Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
ACS Biomater Sci Eng ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700993

RESUMO

Periodontitis is a chronic disease caused by bacterial infection and is characterized with alveolar bone resorption. Bone regeneration in periodontitis remains a critical challenge because bacterial infection induced an unfavorable microenvironment for osteogenesis. Therefore, it is necessary to design proper therapeutic platforms to control bacterial infection and promote bone regeneration. Herein, mesoporous bioactive glass (MBG) with different pore sizes (3.0, 4.3, and 12.3 nm) was used as an in situ reactor to confine the growth of gold nanoparticles (Au NPs), forming MBG@Au hybrids which combine the osteoconductivity of MBG and antibacterial properties of Au NPs. Upon near-infrared (NIR) irradiation, the MBG@Au NPs showed efficient antibacterial properties both in vitro and in vivo. Besides, the osteogenesis properties of MBG@Au also improved under NIR irradiation. Furthermore, the in vivo results demonstrated that MBG@Au can effectively promote alveolar bone regeneration and realize the healing of serious periodontitis.

2.
ISA Trans ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38677888

RESUMO

For nonlinear systems with continuous dynamic and discrete measurements, a Log-Euclidean metric (LEM) based novel scheme is proposed to refine the covariance integration steps of continuous-discrete Extended Kalman filter (CDEKF). In CDEKF, the covariance differential equation is usually integrated with regular Euclidean matrix operations, which actually ignores the Riemannian structure of underlying space and poses a limit on the further improvement of estimation accuracy. To overcome this drawback, this work proposes to define the covariance variable on the manifold of symmetric positive definite (SPD) matrices and propagate it using the Log-Euclidean metric. To embed the LEM based novel propagation scheme, the manifold integration of the covariance for LEMCDEKF is proposed together with the details of efficient realization, which can integrate the covariance on SPD manifold and avoid the drawback of Euclidean scheme. Numerical simulations certify the new method's superior accuracy than conventional methods.

3.
Int J Oral Sci ; 16(1): 20, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418808

RESUMO

Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss. With the progression of periodontitis, the osteoimmunology microenvironment in periodontitis is damaged and leads to the formation of pathological alveolar bone resorption. CD301b+ macrophages are specific to the osteoimmunology microenvironment, and are emerging as vital booster for conducting bone regeneration. However, the key upstream targets of CD301b+ macrophages and their potential mechanism in periodontitis remain elusive. In this study, we concentrated on the role of Tim4, a latent upstream regulator of CD301b+ macrophages. We first demonstrated that the transcription level of Timd4 (gene name of Tim4) in CD301b+ macrophages was significantly upregulated compared to CD301b- macrophages via high-throughput RNA sequencing. Moreover, several Tim4-related functions such as apoptotic cell clearance, phagocytosis and engulfment were positively regulated by CD301b+ macrophages. The single-cell RNA sequencing analysis subsequently discovered that Cd301b and Timd4 were specifically co-expressed in macrophages. The following flow cytometric analysis indicated that Tim4 positive expression rates in total macrophages shared highly synchronized dynamic changes with the proportions of CD301b+ macrophages as periodontitis progressed. Furthermore, the deficiency of Tim4 in mice decreased CD301b+ macrophages and eventually magnified alveolar bone resorption in periodontitis. Additionally, Tim4 controlled the p38 MAPK signaling pathway to ultimately mediate CD301b+ macrophages phenotype. In a word, Tim4 might regulate CD301b+ macrophages through p38 MAPK signaling pathway in periodontitis, which provided new insights into periodontitis immunoregulation as well as help to develop innovative therapeutic targets and treatment strategies for periodontitis.


Assuntos
Perda do Osso Alveolar , Periodontite , Animais , Camundongos , Perda do Osso Alveolar/metabolismo , Eferocitose , Macrófagos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/uso terapêutico , Periodontite/tratamento farmacológico
4.
Front Bioeng Biotechnol ; 11: 1320307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033823

RESUMO

Dental implants have been extensively used in patients with defects or loss of dentition. However, the loss or failure of dental implants is still a critical problem in clinic. Therefore, many methods have been designed to enhance the osseointegration between the implants and native bone. Herein, the challenge and healing process of dental implant operation will be briefly introduced. Then, various surface modification methods and emerging biomaterials used to tune the properties of dental implants will be summarized comprehensively.

5.
ACS Nano ; 17(22): 23115-23131, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37934769

RESUMO

Deep burns are one of the most severe skin wounds, with typical symptoms being a contradiction between initial severe pain and a subsequent loss of sensation. Although it has long been known that sensory nerves promote skin regeneration and modulate skin function, no proven burn management strategies target sensory nerves. Here, a neuro-inspired biomimetic microreactor is designed based on the immune escape outer membrane of neuroblastoma cells and neural-associated intracellular proteins. The microreactor is constructed on a metal-organic framework (MOF) with a neuroblastoma membrane coating the surface and intracellular proteins loaded inside, called Neuro-MOF. It is loaded into a therapeutic hydrogel and triggers the release of its content proteins upon excitation by near-infrared light. The proteins compensate the skin microenvironment for permanent neurological damage after burns to initiate peripheral nerve regeneration and hair follicle niche formation. In addition, the neuroblastoma cell membrane is displayed on the surface of the Neuro-MOF microreactor, decreasing its immunogenicity and suppressing local inflammation. In a mouse model of deep skin burns, the Neuro-MOF microreactor exhibited significant functional skin regeneration effects, particularly sensory recovery and hair follicle neogenesis.


Assuntos
Queimaduras , Neuroblastoma , Camundongos , Animais , Folículo Piloso , Cicatrização/fisiologia , Biomimética , Pele , Microambiente Tumoral
6.
EMBO J ; 42(18): e111807, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37606072

RESUMO

Cilia are important cellular organelles for signaling and motility and are constructed via intraflagellar transport (IFT). RabL2 is a small GTPase that localizes to the basal body of cilia via an interaction with the centriolar protein CEP19 before downstream association with the IFT machinery, which is followed by initiation of IFT. We reconstituted and purified RabL2 with CEP19 or IFT proteins to show that a reconstituted pentameric IFT complex containing IFT81/74 enhances the GTP hydrolysis rate of RabL2. The binding site on IFT81/74 that promotes GTP hydrolysis in RabL2 was mapped to a 70-amino-acid-long coiled-coil region of IFT81/74. We present structural models for RabL2-containing IFT complexes that we validate in vitro and in cellulo and demonstrate that Chlamydomonas IFT81/74 enhances GTP hydrolysis of human RabL2, suggesting an ancient evolutionarily conserved activity. Our results provide an architectural understanding of how RabL2 is incorporated into the IFT complex and a molecular rationale for why RabL2 dissociates from anterograde IFT trains soon after departure from the ciliary base.


Assuntos
Proteínas Ativadoras de GTPase , Transdução de Sinais , Humanos , Proteínas Ativadoras de GTPase/genética , Transporte Biológico , Aminoácidos , Guanosina Trifosfato , Proteínas Musculares , Proteínas do Citoesqueleto
7.
Int J Biol Macromol ; 247: 125671, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37406896

RESUMO

Insufficient bone regeneration and bacterial infection are two major concerns of bone repair materials. Poly-L-lactic acid (PLLA) have been widely used in bone tissue engineering (BTE), however, lack of osteogenic and antibacterial properties have greatly limit its clinical application. Herein, PLLA membrane was firstly treated with polydopamine (PDA), and then modified with ε-polylysine (ε-PL) and alginate (ALG) via layer-by-layer method. The (ε-PL/ALG)n composite layer coated PLLA (PLLA@(ε-PL/ALG)n) could facilitates the adhesion and osteoblast differentiation of MC3T3-E1 cells. Furthermore, PLLA@(ε-PL/ALG)n presents an effective antibacterial efficacy against S. aureus and E. coli, and the bacterial survival rates of S. aureus and E. coli on PLLA@(ε-PL/ALG)10 were 21.5 ± 3.5 % and 13 ± 2.1 %, respectively. This work provides a promising method to design PLLA materials with osteogenic and antibacterial activity simultaneously. Furthermore, the method is also an optional choice to construct multifunctional coatings on the other substrate.


Assuntos
Escherichia coli , Engenharia Tecidual , Staphylococcus aureus , Poliésteres/farmacologia , Poliésteres/química , Osteogênese , Antibacterianos/farmacologia , Alicerces Teciduais/química
8.
Langmuir ; 39(11): 4161-4169, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36882387

RESUMO

The surface ligands of nanoparticles (NPs) play essential roles in material synthesis, properties, and applications. Chiral molecules have been the new hot topic in tuning the properties of inorganic NPs. Herein, l-arginine- and d-arginine-stabilized ZnO NPs were prepared, and the TEM, UV-vis, and PL spectra were investigated, which demonstrated that the l-arginine and d-arginine have different effects on the self-assembly and photoluminescence properties of ZnO NPs, showing an evident chiral effect. Furthermore, the results of the cell viability assays, plate counting method, and bacterial SEM images showed that ZnO@LA possessed lower biocompatibility and higher antibacterial efficiency than those of ZnO@DA, implying that the chiral molecules on the surface of nanomaterials may affect their bioproperties.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Arginina , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Nanopartículas Metálicas/toxicidade
9.
Adv Sci (Weinh) ; 10(6): e2205097, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36596693

RESUMO

Sepsis is a dysregulation of the immune response to pathogens and has high morbidity and mortality worldwide. However, the unclear mapping and course of dysregulated immune cells currently hinders the development of advanced therapeutic strategies to treat sepsis. Here, evidence is provided using single-cell RNA sequencing from peripheral blood mononuclear cells in sepsis that pathogens attacking monocytes/macrophages disrupt their immune function. The results reveal an enormous decline in monocytes/macrophages in sepsis and chart the evolution of their impaired phagocytosis (Pha) capabilities. Inspired by these findings, nanoparticles, named "Alpha-MOFs," are developed that target dysfunctional monocytes/macrophages to actively (A) lift (L) Pha by the release of lysosome-sensitive ions from a mineralized metal-organic framework (MOF). Alpha-MOFs have good stability and biosafety in peripheral blood and efficiently targeted monocytes/macrophages. They also release calcium and zinc ions into monocyte/macrophage lysosomes to promote the Pha and degradation of bacteria. Taken together, these results suggest that Alpha-MOFs rescue monocytes/macrophages dysfunction and effectively improve their survival rate during sepsis.


Assuntos
Monócitos , Sepse , Humanos , Macrófagos/metabolismo , Cálcio/metabolismo , Leucócitos Mononucleares , Zinco/metabolismo , Lisossomos , Nanotecnologia
10.
EMBO J ; 41(24): e112440, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36354106

RESUMO

Cilia are ubiquitous eukaryotic organelles impotant for cellular motility, signaling, and sensory reception. Cilium formation requires intraflagellar transport of structural and signaling components and involves 22 different proteins organized into intraflagellar transport (IFT) complexes IFT-A and IFT-B that are transported by molecular motors. The IFT-B complex constitutes the backbone of polymeric IFT trains carrying cargo between the cilium and the cell body. Currently, high-resolution structures are only available for smaller IFT-B subcomplexes leaving > 50% structurally uncharacterized. Here, we used Alphafold to structurally model the 15-subunit IFT-B complex. The model was validated using cross-linking/mass-spectrometry data on reconstituted IFT-B complexes, X-ray scattering in solution, diffraction from crystals as well as site-directed mutagenesis and protein-binding assays. The IFT-B structure reveals an elongated and highly flexible complex consistent with cryo-electron tomographic reconstructions of IFT trains. The IFT-B complex organizes into IFT-B1 and IFT-B2 parts with binding sites for ciliary cargo and the inactive IFT dynein motor, respectively. Interestingly, our results are consistent with two different binding sites for IFT81/74 on IFT88/70/52/46 suggesting the possibility of different structural architectures for the IFT-B1 complex. Our data present a structural framework to understand IFT-B complex assembly, function, and ciliopathy variants.


Assuntos
Cílios , Dineínas , Cílios/metabolismo , Dineínas/metabolismo , Transporte Biológico , Sítios de Ligação , Modelos Estruturais , Flagelos/metabolismo
11.
Genet Med ; 24(11): 2249-2261, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36074124

RESUMO

PURPOSE: The clinical spectrum of motile ciliopathies includes laterality defects, hydrocephalus, and infertility as well as primary ciliary dyskinesia when impaired mucociliary clearance results in otosinopulmonary disease. Importantly, approximately 30% of patients with primary ciliary dyskinesia lack a genetic diagnosis. METHODS: Clinical, genomic, biochemical, and functional studies were performed alongside in vivo modeling of DAW1 variants. RESULTS: In this study, we identified biallelic DAW1 variants associated with laterality defects and respiratory symptoms compatible with motile cilia dysfunction. In early mouse embryos, we showed that Daw1 expression is limited to distal, motile ciliated cells of the node, consistent with a role in left-right patterning. daw1 mutant zebrafish exhibited reduced cilia motility and left-right patterning defects, including cardiac looping abnormalities. Importantly, these defects were rescued by wild-type, but not mutant daw1, gene expression. In addition, pathogenic DAW1 missense variants displayed reduced protein stability, whereas DAW1 loss-of-function was associated with distal type 2 outer dynein arm assembly defects involving axonemal respiratory cilia proteins, explaining the reduced cilia-induced fluid flow in particle tracking velocimetry experiments. CONCLUSION: Our data define biallelic DAW1 variants as a cause of human motile ciliopathy and determine that the disease mechanism involves motile cilia dysfunction, explaining the ciliary beating defects observed in affected individuals.


Assuntos
Transtornos da Motilidade Ciliar , Ciliopatias , Proteínas do Citoesqueleto , Animais , Humanos , Camundongos , Axonema/genética , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia , Proteínas do Citoesqueleto/genética , Mutação , Proteínas/genética , Peixe-Zebra/genética
12.
Foods ; 11(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35564083

RESUMO

In the present study, p-hydroxybenzoic acid-grafted chitosan (PA-g-CS) conjugates with different grafting degrees were synthesized by a free radical-regulated grafting approach. The conjugates were further developed into films by casting, and their characteristics and preservative effects on fresh-cut jackfruit were evaluated. Compared to the CS film, the PA-g-CS film showed comprehensive performance improvements, including enhancements of water solubility, anti-ultraviolet capacity, antioxidation, and antibacterial activity. Moreover, compared with CS film, some appreciable and favorable changes of physical properties were observed in the PA-g-CS films, which included water vapor permeability, oxygen permeability, surface morphology, moisture content, and mechanical intensity. Furthermore, compared to CS alone, the application of PA-g-CS films to fresh-cut jackfruit exerted a beneficial effect on the quality of products, as indicated by the inhibition of weight loss, softening, and membrane damage, the maintenance of soluble solids and ascorbic acids contents, as well as a reduced bacterial count and a higher sensory score. Among these PA-g-CS films, the best preservation effect was achieved with the highest degree of grafting (PA-g-CS III). The results suggested that the PA-g-CS film has the potential to be explored as a new type of packaging material for the preservation of fresh-cut fruits and vegetables.

13.
Bioact Mater ; 15: 446-455, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35386349

RESUMO

Calcium phosphate (CaP) bioceramics are important for tissue regeneration and immune response, yet how CaP bioceramics influence these biological processes remains unclear. Recently, the role of immune cells in biomaterial-mediated regeneration, especially macrophages, has been well concerned. CD301b+ macrophages were a new subset of macrophages we have discovered, which were required for bioceramics-mediated bone regeneration. Nevertheless, the impact of CD301b+ macrophages on angiogenesis, which is a vital prerequisite to bone formation is yet indistinct. Herein, we found that CD301b+ macrophages were closely correlated to angiogenesis of CaP bioceramics. Additionally, depletion of CD301b+ macrophages led to the failure of angiogenesis. We showed that store-operated Ca2+ entry and calcineurin signals regulated the VEGF expression of CD301b+ macrophages via the NFATc1/VEGF axis. Inhibition of calcineurin effectively impaired angiogenesis via decreasing the infiltration of CD301b+ macrophages. These findings provided a potential immunomodulatory strategy to optimize the integration of angiogenesis and bone tissue engineering scaffold materials.

14.
mBio ; 12(6): e0297521, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34781736

RESUMO

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have arisen that exhibit increased viral transmissibility and partial evasion of immunity induced by natural infection and vaccination. To address the specific antibody targets that were affected by recent viral variants, we generated 43 monoclonal antibodies (mAbs) from 10 convalescent donors that bound three distinct domains of the SARS-CoV-2 spike. Viral variants harboring mutations at K417, E484, and N501 could escape most of the highly potent antibodies against the receptor binding domain (RBD). Despite this, we identified 12 neutralizing mAbs against three distinct regions of the spike protein that neutralize SARS-CoV-2 and variants of concern (VOCs), including B.1.1.7 (alpha), P.1 (gamma), and B.1.617.2 (delta). Notably, antibodies targeting distinct epitopes could neutralize discrete variants, suggesting that different variants may have evolved to disrupt the binding of particular neutralizing antibody classes. These results underscore that humans exposed to the first pandemic wave of prototype SARS-CoV-2 possess neutralizing antibodies against current variants and that it is critical to induce antibodies targeting multiple distinct epitopes of the spike that can neutralize emerging variants of concern. IMPORTANCE We describe the binding and neutralization properties of a new set of human monoclonal antibodies derived from memory B cells of 10 coronavirus disease 2019 (COVID-19) convalescent donors in the first pandemic wave of prototype SARS-CoV-2. There were 12 antibodies targeting distinct epitopes on spike, including two sites on the RBD and one on the N-terminal domain (NTD), that displayed cross-neutralization of VOCs, for which distinct antibody targets could neutralize discrete variants. This work underlines that natural infection by SARS-CoV-2 induces effective cross-neutralization against only some VOCs and supports the need for COVID-19 vaccination for robust induction of neutralizing antibodies targeting multiple epitopes of the spike protein to combat the current SARS-CoV-2 VOCs and any others that might emerge in the future.


Assuntos
Anticorpos Antivirais/sangue , Anticorpos Amplamente Neutralizantes/sangue , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Convalescença , Epitopos/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Pandemias , Plasma/imunologia , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
15.
Elife ; 102021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34734804

RESUMO

Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.


Most human cells have at least one small hair-like structure on their surface called a cilium. These structures can act as antennae and allow the cell to sense signals from the rest of the body. To do this, they contain proteins that differ from the rest of the cell. The content of cilia depends on regulated delivery of these proteins in and out of cilia by a process called the intraflagellar transport or IFT, which involves a large complex made of several proteins. This complex shuttles the cargo proteins back and forth between the base and the tip of the cilia. However, ciliary proteins are not produced in the cilia; instead, they are made in a different part of the cell and then they are transported to the ciliary base. At the point where they enter the cilia, they were thought to bind to the assembling IFT 'trains' and be transported across the ciliary gate to the positions where they are needed in cilia. One of the components of the IFT machinery is a protein called WDR35, also known as IFT121. If the gene that codes for this protein is faulty or missing, it results in severe disorders in both humans and mice including a range of potentially lethal skeletal dysplasias. Interestingly, without WDR35, cells cannot build functional cilia. The absence of this protein not only disrupts IFT, stopping certain ciliary proteins and their associated membranes from entering cilia; it also causes a 'traffic jam' with a pile-up of transport intermediates from the place in cell where they are made to the cilia. It is unclear why a mutation in one of the components of the IFT would have this effect, raising the question of whether WDR35, or IFTs a whole, has another role in bringing the cargo proteins into the cilia. To understand this phenomenon, Quidwai et al. analysed the structure of WDR35 and other IFT proteins and found that they are very similar to a protein complex called COPI, which is involved in transporting membrane proteins around the cell. When certain proteins are newly made, they are stored in small lipid bubbles ­ called vesicles ­ that then selectively move to where the proteins are needed. COPI coats these vesicles, helping them get to where they need to go in a process called vesicular transport. Quidwai et al. found that WDR35 and other IFT proteins are able to bind to specific types of lipid molecules, suggesting that they might be assisting in a form of vesicle transport too. Indeed, when mouse cells grown in the lab were genetically engineered so they could not produce WDR35, coatless vesicles accumulated around the base of the cilia. Adding back WDR35 to these mutant cells rescued these defects in vesicle transport to cilia as well as allowed functional cilia to be formed. These results provide evidence that WDR35, likely with other IFT proteins, acts as a COPI-like complex to deliver proteins to growing cilia. Further research will investigate the composition of these vesicles that transport proteins to cilia, and help pinpoint where they originate. Quidwai et al.'s findings not only shed light on how different genetic mutations found in patients with cilia dysfunction affect different steps of transporting proteins to and within cilia. They also increase our understanding of the cellular roadmap by which cells shuttle building blocks around in order to assemble these important 'antennae'.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Cílios/metabolismo , Proteínas do Citoesqueleto/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Animais , Proteínas do Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Ligação Proteica , Transporte Proteico
16.
Protein Expr Purif ; 187: 105952, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34375729

RESUMO

At present, the early diagnosis and treatment of NSCLC has become an international research hotspot. However, how to realize the organic combination of highly sensitive and high-resolution tumor imaging diagnosis and effective treatment, and to provide effective information for the diagnosis and treatment of cancer is still a major problem in the integration of cancer diagnosis and treatment. In this study, based on the Crizotinib has a good targeted inhibitory effect on ALK positive tumor cells, the near-infrared targeted fluorescent dye IR-780 was covalently bound with the drug molecule Crizotinib, thus the near-infrared fluorescent probe IR-780-Crizotinib targeting ALK positive tumor cells was synthesized. The probe structure is confirmed by NMR and MS. The optical properties of the fluorescent probe and the imaging process in ALK positive tumor-bearing mice were analyzed using ultraviolet spectrophotometer, near-infrared fluorescence spectrometer, and near-infrared fluorescence imaging system. The results show that the probe had better photoactivity. In vivo imaging shows that the probe maintained the biological activity of Crizotinib, effectively targeting the tumor site involved with clear imaging, and ultimately excreted from the body. It was confirmed that the probe could be used for the tracking, positioning and targeted therapy of nude mice with ALK positive tumors in vivo, thus exploring a new approach for the clinical application of near-infrared fluorescent probe to detect ALK positive tumors in the future.


Assuntos
Antineoplásicos/química , Crizotinibe/química , Corantes Fluorescentes/química , Indóis/síntese química , Inibidores de Proteínas Quinases/química , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Crizotinibe/farmacologia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Camundongos Nus , Imagem Óptica , Inibidores de Proteínas Quinases/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho
17.
Res Sq ; 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34312615

RESUMO

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have arisen that exhibit increased viral transmissibility and partial evasion of immunity induced by natural infection and vaccination. To address the specific antibody targets that were affected by recent viral variants, we generated 43 monoclonal antibodies (mAbs) from 10 convalescent donors that bound three distinct domains of the SARS-CoV-2 spike. Viral variants harboring mutations at K417, E484 and N501 could escape most of the highly potent antibodies against the receptor binding domain (RBD). Despite this, we identified 12 neutralizing mAbs against three distinct regions of the spike protein that neutralize SARS-CoV-2 and the variants of concern, including B.1.1.7 (alpha), P.1 (gamma) and B.1.617.2 (delta). Notably, antibodies targeting distinct epitopes could neutralize discrete variants, suggesting different variants may have evolved to disrupt the binding of particular neutralizing antibody classes. These results underscore that humans exposed to wildtype (WT) SARS-CoV-2 do possess neutralizing antibodies against current variants and that it is critical to induce antibodies targeting multiple distinct epitopes of the spike that can neutralize emerging variants of concern.

18.
Immunity ; 54(6): 1290-1303.e7, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34022127

RESUMO

Dissecting the evolution of memory B cells (MBCs) against SARS-CoV-2 is critical for understanding antibody recall upon secondary exposure. Here, we used single-cell sequencing to profile SARS-CoV-2-reactive B cells in 38 COVID-19 patients. Using oligo-tagged antigen baits, we isolated B cells specific to the SARS-CoV-2 spike, nucleoprotein (NP), open reading frame 8 (ORF8), and endemic human coronavirus (HCoV) spike proteins. SARS-CoV-2 spike-specific cells were enriched in the memory compartment of acutely infected and convalescent patients several months post symptom onset. With severe acute infection, substantial populations of endemic HCoV-reactive antibody-secreting cells were identified and possessed highly mutated variable genes, signifying preexisting immunity. Finally, MBCs exhibited pronounced maturation to NP and ORF8 over time, especially in older patients. Monoclonal antibodies against these targets were non-neutralizing and non-protective in vivo. These findings reveal antibody adaptation to non-neutralizing intracellular antigens during infection, emphasizing the importance of vaccination for inducing neutralizing spike-specific MBCs.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , Interações Hospedeiro-Patógeno/imunologia , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/genética , Linfócitos B/metabolismo , Biologia Computacional/métodos , Reações Cruzadas/imunologia , Mapeamento de Epitopos , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Humanos , Epitopos Imunodominantes/genética , Memória Imunológica , Masculino , Testes de Neutralização , Análise de Célula Única/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , Transcriptoma
19.
mBio ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468695

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently causing a global pandemic. The antigen specificity of the antibody response mounted against this novel virus is not understood in detail. Here, we report that subjects with a more severe SARS-CoV-2 infection exhibit a larger antibody response against the spike and nucleocapsid protein and epitope spreading to subdominant viral antigens, such as open reading frame 8 and nonstructural proteins. Subjects with a greater antibody response mounted a larger memory B cell response against the spike, but not the nucleocapsid protein. Additionally, we revealed that antibodies against the spike are still capable of binding the D614G spike mutant and cross-react with the SARS-CoV-1 receptor binding domain. Together, this study reveals that subjects with a more severe SARS-CoV-2 infection exhibit a greater overall antibody response to the spike and nucleocapsid protein and a larger memory B cell response against the spike.IMPORTANCE With the ongoing pandemic, it is critical to understand how natural immunity against SARS-CoV-2 and COVID-19 develops. We have identified that subjects with more severe COVID-19 disease mount a more robust and neutralizing antibody response against SARS-CoV-2 spike protein. Subjects who mounted a larger response against the spike also mounted antibody responses against other viral antigens, including the nucleocapsid protein and ORF8. Additionally, this study reveals that subjects with more severe disease mount a larger memory B cell response against the spike. These data suggest that subjects with more severe COVID-19 disease are likely better protected from reinfection with SARS-CoV-2.


Assuntos
COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Linfócitos B/imunologia , COVID-19/sangue , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Reações Cruzadas , Epitopos/imunologia , Feminino , Humanos , Imunidade Humoral/imunologia , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/imunologia
20.
Chemosphere ; 263: 128041, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32854013

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants that represent a serious threat to the health of humans and ecosystems. The effects of plant root and artificial root exudates (ARE) on the biodegradation of phenanthrene (PHE) and their impact on soil bacterial community structure was the focus of this work using four treatments for 180 days. Treatments included; control treatment (CK), low concentration of ARE (AREL), high concentration of ARE (AREH), and planting Koelreuteria paniculata saplings (KOE). The diversity and composition of soil bacterial community were analyzed using high-throughput sequencing. The results showed that KOE treatments had the most significant effect on the biodegradation of PHE compared to controls. ARE treatments had the similar effects on the biodegradation of PHE in soil with high efficiency in AREH than AREL. Both KOE and ARE treatments reduced diversity of bacterial community but increased the abundance of PAHs degrading bacterial populations within representative phyla, including Proteobacteria and Firmicutes. During the study, the total bacterial OTUs showed the number of unique genus types initially increased, then lowered in the later stages of the incubation process. Specific bacterial populations enriched by the treatments and supported by the exudates seemed to determine the biodegradation of PHE and not the overall bacterial diversity.


Assuntos
Biodegradação Ambiental , Exsudatos de Plantas/metabolismo , Sapindaceae/microbiologia , Microbiologia do Solo , Poluentes do Solo/metabolismo , Bactérias/metabolismo , Ecossistema , Exsudatos e Transudatos/metabolismo , Fenantrenos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Características de Residência , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA