Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant Cell ; 35(12): 4325-4346, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37738653

RESUMO

CYP78A, a cytochrome P450 subfamily that includes rice (Oryza sativa L.) BIG GRAIN2 (BG2, CYP78A13) and Arabidopsis thaliana KLUH (KLU, CYP78A5), generate an unknown mobile growth signal (referred to as a CYP78A-derived signal) that increases grain (seed) size. However, the mechanism by which the CYP78A pathway increases grain size remains elusive. Here, we characterized a rice small grain mutant, small grain4 (smg4), with smaller grains than its wild type due to restricted cell expansion and cell proliferation in spikelet hulls. SMG4 encodes a multidrug and toxic compound extrusion (MATE) transporter. Loss of function of SMG4 causes smaller grains while overexpressing SMG4 results in larger grains. SMG4 is mainly localized to endoplasmic reticulum (ER) exit sites (ERESs) and partially localized to the ER and Golgi. Biochemically, SMG4 interacts with coat protein complex Ⅱ (COPⅡ) components (Sar1, Sec23, and Sec24) and CYP78As (BG2, GRAIN LENGTH 3.2 [GL3.2], and BG2-LIKE 1 [BG2L1]). Genetically, SMG4 acts, at least in part, in a common pathway with Sar1 and CYP78As to regulate grain size. In summary, our findings reveal a CYP78As-SMG4-COPⅡ regulatory pathway for grain size in rice, thus providing new insights into the molecular and genetic regulatory mechanism of grain size.


Assuntos
Arabidopsis , Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Sementes/genética , Arabidopsis/genética
2.
Sci Total Environ ; 903: 166527, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634725

RESUMO

As one of the infiltration-based low-impact development (LID) measures, infiltration trenches are widely used to reduce runoff and improve water quality. The conventional analytical stochastic approach developed for use in the hydrologic design of infiltration trenches often overestimates the trench's runoff reduction performance when the infiltration rate at the bottom of the trench exceeds some high level or when the size of the trench is smaller than some threshold level. Furthermore, the appropriateness of using kernel density estimation (KDE) for rainfall event separation and frequency analysis has not been examined yet in the actual hydrologic design of LIDs. To overcome these deficiencies, an improved analytical stochastic model (ASM) was developed in this study incorporating the KDE-based rainfall event characterization and a modified formula for estimating the effective storage capacity of trenches. The calibration, verification and application of the improved ASM were systematically presented and their results were discussed. The accuracy of the improved ASM were verified by comparing the analytical results against the corresponding continuous simulation results. A large number of design cases in nine provincial capital cities of China were analyzed using the improved ASM and considering the effects of soil types, trench's storage reservoir depth, area ratio, and climate conditions. The improved ASM of infiltration trenches is useful for quickly and accurately assessing their water quantity control performances. The results indicated that the accuracy of improved ASM improved by up to 71 % in terms of R-square among the 9 study areas compared to conventional ASM. The improved ASM can be used to directly and quickly calculate the useful hydrologic performance indices for a given trench size, soil condition, area ratio and local climate condition, it can thus provide scientific guidance for the Sponge City construction in China and sustainable urban stormwater management.

3.
Curr Opin Plant Biol ; 74: 102369, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37141807

RESUMO

The entire evolutionary trajectory of plants towards large and complex multi-cellular organisms has been accompanied by incessant interactions with omnipresent unicellular microbes. This led to the evolution of highly complex microbial communities, whose members display the entire spectrum of pathogenic to mutualistic behaviors. Plant roots are dynamic, fractally growing organs and even small Arabidopsis roots harbor millions of individual microbes of diverse taxa. It is evident that microbes at different positions on a root surface could experience fundamentally different environments, which, moreover, rapidly change over time. Differences in spatial scales between microbes and roots compares to humans and the cities they inhabit. Such considerations make it evident that mechanisms of root-microbe interactions can only be understood if analyzed at relevant spatial and temporal scales. This review attempts to provide an overview of the rapid recent progress that has been made in mapping and manipulating plant damage and immune responses at cellular resolution, as well as in visualizing bacterial communities and their transcriptional activities. We further discuss the impact that such approaches will have for a more predictive understanding of root-microbe interactions.


Assuntos
Arabidopsis , Bactérias , Humanos , Simbiose , Interações Microbianas , Imunidade , Raízes de Plantas/microbiologia
4.
Plant Physiol ; 191(3): 1857-1870, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36493391

RESUMO

There is a close regulatory relationship between the circadian clock and the abscisic acid (ABA) signaling pathway in regulating many developmental processes and stress responses. However, the exact feedback regulation mechanism between them is still poorly understood. Here, we identified the rice (Oryza sativa) clock component PSEUDO-RESPONSE REGULATOR 95 (OsPRR95) as a transcriptional regulator that accelerates seed germination and seedling growth by inhibiting ABA signaling. We also found that OsPRR95 binds to the ABA receptor gene REGULATORY COMPONENTS OF ABA RECEPTORS10 (OsRCAR10) DNA and inhibits its expression. Genetic analysis showed OsRCAR10 acts downstream of OsPRR95 in mediating ABA responses. In addition, the induction of OsPRR95 by ABA partly required a functional OsRCAR10, and the ABA-responsive element-binding factor ABSCISIC ACID INSENSITIVE5 (OsABI5) bound directly to the promoter of OsPRR95 and activated its expression, thus establishing a regulatory feedback loop between OsPRR95, OsRCAR10, and OsABI5. Taken together, our results demonstrated that the OsRCAR10-OsABI5-OsPRR95 feedback loop modulates ABA signaling to fine-tune seed germination and seedling growth, thus establishing the molecular link between ABA signaling and the circadian clock.


Assuntos
Arabidopsis , Relógios Circadianos , Oryza , Ácido Abscísico/metabolismo , Oryza/metabolismo , Relógios Circadianos/genética , Arabidopsis/genética , Germinação/fisiologia , Plântula/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
5.
ISA Trans ; 136: 334-344, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36494215

RESUMO

In this paper, the objective is to estimate the pseudo-state of fractional order systems defined by the Caputo fractional derivative from discrete noisy output measurement. For this purpose, an innovative modulating functions method is proposed, which can provide non-asymptotic estimation within finite-time and is robust against corrupting noises. First, the proposed method is directly applied to the Brunovsky's observable canonical form of the considered system. Then, the initial value of the pseudo-state is exactly expressed by an algebraic integral formula, based on which the pseudo-state is estimated. Second, the properties and construction of the required modulating functions are studied. Furthermore, error analysis is provided in discrete noise cases, which is useful for improving the estimation accuracy. In order to show the advantages of the proposed method, two numerical examples are given, where both rational order and irrational order dynamical systems are considered. After selecting the design parameters using the provided noise error bound, the pseudo-states of considered systems are estimated. The fractional order Luenberger-like observer and the fractional order H∞-like observer are also applied. Better than the applied fractional order observers, the proposed method can guarantee the convergence speed and robustness at the same time.

6.
Plant Physiol ; 189(2): 567-584, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234957

RESUMO

Vesicular trafficking plays critical roles in cell expansion in yeast and mammals, but information linking vesicular trafficking and cell expansion in plants is limited. Here, we isolated and characterized a rice (Oryza sativa) mutant, decreased plant height 1-1 (dph1-1), which exhibited a wide spectrum of developmental phenotypes, including reduced plant height and smaller panicles and grains. Cytological analysis revealed that limited cell expansion was responsible for the dph1-1 mutant phenotype compared to the wild-type. Map-based cloning revealed that DPH1 encodes a plant-specific protein, OsSCD2, which is homologous to Arabidopsis (Arabidopsis thaliana) STOMATAL CYTOKINESIS DEFECTIVE2 (SCD2). Subcellular localization revealed that OsSCD2 is associated with clathrin. Confocal microscopy showed that the dph1-1 mutant has defective endocytosis and post-Golgi trafficking. Biochemical and confocal data indicated that OsSCD2 physically interacts with OsSCD1 and that they are associated with intracellular structures that colocalize with microtubules. Furthermore, we found that cellulose synthesis was affected in the dph1-1 mutant, evidenced by reduced cellulose synthase gene accumulation at the transcript and protein levels, most likely resulting from an impaired localization pattern. Our results suggest that OsSCD2 is involved in clathrin-related vesicular trafficking with an important role in maintaining plant growth in rice.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Clatrina/metabolismo , Citocinese/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo
7.
J Prosthet Dent ; 127(1): 115-121, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33234303

RESUMO

STATEMENT OF PROBLEM: The effect of heat treatment on the microstructure and mechanical properties of cobalt-chromium (Co-Cr) removable partial denture (RPD) frameworks fabricated by selective laser melting (SLM) is not well understood. PURPOSE: The purpose of this in vitro study was to evaluate the suitability of SLM-fabricated Co-Cr alloys followed by heat treatment as a framework for RPDs by determining the microstructure and mechanical properties. MATERIAL AND METHODS: Dumbbell specimens and RPD frameworks were fabricated by using SLM followed by heat treatment. The effects of the heat treatment on the microstructure were studied by using optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Tensile and insertion and removal tests were performed to study the mechanical responses of selective laser melting followed by heat treatment specimens, including the ultimate tensile strength (UTS), 0.2% yield strength (0.2% YS), elongation (E), and retentive forces. Specimens fabricated by using the traditional lost-wax process were used as a control (casting) group. RESULTS: X-ray diffraction indicated that the γ-face-centered cubic phase dominated SLM and selective laser melting followed by heat treatment specimens. Results from optical microscopy and SEM showed microstructural changes under different fabrication and postprocessing heat treatments; it was difficult to observe the grain boundary in the SLM group, whereas submicrometer-scale grains had formed in the selective laser melting followed by heat treatment group. The selective laser melting followed by heat treatment group exhibited the highest elongation and retentive forces compared with the casting and SLM groups. CONCLUSIONS: SLM increased the mechanical properties of Co-Cr alloys. Postprocessing heat treatment further enhanced the tensile ductility. It is suggested that SLM followed by heat treatment is an efficient strategy for fabricating RPD frameworks.


Assuntos
Prótese Parcial Removível , Cromo , Ligas de Cromo , Cobalto , Temperatura Alta , Lasers
8.
Materials (Basel) ; 14(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203344

RESUMO

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°-relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α' martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.

9.
Mol Plant ; 14(2): 315-329, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278597

RESUMO

Low temperature is a major environmental factor that limits plant growth and productivity. Although transient elevation of cytoplasmic calcium has long been recognized as a critical signal for plant cold tolerance, the calcium channels responsible for this process have remained largely elusive. Here we report that OsCNGC9, a cyclic nucleotide-gated channel, positively regulates chilling tolerance by mediating cytoplasmic calcium elevation in rice (Oryza sativa). We showed that the loss-of-function mutant of OsCNGC9 is defective in cold-induced calcium influx and more sensitive to prolonged cold treatment, whereas OsCNGC9 overexpression confers enhanced cold tolerance. Mechanistically, we demonstrated that in response to chilling stress, OsSAPK8, a homolog of Arabidopsis thaliana OST1, phosphorylates and activates OsCNGC9 to trigger Ca2+ influx. Moreover, we found that the transcription of OsCNGC9 is activated by a rice dehydration-responsive element-binding transcription factor, OsDREB1A. Taken together, our results suggest that OsCNGC9 enhances chilling tolerance in rice through regulating cold-induced calcium influx and cytoplasmic calcium elevation.


Assuntos
Adaptação Fisiológica/genética , Temperatura Baixa , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Ativação Transcricional/genética , Sequência de Aminoácidos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Mutação/genética , Motivos de Nucleotídeos/genética , Fosforilação , Fosfosserina/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Elementos de Resposta/genética , Plântula/genética , Plântula/fisiologia , Estresse Fisiológico/genética , Transcrição Gênica
10.
Mol Plant ; 14(2): 330-343, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33246053

RESUMO

Heading date (or flowering time) is one of the most important agronomic traits in rice, influencing its regional adaptability and crop yield. Many major-effect genes for rice heading date have been identified, but in practice they are difficult to be used for rice molecular breeding because of their dramatic effects on heading date. Genes with minor effects on heading date, which are more desirable for fine-tuning flowering time without significant yield penalty, were seldom reported. In this study, we identified a new minor-effect heading date repressor, Delayed Heading Date 4 (DHD4). The dhd4 mutant shows a slightly earlier flowering phenotype without a notable yield penalty compared with wild-type plants under natural long-day conditions. DHD4 encodes a CONSTANS-like transcription factor localized in the nucleus. Molecular, biochemical, and genetic assays show that DHD4 can compete with 14-3-3 to interact with OsFD1, thus affecting the formation of the Hd3a-14-3-3-OsFD1 tri-protein FAC complex, resulting in reduced expression of OsMADS14 and OsMADS15, and ultimately delaying flowering. Taken together, these results shed new light on the regulation of flowering time in rice and provide a promising target for fine-tuning flowering time to improve the regional adaptability of rice.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas 14-3-3/metabolismo , Sequência de Bases , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Oryza/genética , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Domínios Proteicos , Frações Subcelulares/metabolismo
11.
Front Plant Sci ; 11: 691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32536934

RESUMO

For efficient plant reproduction, seed dormancy delays seed germination until the environment is suitable for the next generation growth and development. The phytohormone abscisic acid (ABA) plays important role in the induction and maintenance of seed dormancy. Previous studies have identified that WRKY transcription factors can regulate ABA signaling pathway. Here, we identified an Oswrky29 mutant with enhanced dormancy in a screen of T-DNA insertion population. OsWRKY29 is a member of WRKY transcription factor family which located in the nuclear. The genetic analyses showed that both knockout and RNAi lines of OsWRKY29 had enhanced seed dormancy whereas its overexpression lines displayed reduced seed dormancy. When treated with ABA, OsWRKY29 knockout and RNAi lines showed greater sensitivity than its overexpression lines. In addition, the expression levels of ABA positive response factors OsVP1 and OsABF1 were higher in the OsWRKY29 mutants but were lower in its overexpression lines. Further assays showed that OsWRKY29 could bind to the promoters of OsABF1 and OsVP1 to inhibit their expression. In summary, we identified a new ABA signaling repressor OsWRKY29 that represses seed dormancy by directly downregulating the expression of OsABF1 and OsVP1.

12.
Plant Cell ; 32(3): 758-777, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31949008

RESUMO

Dense vesicles (DVs) are vesicular carriers, unique to plants, that mediate post-Golgi trafficking of storage proteins to protein storage vacuoles (PSVs) in seeds. However, the molecular mechanisms regulating the directional targeting of DVs to PSVs remain elusive. Here, we show that the rice (Oryza sativa) glutelin precursor accumulation5 (gpa5) mutant is defective in directional targeting of DVs to PSVs, resulting in discharge of its cargo proteins into the extracellular space. Molecular cloning revealed that GPA5 encodes a plant-unique phox-homology domain-containing protein homologous to Arabidopsis (Arabidopsis thaliana) ENDOSOMAL RAB EFFECTOR WITH PX-DOMAIN. We show that GPA5 is a membrane-associated protein capable of forming homodimers and that it is specifically localized to DVs in developing endosperm. Colocalization, biochemical, and genetic evidence demonstrates that GPA5 acts in concert with Rab5a and VPS9a to regulate DV-mediated post-Golgi trafficking to PSVs. Furthermore, we demonstrated that GPA5 physically interacts with a class C core vacuole/endosome tethering complex and a seed plant-specific VAMP727-containing R-soluble N-ethylmaleimide sensitive factor attachment protein receptor complex. Collectively, our results suggest that GPA5 functions as a plant-specific effector of Rab5a required for mediating tethering and membrane fusion of DVs with PSVs in rice endosperm.


Assuntos
Complexo de Golgi/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Endosperma/metabolismo , Glutens/metabolismo , Complexo de Golgi/ultraestrutura , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutação/genética , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Plantas/química , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Proteínas de Armazenamento de Sementes/química , Vacúolos/metabolismo , Vacúolos/ultraestrutura
13.
ISA Trans ; 99: 20-27, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31515096

RESUMO

A multiple-zero-pole (MZP) method is proposed for general SISO fractional order dynamic systems in this paper. Based on amplitude-frequency curve, a new rational approach to fractional differentiator is designed. There are three advantages of MZP method. 1) A more generalized form of approximation system is proposed by design the distribution of zeros and poles in a new way. 2) The same fractional differentiator can be approximated in many different forms. 3) The robustness of the approximation system is enhanced by using integer order integrators to construct fractional differentiator. The feasibility of the method is assessed in the illustrative examples, and the simulations prove the effectiveness.

14.
Cell Res ; 29(10): 820-831, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31444468

RESUMO

The transient elevation of cytoplasmic calcium is essential for pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). However, the calcium channels responsible for this process have remained unknown. Here, we show that rice CDS1 (CELL DEATH and SUSCEPTIBLE to BLAST 1) encoding OsCNGC9, a cyclic nucleotide-gated channel protein, positively regulates the resistance to rice blast disease. We show that OsCNGC9 mediates PAMP-induced Ca2+ influx and that this event is critical for PAMPs-triggered ROS burst and induction of PTI-related defense gene expression. We further show that a PTI-related receptor-like cytoplasmic kinase OsRLCK185 physically interacts with and phosphorylates OsCNGC9 to activate its channel activity. Our results suggest a signaling cascade linking pattern recognition to calcium channel activation, which is required for initiation of PTI and disease resistance in rice.


Assuntos
Cálcio/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Citoplasma/metabolismo , Resistência à Doença/genética , Fungos/patogenicidade , Regulação da Expressão Gênica de Plantas , Mutagênese , Moléculas com Motivos Associados a Patógenos/metabolismo , Fosforilação , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo
15.
Int J Biol Macromol ; 138: 144-155, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31306706

RESUMO

Environmental friendly and non-toxic polylactic acid (PLA) foam exhibits a promising perspective in many areas. However, PLA shows very poor foaming ability. Herein, silane-modified glass fiber (GF) was compounded with PLA to improve its foaming ability. Thanks to the increased melt viscoelasticity and melt strength, and the enhanced crystallization by adding GF, PLA/GF composites show dramatically improved foaming ability, characterized by widened processing window, increased expansion ratio, and improved cellular uniformity. Compared with pure PLA foam, PLA/GF composite foam shows dramatically enhanced mechanical properties in compressive strength and modulus. For foams with the same expansion ratio of 20-fold, the incorporation of 10 wt% GF led to increased compressive strength and modulus by 44.8% and 92.0%, respectively. The PLA/GF composite foam with an expansion ratio of 24.2-fold has a low thermal conductivity of 31.4 mW/m·K, which is comparable with the excellent thermal insulation performance of commercial polymer foams.


Assuntos
Dióxido de Carbono/química , Vidro/química , Poliésteres/química , Temperatura , Fenômenos Mecânicos , Reologia
16.
Materials (Basel) ; 12(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823370

RESUMO

In the present study, spherical composite powder was successfully prepared via spray drying process using polymethyl methacrylate (PMMA) and hexagonal boron nitride (h-BN) powders. The pristine and as-prepared composite powders were examined using scanning electron microscopy, a particle size analyzer, oil absorption, and specific surface area analyses. These powders were then mixed with linseed oil to prepare samples for UV-Visible-Near Infrared spectroscopy investigation to determine their light absorption ability. Blank and powder-added blemish balm creams were examined using a sun protection factor tester and a thermal conductivity tester. In addition, transmittances of these creams were also evaluated. The experimental results show that spray-dried spherical composite powder exhibited good oil absorption ability. The blemish balm cream with 10 wt.% spray-dried composite powder not only exhibited superior sunscreen protection ability, but also good thermal conductivity.

17.
Plant Cell Rep ; 38(5): 521-532, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30790011

RESUMO

KEY MESSAGE: EH7/Ghd7 interacts with DTH8, and regulates heading date by controlling the expression of Ehd1 in rice. Heading date, or flowering time, an important agronomic trait, influences regional adaptability and yield of crops. Many genes related to heading date in rice have been identified, and a preliminary regulatory network has been established, but the relationships between proteins involved are poorly understood. We identified a flowering suppressor EH7 (Early heading 7) that represses flowering under long-day (LD) conditions. The eh7 allele caused earlier heading, shorter plant height and less grain per main panicle than did the wild type (WT), but the tiller number and 1000-grain weight were not significantly affected under natural long-day conditions. Biochemical assays showed that EH7 interacts with DTH8. Quantitative PCR showed that EH7 inhibited heading date by downregulating the expression of Ehd1, Hd3a and RFT1. We propose that EH7 interacts with DTH8 to control flowering time by regulating the expression of Ehd1, Hd3a and RFT1.


Assuntos
Flores/metabolismo , Flores/fisiologia , Oryza/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Plant Biotechnol J ; 17(2): 531-539, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30107076

RESUMO

Heading date is an important agronomic trait affecting crop yield. The GRAS protein family is a plant-specific super family extensively involved in plant growth and signal transduction. However, GRAS proteins are rarely reported have a role in regulating rice heading date. Here, we report a GRAS protein DHD1 (Delayed Heading Date1) delays heading and enhances yield in rice. Biochemical assays showed DHD1 physically interacts with OsHAP5C/D both in vitro and in vivo. DHD1 and OsHAP5C/D located in the nucleus and showed that rhythmic expression. Both DHD1 and OsHAP5C/D affect heading date by regulating expression of Ehd1. We propose that DHD1 interacts with OsHAP5C/D to delay heading date by inhibiting expression of Ehd1.


Assuntos
Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Núcleo Celular/metabolismo , Regulação para Baixo , Flores/crescimento & desenvolvimento , Flores/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido
19.
ISA Trans ; 84: 43-54, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30348436

RESUMO

This paper mainly investigates the numerical implementation issue of fractional order systems. First, a pattern of fixed pole schemes are developed to approximate fractional integrator/differentiator, whose common is that the poles keep constant for different α. Then, two solutions are proposed to improve the approximation performance around α=0. Afterwards, the simulation schemes are introduced for two kinds of fractional order systems. In those schemes, the configuration problem of nonzero initial value is considered. Finally, a fair and solid comparison to the classical approximation methods is presented, demonstrating the effectiveness and efficiency of the elaborated algorithms.

20.
RSC Adv ; 9(29): 16869-16883, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35516413

RESUMO

Additive manufacturing (AM), which is also commonly known as 3D printing, provides flexibility in the manufacturing of complex geometric parts at competitive prices and within a low production time. However, AM has not been used to a large extent in filtration and water treatment processes. AM results in the creation of millions of nanofibers that are sublayered on top of each other and compressed into a thin membrane. AM is a novel technique for fabricating filtration membranes with different shapes, sizes and controlled porosity, which cannot be achieved using conventional process such as electrospinning and knife casting. In this paper, we review the advantages and limitations of AM processes for fabricating ceramic membranes. Moreover, a brief background of AM processes is provided, and their future prospects are examined. Due to their potential benefits for fabrication and flexibility with different materials, AM methods are promising in the field of membrane engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA