RESUMO
Modular functionalization enables versatile exploration of chemical space and has been broadly applied in structure-activity relationship (SAR) studies of aromatic scaffolds during drug discovery. Recently, the bicyclo[1.1.1]pentane (BCP) motif has increasingly received attention as a bioisosteric replacement of benzene rings due to its ability to improve the physicochemical properties of prospective drug candidates, but studying the SARs of C2-substituted BCPs has been heavily restricted by the need for multistep de novo synthesis of each analogue of interest. Here we report a programmable bis-functionalization strategy to enable late-stage sequential derivatization of BCP bis-boronates, opening up opportunities to explore the SARs of drug candidates possessing multisubstituted BCP motifs. Our approach capitalizes on the inherent chemoselectivity exhibited by BCP bis-boronates, enabling highly selective activation and functionalization of bridgehead (C3)-boronic pinacol esters (Bpin), leaving the C2-Bpin intact and primed for subsequent derivatization. These selective transformations of both BCP bridgehead (C3) and bridge (C2) positions enable access to C1,C2-disubstituted and C1,C2,C3-trisubstituted BCPs that encompass previously unexplored chemical space.
RESUMO
Nature harnesses exquisite enzymatic cascades to construct N-heterocycles and further uses these building blocks to assemble the molecules of life. Here we report an enzymatic platform to construct important chiral N-heterocyclic products, pyrrolidines and indolines, via abiological intramolecular C(sp3)-H amination of organic azides. Directed evolution of cytochrome P411 (a P450 enzyme with serine as the heme-ligating residue) yielded variant P411-PYS-5149, capable of catalyzing the insertion of alkyl nitrene into C(sp3)-H bonds to build pyrrolidine derivatives with good enantioselectivity and catalytic efficiency. Further evolution of activity on aryl azide substrates yielded variant P411-INS-5151 that catalyzes intramolecular C(sp3)-H amination to afford chiral indolines. In addition, we show that these enzymatic aminations can be coupled with a P411-based carbene transferase or a tryptophan synthase to generate an α-amino lactone or a noncanonical amino acid, respectively, underscoring the power of new-to-nature biocatalysis in complexity-building chemical synthesis.