Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 31(2): 433-440, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-32476335

RESUMO

The spectrometer-based nitrogen (N) nutrition monitoring and diagnosis models for double-cropping rice in Jiangxi is important for recommending precise N topdressing rate, achieving high yield, improving grain quality and increasing economic efficiency. Field experiments were conducted in Jiangxi in 2016 and 2017, involving different early rice and late rice cultivars and N application rates. Plant N accumulation (PNA) and canopy spectral vegetation indices (VIs) were measured at tillering and jointing stages with two spectrometers, i.e., GreenSeeker (an active multispectral sensor containing 780 and 660 nm wavelengths) and crop growth monitoring and diagnosis apparatus (CGMD, a passive multispectral sensor containing 810 and 720 nm wavelengths). The VI-based models of PNA were established from a experimental dataset and then validated using an independent dataset. The N topdressing rates for tillering and jointing stages were calculated using the newly developed N spectral diagnosis model and higher yield cultivation experience of double-cropping rice. The results showed that the VIs from two spectrometers were strongly positively correlated with PNA at both growth stages, with the model performance for tillering or jointing stages was better than that for the early growth stages. The exponential equation of normalized difference vegetation index (NDVI(780,660)) from GreenSeeker could be used to estimate PNA with a determination coefficient (R2) in the range of 0.92-0.94, the root mean square error (RMSE), relative root mean square error (RRMSE) and correlation coefficient (r) of model validation in the range of 3.09-5.96 kg·hm-2, 5.8%-18.5% and 0.92-0.98, respectively. The linear equation of difference vegetation index (DVI(810,720)) from CGMD could be used to estimate PNA with a R2 in the range of 0.90-0.93, the RMSE, RRMSE and r of model validation in the range of 3.71-6.33 kg·hm-2, 11.7%-14.3% and 0.93-0.96, respectively. The recommended N topdressing rate with CGMD was higher than that with GreenSeeker. Compared with conventional farmer's plan, the precision N application plan reduced N fertilizer application rate by 5.5 kg·hm-2, while N agronomic efficiency and net income was improved by 0.8% and 128 yuan·hm-2, respectively. Application of the spectral monitoring and diagnosis method to guiding fertilization could reduce cost and increase grain yield and net income, and thus had great potential for guiding double-cropping rice production.


Assuntos
Oryza , Agricultura , China , Grão Comestível , Fertilizantes , Nitrogênio
2.
Ying Yong Sheng Tai Xue Bao ; 28(4): 1227-1236, 2017 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-29741320

RESUMO

In this study, we developed a model for photosynthetic production in double cropping rice by integrating the advantages in current crop models (including the models of canopy structure, canopy light distribution, canopy photosynthesis and dry matter production). The canopy light distribution and dry matter accumulation were preliminarily validated with independent field experiment datasets. The distribution of direct radiation both on a level surface and on the leaf surface within canopy, the canopy daily photosynthate and its characteristics with varying leaf area index for three typical plant types (erect both upper and lower, upper erect and lower flat, and flat both upper and lower) were quantitatively analyzed by the model. The results indicated that there was a good agreement between the simulated and observed values. The root mean square error (RMSE), relative root mean square error (RRMSE) and correlation coefficient (r) of prediction of canopy light distribution in double cropping rice were 12.01 J ·m-2·s-1, 8.2% and 0.9929, respectively. Meanwhile, the RMSE, RRMSE and r of prediction of dry matter accumulation were 0.83 t·hm-2, 14.6% and 0.9772, respectively. It was indicated that the model had a performance. The upper erect and lower flat plant type had highest canopy daily photosynthate due to higher incident sun light received on the leaf surface, leaf photosynthetic efficiency and leaf area index.


Assuntos
Oryza , Fotossíntese , Luz , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA