Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 300(11): 107828, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39341499

RESUMO

The connection between SARS-CoV-2 replication-transcription complexes and nucleocapsid (N) protein is critical for regulating genomic RNA replication and virion packaging over the viral life cycle. However, the mechanism that dynamically regulates genomic RNA packaging and replication remains elusive. Here, we demonstrate that the N-terminal domain of SARS-CoV-2 nonstructural protein 3, a core component of viral replication-transcription complexes, binds N protein and displaces RNA in a concentration-dependent manner. This interaction disrupts liquid-liquid phase separation of N protein driven by N protein-RNA interactions which is crucial for virion packaging and viral replication. We also report a high-resolution crystal structure of the nonstructural protein 3 ubiquitin-like domain 1 (Ubl1) at 1.49 Å, which reveals abundant negative charges on the protein surface. Sequence and structural analyses identify several conserved motifs at the Ubl1-N protein interface and a previously unexplored highly negative groove, providing insights into the molecular mechanism of Ubl1-mediated modulation of N protein-RNA binding. Our findings elucidate the mechanism of dynamic regulation of SARS-CoV-2 genomic RNA replication and packaging over the viral life cycle. Targeting the conserved Ubl1-N protein interaction hotspots also promises to aid in the development of broad-spectrum antivirals against pathogenic coronaviruses.

2.
Front Neurol ; 15: 1413015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015316

RESUMO

Background: Earlier observational studies have demonstrated a correlation between glioma and the risk of neurodegenerative diseases (NDs), but the causality and direction of their associations remain unclear. The objective of this study was to ascertain the causal link between glioma and NDs using Mendelian randomization (MR) methodology. Methods: Genome-wide association study (GWAS) data were used in a two-sample bi-directional MR analysis. From the largest meta-analysis GWAS, encompassing 18,169 controls and 12,488 cases, summary statistics data on gliomas was extracted. Summarized statistics for NDs, including Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) were obtained from the GWAS of European ancestry. Inverse variance weighted (IVW) method was elected as the core MR approach with weighted median (WM) method and MR-Egger method as complementary methods. In addition, sensitivity analyses were performed. A Bonferroni correction was used to correct the results. Results: Genetically predicted glioma had been related to decreased risk of AD. Specifically, for all glioma (IVW: OR = 0.93, 95% CI = 0.90-0.96, p = 4.88 × 10-6) and glioblastoma (GBM) (IVW: OR = 0.93, 95% CI = 0.91-0.95, p = 5.11 × 10-9). We also found that genetically predicted all glioma has a suggestive causative association with MS (IVW: OR = 0.90, 95% CI = 0.81-1.00, p = 0.045). There was no evidence of causal association between glioma and ALS or PD. According to the results of reverse MR analysis, no discernible causal connection of NDs was found on glioma. Sensitivity analyses validated the robustness of the above associations. Conclusion: We report evidence in support of potential causal associations of different glioma subtypes with AD and MS. More studies are required to uncover the underlying mechanisms of these findings.

3.
Nat Chem Biol ; 20(6): 710-720, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38200110

RESUMO

Biomolecular condensates have been proposed to mediate cellular signaling transduction. However, the mechanism and functional consequences of signal condensates are not well understood. Here we report that LATS2, the core kinase of the Hippo pathway, responds to F-actin cytoskeleton reduction and forms condensates. The proline-rich motif (PRM) of LATS2 mediates its condensation. LATS2 partitions with the main components of the Hippo pathway to assemble a signalosome for LATS2 activation and for its stability by physically compartmentalizing from E3 ligase FBXL16 complex-dependent degradation, which in turn mediates yes-associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) recruitment and inactivation. This oncogenic FBXL16 complex blocks LATS2 condensation by binding to the PRM region to promote its degradation. Disruption of LATS2 condensation leads to tumor progression. Thus, our study uncovers that the signalosomes assembled by LATS2 condensation provide a compartmentalized and reversible platform for Hippo signaling transduction and protein stability, which have potential implications in cancer diagnosis and therapeutics.


Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas Supressoras de Tumor , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Proteínas Supressoras de Tumor/metabolismo , Células HEK293 , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Camundongos , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/metabolismo
4.
Mol Cell ; 81(6): 1216-1230.e9, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606996

RESUMO

Interferon-γ (IFN-γ)-mediated adaptive resistance is one major barrier to improving immunotherapy in solid tumors. However, the mechanisms are not completely understood. Here, we report that IFN-γ promotes nuclear translocation and phase separation of YAP after anti-PD-1 therapy in tumor cells. Hydrophobic interactions of the YAP coiled-coil domain mediate droplet initiation, and weak interactions of the intrinsically disordered region in the C terminus promote droplet formation. YAP partitions with the transcription factor TEAD4, the histone acetyltransferase EP300, and Mediator1 and forms transcriptional hubs for maximizing target gene transcriptions, independent of the canonical STAT1-IRF1 transcription program. Disruption of YAP phase separation reduced tumor growth, enhanced immune response, and sensitized tumor cells to anti-PD-1 therapy. YAP activity is negatively correlated with patient outcome. Our study indicates that YAP mediates the IFN-γ pro-tumor effect through its nuclear phase separation and suggests that YAP can be used as a predictive biomarker and target of anti-PD-1 combination therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Interferon gama/metabolismo , Neoplasias Experimentais , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Células HEK293 , Humanos , Interferon gama/genética , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
5.
J Chem Inf Model ; 60(12): 5735-5745, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-32786695

RESUMO

The emergence of the new coronavirus (nCoV-19) has impacted human health on a global scale, while the interaction between the virus and the host is the foundation of the disease. The viral genome codes a cluster of proteins, each with a unique function in the event of host invasion or viral development. Under the current adverse situation, we employ virtual screening tools in searching for drugs and natural products which have been already deposited in DrugBank in an attempt to accelerate the drug discovery process. This study provides an initial evaluation of current drug candidates from various reports using our systemic in silico drug screening based on structures of viral proteins and human ACE2 receptor. Additionally, we have built an interactive online platform (https://shennongproject.ai/) for browsing these results with the visual display of a small molecule docked on its potential target protein, without installing any specialized structural software. With continuous maintenance and incorporation of data from laboratory work, it may serve not only as the assessment tool for the new drug discovery but also an educational web site for the public.


Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , Avaliação Pré-Clínica de Medicamentos/métodos , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Simulação por Computador , Bases de Dados de Produtos Farmacêuticos , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Software , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA