Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
BMC Sports Sci Med Rehabil ; 16(1): 111, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755687

RESUMO

PURPOSE: The performance of swing movement during spikes and serves plays a crucial role in determining the outcomes of volleyball matches. This study aims to explore the effects of the participation of the trunk and lower limbs' involvement on the velocity and power of the swing movement of adolescent male volleyball players, as well as the differences in power and velocity performance of the swing movement among different ages and specific positions. METHODS: The study involved 22 adolescent male volleyball players, with 11 high school students and 11 middle school students. The Kineo Globus equipment was used to assess the swing movement performance involving different segments, including arm swing movement only involving arm limb participation; upper swing movement involving trunk and arm limb participation; and whole body swing movement involving lower limb, trunk, and arm limb participation. The measured parameters included power and velocity performance levels. Before the test, each subject practiced three movement patterns twice. RESULTS: The study found that swing movement involving both the trunk and arm limbs had significantly higher average (F = 17.70, p < 0.001) and peak power performance (F = 31.47, p < 0.001), as well as in average (F = 9.14, p = 0.03) and peak velocity performance (F = 23.17, p < 0.001). There were no significant differences in average (F = 17.70; p = 0.46) and peak power (F = 31.47, p = 0.94), as well as in average (F = 9.14, p = 0.99) and peak velocity performance (F = 23.17, p = 0.90) between movements involving the whole body and those involving the trunk and upper limbs. Among different age groups, the swing movement performance of middle school athletes showed significant enhancements in both average (F = 9.20, p < 0.001) and peak power (F = 19.93, p < 0.001), as well as in average (F = 10.75, p < 0.001) and peak velocity (F = 34.35, p < 0.001) when arm swing with trunk involvement was compared to arm swing movement. High school athletes also showed significant improvements in peak velocity (F = 34.35, p < 0.001), peak power (F = 17.31, p < 0.001), and average power (F = 9.41, p < 0.001) during upper swing movements, except for average velocity performance (F = 1.56, p = 0.21), when compared to arm swing movement. The increase rate in average velocity performance of swing movements involving trunk participation was significantly higher in middle school athletes than in high school athletes (p < 0.001). Among athletes in specific positions, Middle Blocker (MB) players exhibited significantly better average power performance in swing movements involving trunk and arm limb participation compared to Outside Hitter (OH) players (p = 0.04). Furthermore, the rate of average (p = 0.01) and peak (p = 0.03) power change during upper swing movements involving lower limb participation was significantly higher among OH players than MB players. CONCLUSIONS: The involvement of the trunk segment has been observed to significantly improve power and velocity in swing movements during spike and serves among adolescent male volleyball players. This underscores the importance of coordination between the trunk and arm in influencing swing movement performance during spikes and serves. High school athletes demonstrate superior power and velocity in arm swing movements compared to middle school athletes. MB exhibits greater power in upper limb swing movements than OH, although OH players show better coordination between the arm, trunk, and lower limb segments in the swing movement. To enhance swing movement performance in adolescent male volleyball players, particularly focusing on the trunk segment was crucial. Specialized physical training programs should target improving both arm strength and rotational power of the trunk simultaneously. This approach would help in consistently enhancing coordination between the trunk and arms, ultimately leading to optimized force generation during swing movements such as spikes and serves.

2.
Heliyon ; 10(7): e28480, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586361

RESUMO

Background: To analyze the characteristics of fecal microbiota disturbance in the intensive care unit (ICU) patients with sepsis and the correlation with related clinical indicators. Methods: This study included 31 patients with sepsis admitted to the emergency ICU ward between September 2019 and December 2021. They were divided into Group without septic shock (ND_NS group, 7 cases) and Group with septic shock (ND_S group, 24 cases) according to the presence or absence of septic shock. Furthermore, we divided these 31 sepsis patients into Clinical Improvement group (21 cases) and Death or DAMA group (10 cases) based on clinical outcome, 15 cases of Physical Examiner recruited in the same period were included as control group: ND_HC group (15 cases). The fecal samples of the patients with sepsis within 24 h of admission and random fecal samples of the control group were collected and analyzed by 16S rDNA gene sequencing used for the analysis of fecal microbiota. At the same time, the relevant clinical data of these patients with sepsis were also collected for analysis. Results: There were 15 cases with drug-resistant bacteria in the ND_S group and only 2 cases in the ND_NS group (P = 0.015). There were significant differences in APACHE II score, length of ICU stay, lactate level, and oxygenation index of patients between the Death or DAMA group and Clinical Improvement group (all P < 0.05). For phylum level, the abundance of Firmicutes, Actinobacteria, and Bacteroidetes decreased in the ND group compared with the ND_HC group, while the abundance of Proteobacteria increased (P < 0.05). For genus level, the relative abundance of Escherichia-Shigella and Klebsiella were significantly increased in the ND group compared with the ND_HC group (P < 0.05). The top six genera in relative abundance in the ND_S group were Escherichia-Shigella, Enterococcus, Bifidobacterium, Lactobacillus, Akkermansia, and Klebsiella. Compared with the Clinical Improvement group, the relative abundance of Escherichia-Shigella and Klebsiella in the Death or DAMA group showed an increasing trend with no significant significance, while the relative abundance of Enterococcus and Faecalibacterium decreased in the Death or DAMA group (P < 0.05). Alpha diversity analysis showed that compared with the ND_HC group, the alpha diversity of the fecal microbiota in the ND group decreased. There were significant differences in the Observed_species index, Chao1 index, and ACE index of patients between the ND_HC group and ND group (all P < 0.05). Moreover, compared with the ND_NS group, the Alpha diversity of the ND_S group was more abundant. PCoA analysis showed significant differences in microbial community structure between the ND group and ND_HC group (P = 0.001). There also were significant differences in microbial community structure between the ND_S group and ND_NS group (P = 0.008). LEfSe analysis showed that compared with the ND_HC group, there were significant differences in the species of the ND group, including Enterobacteriaceae, Escherichia-Shigella, Enterococcus, Elizabethkingia, and Family_XIII_AD3011_group. Conclusions: ICU patients with sepsis suffered intestinal microecological disturbances with significantly decreased abundance of fecal microbiota, diversity, and beneficial symbiotic bacteria. For these patients, the ratio of pathogenic bacteria, including Escherichia-Shigella and Klebsiella increased and became the main bacterial genus in some samples. Moreover, the increasing trend of these two pathogenic bacteria may be correlated with the development of septic shock and the risk of death in patients with sepsis.

3.
Materials (Basel) ; 17(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38591663

RESUMO

The stress distribution in prestressed filament wound components plays a crucial role in determining the quality of these components during their operational lifespan. This article proposes a physical model to analyze the stress and deformation of prestressed wound composite components with arch-shaped sections. Drawing upon the principles of beam theory, we delve into the analysis of prestressed wound components with metal liners featuring arch-shaped sections. Our investigation revealed a noteworthy phenomenon termed the "additional bending moment effect" within prestressed wound components with arch-shaped sections. Furthermore, this study establishes a relationship between this additional bending moment and the external pressure. In addition, a 3D finite element (FE) model for prestressed wound components with arch-shaped sections incorporating metal liners was developed. The model's accuracy was validated through a comparison with prestressed wound experiments, showcasing an error margin of less than 2%. In comparison with prestressed wound components with circular cross-sections under identical load and dimensional parameters, it was observed that prestressed wound components with arch-shaped sections exhibit stress distributions in the arc segments akin to their circular counterparts, with differences not exceeding 5%. Notably, when the ratio of the straight segment length to the inner diameter of the arc segment inner is less than 4, the deformation on the symmetric plane of the arc segment in an arch-shaped component can be effectively considered as the summation of deformations in equivalent-sized arc and straight segments under identical loading conditions. This yields an equivalent physical model and a streamlined analysis and design methodology for describing the deformation characteristics of prestressed wound components with arch-shaped sections.

4.
Heliyon ; 10(5): e27008, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463893

RESUMO

The cellular automata-lattice Boltzmann method is used to simulate the dendritic growth process of aluminum alloys under the action of hypergravity by performing coupling heat and mass transfer, solidification and flow. The dendrite arm spacing, growth rate, and dendrite morphology vary greatly with the size and direction of hypergravity, and solute segregation occurs. Compared with the gravity of the earth (1 g), hypergravity strongly strengthens the buoyancy-driven flow and considerably affects the morphology of the solidified grain. The dendritic growth rate is also accelerating. According to the direction of hypergravity in relation to the dendritic growth direction, there exist different flow states that show stable or unstable dendritic growth dynamics. For columnar crystal growth, when the hypergravity and growth direction are identical, the dendrite tip undergoes downward melt flow, and the dendrite grows in a stable manner. When the hypergravity and the growth direction are opposite, the dendrite tip undergoes upward melt flow, the dendrite grows in an unstable manner, and the primary dendrite spacing decreases. For the growth of equiaxed crystals, the convection induced by hypergravity causes the equiaxed crystals to be asymmetric, and the solute segregates in the direction of gravity. Channel segregation occurs in the mushy zone in the presence of equiaxed crystal chains.

5.
Adv Mater ; : e2400648, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488330

RESUMO

The increasingly severe plastic pollution has urged an inevitable trend to develop biodegradable plastic products that can take over synthetic plastics. As one of the most abundant natural polymers, polysaccharides are an ideal candidate to substitute synthetic plastics. The rigidity of polysaccharide chains principally allows for high strength and stiffness of their materials, however, challenges the facile orientation in material processing. Here, a general hydrogen bond-mediated plasticization strategy to regulate isotropic sodium alginate (SA) chains to a highly ordered state is developed, and alginate plastics with high performances are fabricated. It is revealed that hydroxyl groups in glycerol modulate the viscoelasticity of SA solids by forming strong hydrogen bonds with SA chains, achieving a large stretchability at a high solid content. Highly orientated alginate films exhibit a superior tensile strength of 575 MPa and toughness of 60.7 MJ m-3, outperforming most regenerated biomass films. The high solid content and large stretchability mediated by strong hydrogen bonding ensure plastic molding of solid-like SA with high fidelity. This hydrogen bond-mediated plasticity provides a facile but effective method to justify the high performances of polysaccharide-based plastics.

6.
Nat Commun ; 15(1): 1512, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374204

RESUMO

This was a single-arm, multicenter phase 2 clinical trial (ChiCTR1900021726) involving advanced squamous non-small cell lung cancer (sq-NSCLC) patients undergoing 2 cycles of nab-paclitaxel/carboplatin and sintilimab (anti-PD-1), followed by sintilimab maintenance therapy. The median progression-free survival (PFS) was 11.4 months (95% CI: 6.7-18.1), which met the pre-specified primary endpoint. Secondary endpoints included objective response rate reaching 70.5% and a disease control rate of 93.2%, with a median duration of response of 13.6 months [95% CI: 7.0-not evaluable (NE)]. The median overall survival was 27.2 months (95% CI: 20.2-NE) with treatment-related adverse events grades ≥3 occurring in 10.9% of patients. Predefined exploratory endpoints comprised relationships between biomarkers and treatment efficacy, and the association between circulating tumor DNA (ctDNA) dynamics and PFS. Biomarker analysis revealed that the breast cancer gene 2, BMP/Retinoic Acid Inducible Neural Specific 3, F-box/WD repeat-containing protein 7, tyrosine-protein kinase KIT and retinoblastoma 1 abnormalities led to shorter PFS, while ctDNA negative at baseline or clearance at 2 cycles of treatment was associated with longer PFS (18.1 vs. 4.3 months). Taken together, sintilimab in combination with 2 cycles of nab-paclitaxel/carboplatin treatment produced encouraging PFS and better tolerability as first-line treatment for advanced sq-NSCLC.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carboplatina/uso terapêutico , Carboplatina/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética
7.
Electrophoresis ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419136

RESUMO

A novel optical-induced dielectrophoresis (ODEP) method employing a pressure-driven flow for the continuous separation of microparticles is presented in this study. By applying alternate current electric field on conductive indium tin oxide substrate and projecting the light geometry into the photoconductive layer, an inhomogeneous electric field is locally induced. The particles experience the dielectrophoretic force when passing through the lighting area, where the strongest electrical field gradient exists. By optimizing the structure of the lighting pattern, a stronger nonuniform electric field gradient is generated which predicts the separation of 1 and 3 µm polystyrene particles. Moreover, the effects of key parameters, including the light pattern geometry, applied voltage, and flow rate, were investigated in this study, leading to the successful sorting of 700 nm and 1 µm particles. To further examine the separation sensitivity and practicability of the proposed ODEP microfluidic method, the isolation of two different types of circulating tumor cells from T-cells and red blood cells are demonstrated, providing a novel method for the manipulation and separation of microparticles and nanoparticles.

8.
Ecotoxicol Environ Saf ; 270: 115894, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171100

RESUMO

Algal toxins produced by microalgae, such as domoic acid (DA)1, have toxic effects on humans. However, toxicity tests using mice only yield lethal doses of algal toxins without providing insights into the mechanism of action on cells. In this study, a fast segmentation of microfluidic flow cytometry cell images based on the bidirectional background subtraction (BBS)2 method was developed to get the visual evidence of apoptosis in both bright-field and fluorescence images. This approach enables mapping of changes in cell morphology and activity under algal toxins, allowing for fast (within 60 s) and automated biological detection. By combining microfluidics with flow cytometry, the intricate cellular-level reaction process can be observed in micro samples of 293 T cells and mouse spleen cells, offering potential for future in vitro experiments.


Assuntos
Microalgas , Microfluídica , Humanos , Animais , Camundongos , Citometria de Fluxo
9.
J Community Health Nurs ; 41(2): 82-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38229243

RESUMO

PURPOSE: This study aimed to evaluate the impact of three equine therapy approaches on gross motor function in children with cerebral palsy. METHODS: The studies were retrieved from PubMed, Web of Science, Science Direct, and the Cochrane Library, in accordance with the style commonly found in scientific journal publications:(1) peer-reviewed articles written in English; (2) experimental or quasi-experimental; (3) three Equine Therapy Interventions as experiment's independent variable; (4) children with cerebral palsy; and (5) measurement of outcomes related to Gross Motor Function. RESULTS: The study examined 596 patients with cerebral palsy, whose average age was 8.03 years. The three types of horse therapy interventions had a significant impact on gross motor function in children with cerebral palsy (SMD = 0.19, 95% CI 0.02-0.36, p = 0.031). Additionally, the interventions positively affected dimensions C (SMD = 0.31, 95% CI 0.00-0.62, p = 0.05), D (SMD = 0.30, 95% CI 0.06-0.56, p = 0.017), and B (SMD = 0.72, 95% CI 0.10-1.34, p = 0.023). The Gross Motor Function Measure (GMFM) consists of 88 or 66 items, which are divided into five functional dimensions: GMFM-A (lying down and rolling), GMFM-B (sitting), GMFM-C (crawling and kneeling), GMFM-D (standing), and GMFM-E (walking, running, and jumping). Each subsection of the GMFM can be used separately to evaluate motor changes in a specific dimension of interest. Subgroup analysis revealed that different horse-assisted therapy approaches, types of cerebral palsy, exercise duration, frequency, and intervention periods are important factors influencing treatment outcomes. CONCLUSION: The intervention period ranged from 8 to 12 weeks, with session durations of 30 to 45 minutes, 2 to 3 times per week. Equine-assisted therapy (EAT) demonstrated significant improvements in the overall gross motor function score, Dimension B, Dimension C, and Dimension D among children with cerebral palsy. The most effective treatment is provided by Equine-Assisted Therapy, followed by Horseback Riding Simulator (HRS). Due to its economic practicality, HRS plays an irreplaceable role. CLINICAL EVIDENCE: Equine-Assisted Therapy (EAT) demonstrates the most effective treatment outcomes, suggesting that hospitals and healthcare professionals can form specialized teams to provide rehabilitation guidance. 2. Within equine-assisted therapy, Horseback Riding Simulator (HRS) exhibits treatment efficacy second only to Equine-Assisted Therapy (EAT), making it a cost-effective and practical option worthy of promotion and utilization among healthcare institutions and professionals. 3. In equine-assisted therapy, Therapeutic Horseback Riding (THR) holds certain value in rehabilitation due to its engaging and practical nature.


Assuntos
Paralisia Cerebral , Terapia Assistida por Cavalos , Criança , Humanos , Cavalos , Animais , Destreza Motora , Paralisia Cerebral/reabilitação , Resultado do Tratamento
10.
Biomed J ; 47(1): 100594, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37044249

RESUMO

BACKGROUND: We previously identified matrix metalloproteinase-1 (MMP-1) as one of the most promising salivary biomarkers for oral squamous cell carcinoma (OSCC) and developed a sensitive ELISA for MMP-1 with good performance in detection of OSCC using a cohort of 1160 saliva samples. METHODS: A time-saving rapid strip test (RST) for MMP-1 was developed in this study and its diagnostic performance compared with ELISA using saliva samples from a new cohort of 603 subjects (171 healthy controls, 236 patients with oral potentially malignant disorders, and 196 OSCC patients). RESULTS: Salivary MMP-1 levels measured using RST and ELISA were highly comparable and both assays could effectively distinguish between OSCC and non-cancerous groups. Similar to ELISA, receiver operating characteristic curve analysis of the MMP-1 RST was effective in identifying patients with OSCC at different oral cavity sites and stages. CONCLUSIONS: Salivary MMP-1 can be sensitively detected using both RST and ELISA methods. Our newly developed point-of-care MMP-1 RST is a promising in vitro diagnostic device (IVD) that may serve as a novel auxiliary tool in the routine clinical detection and monitoring of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Metaloproteinase 1 da Matriz , Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/diagnóstico , Saliva/química , Neoplasias Bucais/diagnóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço
11.
Ther Apher Dial ; 28(2): 297-304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37873732

RESUMO

INTRODUCTION: The study aimed to explore feasibility and effect of hospital-community online management on the medication management of elderly peritoneal dialysis (PD) patients with end-stage renal disease (ESRD) during COVID-19. METHODS: A total of 160 patients receiving PD were randomly divided into the control (n = 80, outpatient follow-up management mode) and observation (n = 80, hospital-community online management mode) groups. The self-efficacy (General Self-Efficacy Scale [GSES]), medication adherence (8-item Morisky medication adherence scale [MMAS-8]), quality of life (kidney disease quality of life short form [KDQOL-SF]), and degree of depression (beck depression inventory [BDI]) before and after the intervention were compared. RESULTS: After the intervention, the scores of GSES (4.20 ± 0.46 vs. 3.09 ± 0.33), MMAS-8 (5.82 ± 0.92 vs. 5.13 ± 1.25), and KDQOL-SF were significantly higher, whereas the BDI score (9.50 ± 2.86 vs. 12.08 ± 2.95) was significantly lower in the observation group than in the control group (p < 0.05). CONCLUSION: Hospital-community online management presents good effects in the medication management of PD patients with ESRD.


Assuntos
COVID-19 , Nefropatias , Falência Renal Crônica , Diálise Peritoneal , Humanos , Idoso , Diálise Renal , Qualidade de Vida , Conduta do Tratamento Medicamentoso , COVID-19/terapia , Falência Renal Crônica/terapia , Hospitais
12.
Sci Rep ; 13(1): 21968, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081852

RESUMO

In order to improve the response capability of cross regional emergency material scheduling (CREMS), a CREMS algorithm based on seed optimization algorithm is proposed. Construct a segmented regional grid distribution model structure for CREMS, use a grid matching algorithm based on block link distribution to construct the optimization objective function during the emergency material scheduling process, use variable neighborhood search technology to solve the diversity problem of cluster optimization in CREMS, and combine seed optimization algorithms for combination control and recursive analysis in the emergency material scheduling process. Based on the combination of deep learning and reinforcement learning, the optimal route and configuration scheme design for CREMS process is achieved. The simulation results show that this method has better active configuration capability, better path optimization capability and stronger spatial regional planning capability for CREMS.

13.
Micromachines (Basel) ; 14(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38138354

RESUMO

All-inorganic lead halide perovskite has emerged as an attractive semiconducting material due to its unique optoelectronic properties. However, its poor environmental stability restricts its broad application. Here, a simple method for the fabrication of CsPb2Br5/TiO2 is investigated. The introduction of p-aminobenzoic acid, which has two functional groups, is critical for the capping of amorphous TiO2 on CsPb2Br5. After calcination at 300 °C, amorphous TiO2 crystallizes into the anatase phase. The CsPb2Br5/TiO2 NCs show high long-term stability in water and enhanced stability against ultraviolet radiation and heat treatment, owing to the chemical stability of TiO2. More importantly, photo-electrochemical characterizations indicate that the formation of TiO2 shells can increase the charge separation efficiency. Hence, CsPb2Br5/TiO2 exhibits improved photoelectric activity owing to the electrical conductivity of the TiO2 in water. This study provides a new route for the fabrication of optoelectronic devices and photocatalysts based on perovskite NCs in the aqueous phase. Furthermore, the present results demonstrate that CsPb2Br5/TiO2 NCs has considerable potential to be used as a photoelectric material in optical sensing and monitoring.

14.
Analyst ; 148(24): 6350-6358, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37966221

RESUMO

This article proposes a film-linked electrostatic self-assembly microfluidic chip for the first time, designed to be ready-to-use. Barrier films are used to isolate the gas/liquid path microchannels and the pre-stored reagents of the chip before use. Through the linkage design between the film materials, the motion of barrier films is linked to the structural changes inside the chip. Under the combined action of the rebound force of the elastic substrate, the electrostatic adsorption force between the substrates, and the reaction force of the elastic film, the elastic substrate and the liquid storage substrate are instantly bonded, and the self-assembly of the chip is completed within 1 s. By using six independently output programmable sequences to perform the sequential quantitative pumping of pre-stored reagents, the transfer and mixing of samples and pre-stored reagents are automatically driven in a confined space, which greatly reduces the contamination risk and loss rate of samples/reagents, and improves the accuracy and reproducibility of test results. In addition, the microfluidic multi-step reaction driven in parallel can avoid liquid reflux, accurately control the amount of reactant transfer, and realize the quantitative detection of samples. Multiple reactions can be performed synchronously without interference, saving the test time. Since each gas path is independently controllable, the chip can be extended to a variety of biochemical reactions and has the potential to detect a variety of substances.

15.
Nanomaterials (Basel) ; 13(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37999322

RESUMO

Surface-enhanced Raman scattering (SERS) is a cutting-edge technique for highly sensitive analysis of chemicals and molecules. Traditional SERS-active nanostructures are constructed on rigid substrates where the nanogaps providing hot-spots of Raman signals are fixed, and sample loading is unsatisfactory due to the unconformable attachment of substrates on irregular sample surfaces. A flexible SERS substrate enables conformable sample loading and, thus, highly sensitive Raman detection but still with limited detection capabilities. Stretchable SERS substrates with flexible sample loading structures and controllable hot-spot size provide a new strategy for improving the sample loading efficiency and SERS detection sensitivity. This review summarizes and discusses recent development and applications of the newly conceptual stretchable SERS substrates. A roadmap of the development of SERS substrates is reviewed, and fabrication techniques of stretchable SERS substrates are summarized, followed by an exhibition of the applications of these stretchable SERS substrates. Finally, challenges and perspectives of the stretchable SERS substrates are presented. This review provides an overview of the development of SERS substrates and sheds light on the design, fabrication, and application of stretchable SERS systems.

16.
Ann Med Surg (Lond) ; 85(10): 4844-4850, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37811065

RESUMO

Objective: A major consequence of acute myocardial infarction is myocardial ischemia-reperfusion (I/R) injury. Collecting proof demonstrates that AXIN1 assume a basic part in different disease; however, the role of AXIN1 in I/R injury remains to a great extent obscure. Methods: The I/R injury model on AC16 cells was constructed. siRNA transfection was used to knockdown AXIN1. The qRT-PCR assays and western blot assays were used to detect the expression level of AXIN1 and other key proteins. CCK-8 assays and cell apoptosis assays were used to detect cell proliferation and cell apoptosis. Results: AXIN1 was significantly overexpressed in an in vitro model of I/R injury. Knockdown of AXIN1 significantly restored the cell proliferation inhibition caused by IR injury, while inhibiting apoptosis and inflammation. Further mechanistic studies revealed that the transcription factor c-Myc could regulate the expression of AXIN1. The effects of I/R injury on AC16 cells after overexpression of c-Myc were reversed by knockdown of AXIN1. Meanwhile, AXIN1 could regulate the SIRT1/p53/Nrf 2 pathway. Conclusion: Our results show an important role for AXIN1 and provide new targets for avoiding and treating I/R injury.

17.
iScience ; 26(7): 107184, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534140

RESUMO

Ionic diodes constructed with asymmetric channel geometry and/or charge layout have shown outstanding performance in ion transport manipulation and reverse electrodialysis (RED) energy collection, but the working mechanism is still indistinct. Herein, we systematically investigated RED energy conversion of straight nanochannel-based bipolar ionic diode by coupling the Poisson-Nernst-Planck and Navier-Strokes equations. The effects of nanochannel structure, charging polarity, and symmetricity as well as properties of working fluids on the output voltage and output power were investigated. The results show that as high-concentration feeding solution is applied, the bipolar ionic diode-based RED system gives higher output voltage and output power compared to the unipolar channel RED system. Under optimal conditions, the voltage output of the bipolar channel is increased by ∼100% and the power output is increased by ∼260%. This work opens a new route for the design and optimization of high-performance salinity energy harvester as well as for water desalination.

18.
J Environ Manage ; 345: 118802, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591094

RESUMO

Microplastics refer to plastic particles measuring less than 5 mm, which has led to serious environmental problem and the detection of these tiny particles is crucial for understanding the corresponding distribution and impact on the marine environment. In this paper, an improved faster region-based convolutional neural network (R-CNN) model was developed for the identification and detection of microplastic particles. In the proposed model, the residual network-50 (ResNet-50) is employed as the backbone with the replacement of the traditional one to enhance the feature extraction capability and the feature pyramid networks (FPN) module is introduced together for solving the multi-scale target detection. By using the improved Faster R-CNN model, the network model performance is enhanced where the average confidence of detecting unique microplastic particles in the marine environment reaches as high as 99%. Moreover, the microparticles mixture was bounded precisely via the predicted bounding boxes without missing detection and wrong detection. In this way, the successful identification of polystyrene microplastic particles from the particles suspension with similar shapes but various conditions of backgrounds, brightness, distributions and object sizes, was achieved by employing the proposed improved Faster R-CNN model, enabling the accurate detection of microplastic particles in marine environment.


Assuntos
Microplásticos , Plásticos , Redes Neurais de Computação , Poliestirenos
19.
J Hazard Mater ; 460: 132364, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37634380

RESUMO

The integration of catalytic oxidation with forward osmosis (FO) holds promising potential to address two crucial challenges encountered by FO: fouling and unsustainable performance, but suitable approaches are still rare. Herein, we have successfully developed a photocatalysis-assisted forward osmosis (PFO) system. In the PFO, a self-made porous carbon nitride doped functional carbon nanotube photocatalytic hydrogel film (PCN@CNTM) was engaged in the FO process in an inventive way by simply sticking to the commercial FO membrane surface, preventing damage to the membrane from the catalyst's direct insertion and delaying the assault from the oxidation groups. PFO allowed organic pollutants to decompose in the feed solution (90%) and on the membrane surface, regulating the water chemical potential and giving the FO membrane antifouling properties. This resulted in sustainable water flux (11.8 LMH) with no significant membrane fouling in PFO, whereas in FO alone there was a significant fouling and flux drop (from 12.73 to 7.23 LMH in 4 h). Moreover, the expensive FO membrane was protected while the hydrogel film can be replaced on demand. The PFO exemplifies the concept of synergistic technology integration, presenting a new perspective on harnessing the strengths of distinct technologies in a mutually beneficial manner.

20.
Materials (Basel) ; 16(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37629827

RESUMO

Rail expansion significantly impacts the launch precision of a railgun system. Higher precision can be achieved when the extent of expansion is low. This paper investigates three main factors that influence the extent of rail expansion using the finite element method, including pre-stress, electromagnetic load, and stiffness of the insulators. The mean squared error between experiment results and simulating results is less than 0.06, validating the finite element model. The simulated results reveal that the extent of rail expansion increases with a decrease in pre-stress and an increase in electromagnetic pressure and the stiffness of the insulator is the most significant influencing factor, as the use of a stiff insulator not only results in a small extent of rail expansion but also delays the separation between the rails and insulators. The mechanism of how pre-stress influences the railgun system has been proposed. It has been expressed that the pre-stress maintains the integrity of the railgun system by hindering the process of a decrease in the contact surface area between rails and insulators during launch. The study provides a platform to improve the design of the railgun system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA