; p = 0.02), indicating MSC-extracellular vesicles could only delay but not fully suppress OA progression. Compared with the ACLT group, the injection of MSC-extracellular vesicles increased Type II collagen expression, decreased MMP13 expression, and decreased ADAMTS5 expression at 4 and 8 weeks. Compared with the ACLT group, MSC-extracellular vesicle injection alleviated osteophyte formation at 8 weeks and inhibited bone loss at 4 weeks. MSC-extracellular vesicle injection suppressed inflammation; the ACLT + extracellular vesicles group had fewer M1 type macrophages than the ACLT group. Compared with lipopolysaccharide-treated cells, MSC-extracellular vesicles reduced mRNA expression and inhibited IL-1ß, IL-6, and TNF-α in cells. CONCLUSION: Using an OA mouse model, we found that infrapatellar fat pad-derived MSC-extracellular vesicles could delay OA progression via alleviating pain and suppressing cartilage degeneration, osteophyte formation, and synovial inflammation. The autologous origin of extracellular vesicles and scalable purification method make our strategy potentially viable for clinical translation. CLINICAL RELEVANCE: Infrapatellar fat pad-derived MSC-extracellular vesicles isolated by anion exchange chromatography can suppress OA progression in a mouse model. Further studies with large-animal models, larger animal groups, and subsequent clinical trials are necessary to confirm the feasibility of this technique for clinical OA treatment.

19.
J Hepatol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670321

RESUMO

BACKGROUND & AIMS: The precise pathomechanisms underlying the development of nonalcoholic steatohepatitis (NASH, also known as metabolic dysfunction-associated steatohepatitis [MASH]) remain incompletely understood. This study investigates the potential role of EF-hand domain family member D2 (EFHD2), a novel molecule specific to immune cells, in NASH pathogenesis. METHODS: Hepatic EFHD2 expression was characterized in NASH patients and two diet-induced NASH mouse models. Single-cell RNA-sequencing (scRNA-seq) and double-immunohistochemistry were employed to explore EFHD2 expression patterns in NASH livers. The effects of global and myeloid-specific EFHD2 deletion on NASH and NASH-related hepatocellular carcinoma (HCC) were assessed. Molecular mechanisms underlying EFHD2 function were investigated, along with its potential as a therapeutic target by chemical and genetic means. RESULTS: EFHD2 expression was significantly elevated in liver tissue macrophages/monocytes in both NASH patients and mice. Deletion of EFHD2, either globally or specifically in myeloid cells, improved hepatic steatosis, reduced immune cell infiltration, inhibited lipid peroxidation-induced ferroptosis, and attenuated fibrosis in NASH. Additionally, it hindered the development of NASH-related HCC. Specifically, deletion of myeloid EFHD2 prevented the replacement of TIM4+ resident Kupffer cells by infiltrated monocytes and reversed the decreases in patrolling monocytes and CD4+/CD8+ T cell ratio in NASH. Mechanistically, our investigation revealed that EFHD2 in myeloid cells interacts with cytosolic YWHAZ (14-3-3ζ), facilitating the translocation of interferon-γ receptor-2 (IFNγR2) onto the plasma membrane. This interaction mediates IFNγ signaling, which triggers immune and inflammatory responses in macrophages during NASH. Finally, a developed stapled α-helical peptide targeting EFHD2 demonstrated its efficacy in protecting against NASH pathology in mice. CONCLUSION: Our study reveals a pivotal immunomodulatory and inflammatory role of EFHD2 in NASH, underscoring EFHD2 as a promising druggable target for NASH treatment. IMPACT AND IMPLICATIONS: Nonalcoholic steatohepatitis (NASH) represents an advanced stage of non-alcoholic fatty liver disease (NAFLD); however, not all NAFLD patients progress to NASH. A key challenge is identifying the factors triggering inflammation, which propels the transition from simple fatty liver to NASH. Our research pinpointed EFHD2 as a pivotal driver of NASH, orchestrating the over-activation of IFNγ signaling within the liver during NASH progression. A stapled peptide designed to target EFHD2 exhibited therapeutic promise in NASH mice. These findings suggest EFHD2 as a promising target for drug development aimed at NASH treatment.

20.
Comput Biol Med ; 174: 108462, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599069

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting the quality of life of over 10 million individuals worldwide. Early diagnosis is crucial for timely intervention and better patient outcomes. Electroencephalogram (EEG) signals are commonly used for early PD diagnosis due to their potential in monitoring disease progression. But traditional EEG-based methods lack exploration of brain regions that provide essential information about PD, and their performance falls short for real-time applications. To address these limitations, this study proposes a novel approach using a Time-Frequency Representation (TFR) based AlexNet Convolutional Neural Network (CNN) model to explore EEG channel-based analysis and identify critical brain regions efficiently diagnosing PD from EEG data. The Wavelet Scattering Transform (WST) is employed to capture distinct temporal and spectral characteristics, while AlexNet CNN is utilized to detect complex spatial patterns at different scales, accurately identifying intricate EEG patterns associated with PD. The experiment results on two real-time EEG PD datasets: San Diego dataset and the Iowa dataset demonstrate that frontal and central brain regions, including AF4 and AFz electrodes, contribute significantly to providing more representative features compared to other regions for PD detection. The proposed architecture achieves an impressive accuracy of 99.84% for the San Diego dataset and 95.79% for the Iowa dataset, outperforming existing EEG-based PD detection methods. The findings of this research will assist to create an essential technology for efficient PD diagnosis, enhancing patient care and quality of life.


Assuntos
Eletroencefalografia , Redes Neurais de Computação , Doença de Parkinson , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/diagnóstico , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Masculino , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA