Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nat Prod Res ; 37(20): 3395-3401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35574610

RESUMO

Two new phenylpropanoids (1 and 2) and one new isoflavone glycoside (3), along with nine known compounds (4 - 12), were isolated from the pod of Ceratonia siliqua L. Their chemical structures were elucidated based on extensive spectroscopic analyses (1 D and 2 D NMR, UV, IR, and HRESIMS) and compared with the literature data. In addition, all isolated compounds were evaluated in vitro for inhibitory activity against acetylcholinesterase (AChE). Compounds 4, 5, and 12 showed inhibitory activity against acetylcholinesterase (AChE) with IC50 values ranging from 15.0 to 50.2 µM.

2.
Nat Prod Res ; 36(16): 4147-4152, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525866

RESUMO

A new unsaturated fatty acid trewioidesine A (1), together with seven known compounds (2 - 8) were isolated from the rhizomes of Alchornea trewioides (Benth.) Muell. Arg. Their structures were established on the basis of extensive spectroscopic data interpretation (1 D and 2 D NMR, and HRESIMS). The absolute configuration of 1 was determined by electronic circular dichroism (ECD) calculations, confirming as trewioidesine A. The functionality of isolated compounds was tested in cultured PC12 cells, a cell line from rat pheochromocytoma. Trewioidesine A was the one showing robust activity in inducing neuronal differentiation: the induction was synergized when co-applied with nerve growth factor (NGF). In addition, a neurofilament 200 (NF200) promoter-luciferase (pNF200-Luc) reporter was used to evaluate the differentiating ability in the transfected PC12 cells for the isolated compounds. Trewioidesine A exhibited a strong NF200 promoter activation, and application of trewioidesine A with low dose of NGF significantly induced the promoter activity over 50%.


Assuntos
Neoplasias das Glândulas Suprarrenais , Euphorbiaceae , Feocromocitoma , Animais , Diferenciação Celular , Ácidos Graxos Insaturados/farmacologia , Fator de Crescimento Neural/farmacologia , Células PC12 , Ratos , Rizoma
3.
Front Pharmacol ; 11: 526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410995

RESUMO

Kaempferol is a major flavonoid in Ginkgo Folium and other edible plants, which is being proposed here to have roles in angiogenesis. Angiogenesis is important in both physiological and pathological development. Here, kaempferol was shown to bind with vascular endothelial growth factor (VEGF), probably in the heparin binding domain of VEGF: this binding potentiated the angiogenic functions of VEGF in various culture models. Kaempferol potentiated the VEGF-induced cell motility in human umbilical vein endothelial cells (HUVECs), as well as the sub-intestinal vessel sprouting in zebrafish embryos and formation of microvascular in rat aortic ring. In cultured HUVECs, application of kaempferol strongly potentiated the VEGF-induced phosphorylations of VEGFR2, endothelial nitric oxide synthase (eNOS) and extracellular signal-regulated kinase (Erk) in time-dependent and concentration-dependent manners, and in parallel the VEGF-mediated expressions of matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were significantly enhanced. In addition, the potentiation effect of kaempferol was revealed in VEGF-induced migration of skin cell and monocyte. Taken together, our results suggested the pharmacological roles of kaempferol in potentiating VEGF-mediated functions should be considered.

4.
Cancers (Basel) ; 11(12)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757048

RESUMO

Ginkgetin, a biflavone from Ginkgo biloba leaf, and resveratrol, a polyphenol found in grape and wine, are two phytochemicals being identified for its binding to vascular endothelial growth factor (VEGF): the binding, therefore, resulted in the alteration of the physiological roles of VEGF-mediated angiogenesis. The bindings of ginkgetin and resveratrol were proposed on different sites of VEGF, but both of them suppressed the angiogenic properties of VEGF. The suppressive activities of ginkgetin and resveratrol in VEGF-mediated angiogenesis were supported by several lines of evidence including (i) inhibiting the formation of sub-intestinal vessel in zebrafish embryos and microvascular sprouting in rat aortic ring; and (ii) suppressing the phosphorylations of VEGFR2, Akt, eNOS, and Erk as well as expressions of matrix metalloproteinases (MMPs), MMP-2, and MMP-9 in human umbilical vein endothelial cells (HUVECs). Here, we showed the synergy of ginkgetin and resveratrol in suppressing the VEGF-induced endothelial cell proliferation, migration, invasion, and tube formation. The synergy of ginkgetin and resveratrol was further illustrated in HT-29 colon cancer xenograft nude mice. Ginkgetin and resveratrol, when applied together, exerted a synergistic anti-tumor effect of 5-fluorouracil with decreasing microvessel density of tumors. In parallel, the combination of ginkgetin and resveratrol synergistically relieved the 5-fluorouracil-induced inflammatory response by suppressing expressions of COX-2 and inflammatory cytokines. Thus, the anti-angiogenic roles of ginkgetin and/or resveratrol could provide effective therapeutic strategy in cancer, similar to that of Avastin, in suppressing the VEGF-mediated angiogenesis during cancer development.

5.
Pharmacol Res ; 149: 104459, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31541689

RESUMO

Gut microbiota and their metabolites (short-chain fatty acids, SCFAs) are associated with the pathogenesis of rheumatoid arthritis (RA). Total Clematis triterpenoid saponins (CTSs) prepared from Clematis mandshurica Rupr. possess therapeutic benefits for arthritic diseases. However, the poor pharmacokinetic properties of CTSs have obstructed the translation of these natural agents to drugs. Here, we examined the effects of CTSs on arthritis symptoms, gut microbiota and SCFAs in rats with collagen-induced arthritis (CIA). Our results showed that the arthritis index scores of CIA rats treated with CTSs were significantly lower than those of the model group. Most importantly, CTSs moderated gut microbial dysbiosis and significantly downregulated the total SCFA concentration in CIA rats. Compared to the control group, CTSs treatment have no significant side effects on the gut microbiota and SCFA metabolism in normal rats. Two differential analyses (LEfSe and DESeq2) were combined to study the details of the changes in gut microbiome, and twenty-four marker taxa at the genus level were identified via a comparison among control, model and CIA rats treated with high doses of CTSs. In particular, the mostly significantly increased gram-negative (G-) and decreased gram-positive (G+) genera in CIA rats were well restored by CTSs. The observed SCFA concentrations demonstrated that CTSs tend to maintain the balance of the gut microbiota. The data presented herein suggest that CTSs could ameliorate arthritis-associated gut microbial dysbiosis and may be potential adjuvant drugs that could provide relief from the gastrointestinal damage caused as a side effect of commonly used drugs.


Assuntos
Artrite Experimental/tratamento farmacológico , Clematis/química , Disbiose/prevenção & controle , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Saponinas/uso terapêutico , Triterpenos/uso terapêutico , Animais , Artrite Experimental/microbiologia , Disbiose/microbiologia , Feminino , Ratos , Ratos Wistar , Saponinas/isolamento & purificação , Triterpenos/isolamento & purificação
6.
Molecules ; 24(16)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398918

RESUMO

Gut microbiota play an important role in metabolism of intake saponins, and parallelly, the polysaccharides deriving from herbal products possess effects on gut microbiota. Ophiopogonis Radix is a common Chinese herb that is popularly used as functional food in China. Polysaccharide and steroidal saponin, e.g., ophiopogonin, mainly ophiopogonin D (Oph-D) and ophiopogonin D' (Oph-D'), are the major constituents in this herb. In order to reveal the role of gut microbiota in metabolizing ophiopogonin, an in vitro metabolism of Oph-D and Oph-D' by human gut microbiota, in combination with or without Ophiopogon polysaccharide, was conducted. A sensitive and reliable UPLC-MS/MS method was developed to simultaneously quantify Oph-D, Oph-D' and their final metabolites, i.e., ruscogenin and diosgenin in the broth of microbiota. An elimination of Oph-D and Oph-D' was revealed in a time-dependent manner, as well as the recognition of a parallel increase of ruscogenin and diosgenin. Ophiopogon polysaccharide was shown to stimulate the gut microbiota-induced metabolism of ophiopogonins. This promoting effect was further verified by increased activities of ß-D-glucosidase, ß-D-xylosidase, α-L-rhamnosidase and ß-D-fucosidase in the broth. This study can be extended to investigate the metabolism of steroidal saponins by gut microbiota when combined with other herbal products, especially those herbs enriched with polysaccharides.


Assuntos
Microbioma Gastrointestinal , Ophiopogon/química , Polissacarídeos/química , Saponinas/química , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Fermentação , Glicosídeo Hidrolases/metabolismo , Humanos , Estrutura Molecular , Ophiopogon/metabolismo , Polissacarídeos/metabolismo , Saponinas/metabolismo , Espectrometria de Massas em Tandem
7.
J Pharm Biomed Anal ; 175: 112779, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349212

RESUMO

The combined usage of Ginseng Radix et Rhizoma (ginseng) and Ophiopogonis Radix is common in oriental countries for thousands of years. The major active constituents of ginseng are ginsenosides, and the conversion of ginsenosides to different metabolites by gut microbiota has been reported. However, the effect of Ophiopogonis Radix, especially its polysaccharides, on the metabolism of ginsenosides by gut microbiota is not known. Here, an in vitro metabolism of ginseng extract, or ginsenosides, in combination with or without Ophiopogon polysaccharide was conducted. A sensitive and reliable UPLC-MS/MS approach using multiple reaction monitoring (MRM) in positive ion mode was developed simultaneously to quantify 22 ginsenosides in the broth of gut microbiota. After fermentation with the microbiota, 15 ginsenosides were detected and quantified, including 6 primary ginsenosides, i.e. Rb1, Rc, Rb2, Rb3, Rd and Re, and 9 metabolites, i.e. F2, Rg3, compound K, Rh2, PPD, Rg1, Rh1, Rg2 and PPT. The quantitative results therefore revealed the elimination of primary ginsenosides and the formation of their metabolites in time-dependent manners. Furthermore, Ophiopogon polysaccharide was shown to stimulate the metabolism of ginsenosides, triggered by gut microbiota. Our study can be extended to investigate the metabolism of different Panax species by gut microbiota when combining with other herbs.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Ginsenosídeos/metabolismo , Ophiopogon/química , Panax/química , Polissacarídeos/farmacologia , Adulto , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Humanos , Masculino , Raízes de Plantas/química , Rizoma/química , Espectrometria de Massas em Tandem
8.
Neurosci Lett ; 707: 134308, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31153972

RESUMO

Acori Tatarinowii Rhizoma (ATR, the dried rhizome of Acorus tatarinowii Schott.) is a traditional Chinese medicine widely used to treat brain diseases, e.g. depression, forgetfulness, anxiety and epilepsy. Several lines of evidence support that ATR has neuronal beneficial functions in animal models, but its action mechanism in cellular level is unknown. Here, we identified α-asarone and ß-asarone could be the major active ingredients of ATR, which, when applied onto cultured rat astrocytes, significantly stimulated the expression and secretion of neurotrophic factors, i.e. nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and glial derived neurotrophic factor (GDNF), in dose-dependent manners. These results suggested that the neuronal action of ATR, triggered by asarone, might be mediated by an increase of expression of neurotrophic factors in astrocytes, which therefore could support the clinical usage of ATR. In addition, application of PKA inhibitor, H89, in cultured astrocytes partially blocked the asarone-induced neurotrophic factor expression, suggesting the involvement of PKA signaling. The results proposed that α-asarone and ß-asarone from ATR could serve as potential candidates for drug development in neurodegenerative diseases.


Assuntos
Acorus/química , Anisóis/farmacologia , Astrócitos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Fatores de Crescimento Neural/metabolismo , Derivados de Alilbenzenos , Animais , Anisóis/isolamento & purificação , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator de Crescimento Neural/metabolismo , Ratos Sprague-Dawley , Rizoma/química
9.
J Sep Sci ; 42(15): 2500-2509, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31115147

RESUMO

Short-chain fatty acids are currently the most studied metabolites of gut microbiota, but the analysis of them, simultaneously, is still challenging due to their unique property and wide concentration range. Here, we developed a sensitive and versatile high-performance liquid chromatography with ultraviolet detection method, using pre-column derivatization and solid-phase extraction segmental elution, for the quantification of both major and trace amounts of short-chain fatty acids in human feces. Short-chain fatty acids were converted to 3-nitrophenylhydrazine-derived analytes, and then solid-phase extraction segmental elution was used for extraction of major analytes and enrichment of trace analytes. The method validation showed limits of quantitation ˂0.04 mM, and coefficient of determination > 0.998 at a wide range of 0.04-8.0 mM. The intra- and interday precision of analytes were all within accepted criteria, and the recoveries were 96.12 to 100.75% for targeted analytes in fecal samples. This method was successfully applied in quantification of eight analytes in human feces, which therefore could provide a sensitive and versatile high-performance liquid chromatography with ultraviolet detection method for precise and accurate quantitation of short-chain fatty acids in human feces.


Assuntos
Ácidos Graxos Voláteis/análise , Fezes/química , Extração em Fase Sólida , Cromatografia Líquida de Alta Pressão , Humanos
10.
Arch Microbiol ; 201(6): 757-767, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30840101

RESUMO

Bacteria in corals have been studied in detail in the past decades. However, the biodiversity and bioactivity of fungi in corals are still poorly understood. This study investigated the biodiversity and antifouling activity of fungi in soft corals Cladiella krempfi and Sarcophyton tortuosum from the South China Sea. A high diverse and abundant fungal community was found in the two soft corals. Furthermore, five isolates shared 83-95% similarity with their closest relatives, indicating that they might be novel species in genera Phaeoshaeria and Mucor. In addition, approximately 50% of the representative isolates exhibited distinct antifouling activity. In particular, isolates Fungal sp. SCAU132 and Fungal sp. SCAU133 displayed very strong antifouling activity against Bugula neritina, suggesting they can provide a potential resource for further investigation on isolation of novel antifouling metabolites. To our knowledge, this study is the first report to investigate the biodiversity and antifouling activity of fungi in C. krempfi and S. tortuosum.


Assuntos
Antozoários/microbiologia , Biodiversidade , Fungos/fisiologia , Animais , Antozoários/classificação , Incrustação Biológica , Briozoários/fisiologia , China , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Oceanos e Mares , Filogenia
11.
FASEB J ; 33(1): 532-544, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29989844

RESUMO

Polydatin, also called piceid, is a stilbenoid glucoside of a resveratrol derivative. It derives mainly from the root and rhizome of Polygonum cuspidatum Sieb. et Zucc. Although the role of P. cuspidatum root in angiogenesis has been reported, the active chemical or chemicals responsible for such function is not known. Here, polydatin was proposed to bind VEGF, which therefore altered the functions of VEGF in angiogenesis. Several lines of evidence supported the pharmaceutical effects of polydatin in VEGF-induced angiogenesis. In human umbilical vein endothelial cells, polydatin inhibited VEGF-stimulated cell proliferation, cell migration, and tube formation. Moreover, polydatin showed suppressive effects on the subintestinal vessel formation in zebrafish embryos. In signaling cascades, polydatin application attenuated VEGF-induced phosphorylations of VEGF receptor 2 and JNK. Moreover, the VEGF-induced phosphorylations of Akt, eNOS, and Erk were significantly decreased in the presence of polydatin. In parallel, the formation of reactive oxygen species, triggered by VEGF, was markedly decreased under polydatin application. Thus, our results supported the angiogenic roles of polydatin, as well as its signaling mechanism in blocking VEGF-mediated responses. The current study provides support for the possible development of polydatin as a potential therapeutic agent for treatment and prevention of angiogenesis-related diseases.-Hu, W.-H., Wang, H.-Y., Kong, X.-P., Xiong, Q.-P., Poon, K. K.-M., Xu, L., Duan, R., Chan, G. K.-L., Dong, T. T.-X., Tsim, K. W.-K. Polydatin suppresses VEGF-induced angiogenesis through binding with VEGF and inhibiting its receptor signaling.


Assuntos
Inibidores da Angiogênese/farmacologia , Movimento Celular , Proliferação de Células , Glucosídeos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Estilbenos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
12.
J Agric Food Chem ; 67(4): 1127-1137, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30525561

RESUMO

Resveratrol is a polyphenol commonly found in plants and food health products, such as grape and red wine, and was identified for its binding to vascular endothelial growth factor (VEGF) by using HerboChips screening. The binding, therefore, resulted in alterations of VEGF binding to its receptor and revealed the roles of VEGF in angiogenesis. Several lines of evidence gave support to the inhibitory activities of resveratrol in VEGF-triggered angiogenesis. In human umbilical vein endothelial cells (HUVECs), compared with a VEGF-induced group, resveratrol, at a high concentration, suppressed VEGF-mediated endothelial cell proliferation, cell migration, cell invasion, and tube formation by 80 ± 9.01%, 140 ± 3.78%, 110 ± 7.51%, and 120 ± 10.26%, respectively. Moreover, resveratrol inhibited the subintestinal vessel formation in zebrafish embryo. In signaling cascades, application of resveratrol in HUVECs reduced the VEGF-triggered VEGF receptor 2 phosphorylation and c-Jun N-terminal kinase phosphorylation. Moreover, the VEGF-mediated phosphorylations of endothelial nitric oxide synthase, protein kinase B, and extracellular signal-regulated kinase were obviously decreased by (3 ± 0.37)-, (2 ± 0.27)- and (6 ± 0.23)-fold, respectively, in the presence of resveratrol at high concentration. Parallelly, the VEGF-induced reactive oxygen species formation was significantly decreased by 50 ± 7.88% to 120 ± 14.82% under resveratrol treatment. Thus, our results provided support to the antiangiogenic roles of resveratrol, as well as its related signaling mechanisms, in attenuating the VEGF-mediated responses. The present results supported possible development of resveratrol, which should be considered as a therapeutic agent in terms of prevention and clinical treatment of diseases related to angiogenesis.


Assuntos
Inibidores da Angiogênese/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Resveratrol/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/química , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Resveratrol/química , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/química , Peixe-Zebra
13.
Front Pharmacol ; 9: 853, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131696

RESUMO

Chemo-resistance is an obstacle in therapy of lung cancer. Alternative therapy of using herbal medicine has been proposed to resolve this obstacle. Yu Ping Feng San (YPFS), a common Chinese herbal medicinal mixture, has been reported to show anti-drug resistance on cisplatin (DDP), a common lung cancer drug. To optimize the anti-cancer function of YPFS, different Chinese herbal extracts having known function to overcome lung cancer were screened in combining with YPFS, as to increase the efficacy of DDP in drug resistance lung cancer cell, A549/DDP. Amongst these herbal extracts, Ginkgo Folium exhibited the most promoting sensitized effect. This revised herbal formula, named as YPFS+GF, promoted the DDP-induced toxicity by over 2-fold as compared to that of YPFS alone; this potentiation was confirmed by inducing cell apoptosis. The anti-drug resistance of YPFS, triggered by an increase of intracellular concentration of DDP, was accompanied by an increased expression and activity of WT1, which consequently decreased the transcript level of MVP. In addition, the MVP-mediated downstream effector mTOR2/AKT was disrupted after application of YPFS+GF in DDP-treated A549/DDP cell: this disruption was characterized by the decline of mTORC2 components, e.g., Rictor, p-mTOR, as well as the phosphorylation level of its downstream protein AKT. The disruption on mTORC2/AKT could be reversed by mTORC2 inducer insulin and promoted by mTORC2 inhibitor PP242. Thus, the anti-drug resistance of YPFS+GF in DDP-treated lung cancer cells might be mediated by the down regulation of WT1/MVP axis, as well as the downstream anti-apoptotic pathway of mTORC2/AKT signaling. Herbal medicine is one of the main adjuvant therapies in non-small cell lung cancer, and this novel herbal formula supports the prescription of traditional Chinese medicine in cancer treatment.

14.
Phytomedicine ; 42: 135-143, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29655679

RESUMO

BACKGROUND: Polygoni Cuspidati Rhizoma et Radix (PCRR; the root and rhizome of Polygonum cuspidatum Sieb. et Zucc) is a traditional Chinese medicine for the treatment of inflammation, hyperlipemia, favus, jaundice and scald. HYPOTHESIS/PURPOSE: The extract of PCRR inhibits vascular endothelial growth factor (VEGF)-induced angiogenesis. The hypothesis is supported by analysis of PCRR extract and investigation of pharmacological role and signaling mechanism of PCRR extract in regulating angiogenic responses. STUDY DESIGN: The PCRR ethanolic extract was examined for its inhibitory effects on angiogenesis based on VEGF-treated human umbilical vein endothelial cells and in zebrafish model METHODS: The effects and signaling mechanism of a standardized ethanolic extract of PCRR were tested on cell proliferation, migration and tube formation in VEGF-treated human umbilical vein endothelial cells, and which was further validated in zebrafish embryo model. RESULTS: The treatment of PCRR extract in cultured endothelial cells inhibited VEGF-induced cell proliferation, cell migration and tube formation in a dose-dependent manner and also suppressed the formation of sub-intestinal vessels in zebrafish embryos. Moreover, the applied PCRR extract suppressed VEGF-induced phosphorylations of VEGF receptor 2 (VEGFR2) and JNK. Thus, the site of effect triggered by PCRR was proposed to be mediated by VEGFR2. To further support this notion, the phosphorylations of Erk, Akt and eNOS, induced by VEGF, were markedly reduced under the challenge of PCRR extract: the reductions were subsequently further decreased in the present of inhibitors of Erk, Akt and eNOS. In parallel, the formation of ROS induced by VEGF in cultured endothelial cells was markedly reduced in the present of PCRR extract. CONCLUSION: Collectively, our studies demonstrated the pharmacological role and signaling mechanism of PCRR in regulation of angiogenic responses, which supported further evaluation and development of PCRR as a potential therapeutic agent for the treatment and prevention of diseases related with angiogenesis.


Assuntos
Inibidores da Angiogênese/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/efeitos dos fármacos , Fallopia japonica/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/efeitos dos fármacos , Rizoma/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia
15.
Oncotarget ; 8(54): 93131-93148, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29190983

RESUMO

Promoting cell death by autophagy could be a novel treatment for cancer. The major player in autophagy, p62, serves as a good therapeutic target. Ginkgetin, a biflavonoid from Ginkgo biloba leaves, exhibited promising anticancer activity in non-small cell lung cancer cell lines, with an IC50 lower than that of cisplatin. This anticancer effect of ginkgetin was illustrated in a xenograft nude mouse model. Ginkgetin induced autophagic cell death in A549 cells, and this effect was markedly reversed by chemical and genetic approaches. Ginkgetin showed potential binding affinity to p62. Upregulation of p62 through chemical and genetic means decreased cell death, lysosome acidification, and autophagosome formation, which consequently disrupted autolysosome formation. In addition, the decreased autophagy induced by p62 overexpression increased Nrf2/ARE activity and the oxygen consumption rate and decreased on formation of reactive oxygen species. These phenomena were exhibited in a reciprocal manner when p62 was knocked down. Thus, p62 may be a potential target in ginkgetin-induced autophagic cell death, and ginkgetin could be developed as a novel anticancer drug.

16.
Biomed Pharmacother ; 94: 794-803, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28802232

RESUMO

Hou-Po-Da-Huang Tang (HPDHT) was used for the treatment of intestinal tract diseases in China. However, the underlying mechanisms via the intestinal bacteria remain largely unclear. Therefore, the aim of this study was to evaluate the metabolism of HPDHT by the human intestinal bacteria and its modulating effect on the intestinal bacteria. As a result, a total of 34 compounds were identified in HPDHT and transformed HPDHT (T-HPDHT). Among them, 12 metabolites were proved to be transformed by human intestinal bacteria. In vitro assays showed that T-HPDHT exhibited more significant elevation of free radical scavenging activity and suppression on the production of nitric oxide (NO) and TNF-α when comparing to HPDHT. Additionally, in vivo experiment confirmed that HPDHT significantly increased activity of superoxide dismutase (SOD), attenuated the malondialdehyde (MDA) and TNF-α levels in the conventional rats compared with that of pseudo germ-free (PGF) rats. In addition, HPDHT could significantly enhance the mean counts of Bifidobacterium and Lactobacillus and inhibit the growth of Clostridium, and Enterobacteriaceae, relative to controls. Due to the transformation of HPDHT being dependent on the bacterial strain, the effect of HPDHT on the selective growth of Bifidobacterium bifidum 29521 and Lactobacillus plantarum 8014 was evaluated. The kinetic parameters of microbial growth and prebiotic activity scores indicated that HPDHT could selectively stimulate the growth of the strains Bifidobacterium bifidum 29521 and Lactobacillus plantarum 8014. Taken together, metabolism of HPDHT by intestinal bacteria is a critical step towards the emergence of their anti-oxidation, anti-inflammation and prebiotic activities. This study provided valuable information for further pharmacological research on HPDHT.


Assuntos
Bactérias/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Sequestradores de Radicais Livres/metabolismo , Mucosa Intestinal/metabolismo , Adulto , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Sequestradores de Radicais Livres/farmacologia , Humanos , Intestinos/microbiologia , Masculino , Camundongos , Óxido Nítrico/metabolismo , Prebióticos , Células RAW 264.7 , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
17.
Food Funct ; 8(6): 2193-2201, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28504280

RESUMO

Fructus aurantii immaturus (FAI) is the dried young fruit of Citrus aurantium L. or Citrus sinensis L. Osbeck. The purpose of this paper was to investigate the metabolic fate of FAI upon incubation with human intestinal bacteria, meanwhile to evaluate the antioxidant and anti-inflammatory activities of FAI and the transformed Fructus aurantii immaturus (TFAI). The water extract of FAI was anaerobically incubated with human intestinal bacterial suspensions for 48 h at 37 °C. Liquid chromatography-hybridised with quadrupole-time-of-flight mass spectrometry (LC-Q-TOF/MS) was applied to identify FAI metabolites. A total of 45 compounds were identified in FAI, eleven of which were metabolized by human intestinal bacteria. Nine major metabolites were identified as eriodictyol, naringenin, hesperetin, luteolin, apigenin, chryseriol, isosakuranetin, phloretin and diosmetin. The metabolic profile of FAI was elucidated on the basis of metabolite information. We found that the concentrations of acetic, propionic and butyric acids in FAI culture were all increased during fermentation relative to those of the control. Further bioactive evaluations showed that TFAI exhibited more potent antioxidant and anti-inflammatory abilities than FAI in vitro. Additionally, in vivo experiment confirmed that FAI significantly attenuated the blood endotoxin and TNF-α levels in the conventional rats compared to those of pseudo-germ-free (PGF) rats. This study revealed that metabolites may play a key role in the antioxidant and anti-inflammatory capacities of FAI.


Assuntos
Bactérias/metabolismo , Citrus/microbiologia , Medicamentos de Ervas Chinesas/metabolismo , Intestinos/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Biotransformação , Cromatografia Líquida de Alta Pressão , Citrus/química , Citrus/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Fermentação , Microbioma Gastrointestinal , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Espectrometria de Massas , Camundongos , Células RAW 264.7 , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/imunologia
18.
Chin J Nat Med ; 15(11): 801-815, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29329607

RESUMO

Liriope (Liliaceae) species have been used as folk medicines in Asian countries since ancient times. From Liriope plants (8 species), a total of 132 compounds (except polysaccharides) have been isolated and identified, including steroidal saponins, flavonoids, phenols, and eudesmane sesquiterpenoids. The crude extracts or monomeric compounds from this genus have been shown to exhibit anti-tumor, anti-diabetic, anti-inflammatory, and neuroprotective activities. The present review summarizes the results on phytochemical and biological studies on Liriope plants. The chemotaxonomy of this genus is also discussed.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Hipoglicemiantes/farmacologia , Liriope (Planta)/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Animais , Flavonoides/farmacologia , Humanos , Medicina Tradicional , Fenóis/farmacologia , Fitoterapia , Saponinas/farmacologia , Sesquiterpenos/farmacologia
19.
Chin Med ; 11: 41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27708691

RESUMO

BACKGROUND: Acori Tatarinowii Rhizoma (ATR; rhizome of Acorus tatarinowii Schott) (Shi Chang Pu) is widely used in Chinese medicine (CM) to resuscitate, calm the mind, resolve shi (dampness) and harmonize the wei (stomach). Seven different species have been identified as belonging to the genus Acorus, all of which can be found in China. However, it can be difficult to distinguish the different species of Acorus because of their morphological similarities. The aim of this study was to authenticate Acorus species using macroscopic and microscopic techniques, chemical analysis and DNA authentication and to compare the resolution power and reliability of these different methods. METHODS: Four batches of ATR, Acori Graminei Rhizoma (AGR), Acori Calami Rhizoma (ACR) and Anemones Altaicae Rhizoma (AAR) (totaling 16 samples) were collected from Hong Kong and mainland China. The major characteristic features of these Acorus species were identified by macroscopic and microscopic examination. The identified samples were also analyzed by UHPLC analysis. Principal component analysis (PCA) and hierarchal clustering analysis (HCA) on UHPLC results were used to differentiate between the samples. An internal transcribed spacer (ITS) was selected as a molecular probe and a modified DNA extraction method was developed to obtain trace amounts of DNA from the different Acorus species. All extracted DNA sequences were edited by Bioedit and aligned with the ClustalW. And the sequence distances were calculated using the Maximum Parsimony method. RESULTS: Macroscopic and microscopic analyses allowed for AAR to be readily distinguished from ATR, AGR and ACR. However, it was difficult to distinguish between ATR, AGR and ACR because of their similar morphological features. Chemical profiling revealed that α- and ß-asarone were only found in the ATR, AGR and ACR samples, but not in the AAR samples. Furthermore, PCA and HCA allowed for the differentiation of these three species based on their asarone contents. Morphological authentication and chemical profiling allowed for the partial differentiation of ATR, AGR ACR and AAR. DNA analysis was the only method capable of accurately differentiating between all four species. CONCLUSION: DNA authentication exhibited higher resolution power and reliability than conventional morphological identification and UHPLC in differentiating between different Acorus species.

20.
J Pharm Biomed Anal ; 98: 296-306, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24973593

RESUMO

Ginseng is an important and widely used herbal medicine in Asia and has gained popularity in the western countries. Ginseng products are usually administered orally, after which their complicated components are brought into contact with intestinal microflora in the alimentary tract and metabolized. The metabolic investigation of ginseng in intestinal tract is necessary for elucidating its pharmacological activities. However, most of the reports about the metabolism of ginseng with intestinal microflora are focused on single ginseng saponin with the whole action of ginseng extract ignored. In the present paper, in vitro biotransformation of red ginseng extract by human intestinal microflora was conducted, and a rapid liquid chromatography with time-of-flight mass spectrometry (LC-Q-TOF/MS) method was used for rapid identification of the metabolites and metabolic profile of ginseng saponins. A total of 37 ginseng saponins in red ginseng extract were characterized, 17 of which were assessed to be metabolized by human intestinal microflora. Also, 30 metabolites, mostly deglycosylated, were detected and identified in the biotransformed red ginseng extract, including 4 original ingredients of red ginseng, 6 ginsenoside lactate esters, and 2 glycosylated metabolites. The metabolic profile of ginseng saponins biotransformed by human intestinal microflora was elucidated based on the metabolite information. The results indicated that deglycosylation was the major metabolic pathway of saponins in red ginseng. The esterification and glycosylation reaction also occurred during the biotransformation. Our study indicated that there was some differences in the biotransformation of single ginseng saponin and red ginseng extract. It must be noted that the ginsenoside lactate esters were firstly found in the metabolites of ginsenosides.


Assuntos
Biotransformação/fisiologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Panax/química , Panax/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Adulto , Cromatografia Líquida/métodos , Fezes/química , Feminino , Ginsenosídeos/metabolismo , Humanos , Masculino , Espectrometria de Massas/métodos , Metaboloma/fisiologia , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Saponinas/química , Saponinas/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA