Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(6): 2258-2273, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38482979

RESUMO

Sirtuins (SRTs) are a group of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that target both histone and nonhistone proteins. The biological function of SRT in horticultural plants has been rarely studied. In this study, FaSRT1-2 was identified as a key member of the 8 FaSRTs encoded in cultivated strawberry genome. Transient overexpression of FaSRT1-2 in strawberry fruit accelerated ripening, increased the content of anthocyanins and sugars, enhanced ripening-related gene expression. Moreover, stable transformation of FaSRT1-2 in strawberry plants resulted in enhanced vegetative growth, increased sensitivity to heat stress and increased susceptibility to Botrytis cinerea infection. Interestingly, knocking out the homologous gene in woodland strawberry had the opposite effects. Additionally, we found the content of stress-related hormone abscisic acid (ABA) was decreased, while the growth-related gibberellin (GA) concentration was increased in FaSRT1-2 overexpression lines. Gene expression analysis revealed induction of heat shock proteins, transcription factors, stress-related and antioxidant genes in the FaSRT1-2-overexpressed plants while knocked-out of the gene had the opposite impact. In conclusion, our findings demonstrated that FaSRT1-2 could positively promote strawberry plant vegetative growth and fruit ripening by affecting ABA and GA pathways. However, it negatively regulates the resistance to heat stress and B. cinerea infection by influencing the related gene expression.


Assuntos
Botrytis , Fragaria , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fragaria/genética , Fragaria/crescimento & desenvolvimento , Fragaria/fisiologia , Fragaria/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Botrytis/fisiologia , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Ácido Abscísico/metabolismo , Estresse Fisiológico/genética , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/metabolismo , Plantas Geneticamente Modificadas , Resistência à Doença/genética
2.
Front Plant Sci ; 14: 1171056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035055

RESUMO

The plant U-box (PUB) proteins are a type of E3 ubiquitin ligases well known for their functions in response to various stresses. They are also related to fruit development and ripening. However, PUB members possess such roles that remain unclear in strawberry. In this study, 155 PUB genes were identified in octoploid strawberry and classified into four groups. Their promoters possessed a variety of cis-acting elements, most of which are associated with abiotic stresses, followed by phytohormones response and development. Protein-protein interaction analysis suggested that FaU-box members could interact with each other as well as other proteins involved in hormone signaling and stress resistance. Transcriptome-based and RT-qPCR expression analysis revealed the potential involvement of FaU-box genes in resistance to stresses and fruit ripening. Of these, FaU-box98 and FaU-box136 were positively while FaU-box52 was negatively related to strawberry ripening. FaU-box98 comprehensively participated in resistance of ABA, cold, and salt, while FaU-box83 and FaU-box136 were broadly associated with drought and salt stresses. FaU-box18 and FaU-box52 were ABA-specific; FaU-box3 was specific to salt stress. In addition, the functional analysis of a randomly selected FaU-box (FaU-box127) showed that the transient overexpression of FaU-box127 promoted the ripening of strawberry fruit, along with significant changes in the expression levels of some ripening-related genes and the content of organic acid and soluble sugar. Overall, these findings provided comprehensive information about the FaU-box gene family and identified the potential FaU-box members participating in stress resistance and strawberry fruit ripening regulation.

3.
Front Plant Sci ; 14: 1138865, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082348

RESUMO

Citric acid is the primary organic acid that affects the taste of strawberry fruit. Glycolysis supplies key substrates for the tricarboxylic acid cycle (TCA cycle). However, little is known about the regulatory mechanisms of glycolytic genes on citric acid metabolism in strawberry fruits. In this study, the citric acid content of strawberry fruit displayed a trend of rising and decreasing from the initial red stage to the full red stage and then dark red stage. Thus, a difference in citric acid metabolic regulation was suspected during strawberry fruit development. In addition, overexpression of either cytoplasm glyceraldehyde-3-phosphate dehydrogenase (FxaC_14g13400, namely FaGAPC2) or pyruvate kinase (FxaC_15g00080, namely FaPKc2.2) inhibited strawberry fruit ripening and the accumulation of citric acid, leading to a range of maturity stages from partial red to full red stage. The combined transcriptome and metabolome analysis revealed that overexpression of FaGAPC2 and FaPKc2.2 significantly suppressed the expression of phosphoenolpyruvate carboxykinase (FxaC_1g21491, namely FaPEPCK) but enhanced the content of glutamine and aspartic acid. Meanwhile, the activities of PEPCK and glutamate decarboxylase (GAD) were inhibited, but the activities of glutamine synthase (GS) were increased in FaGAPC2/FaPKc2.2-overexpressed fruit. Further, functional verification demonstrated that overexpression of FaPEPCK can promote strawberry fruit ripening, resulting in a range of maturity stage from full red to dark red stage, while the citric acid synthase (CS) activities and citric acid content were significantly decreased. Overall, this study revealed that FaGAPC2/FaPKc2.2 and FaPEPCK perform an important role in reducing citric acid content in strawberry fruit, and FaGAPC2/FaPKc2.2 mainly by promoting the GS degradation pathway and FaPEPCK mainly by inhibiting the CS synthesis pathway.

4.
Front Plant Sci ; 13: 919619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837466

RESUMO

The enriched phenolic content attributes to the promising health benefit of strawberry fruits. On behalf of screening and seeking the breeding material with high phytochemical composition, a mutant (MT) of strawberry 'Benihoppe' (WT) with high total flavonoid content (TFC), especially anthocyanins and proanthocyanidins (PAs), was identified in this study. To investigate the possible reason for these disparities during strawberry fruit development, an integrated transcriptomic and metabolomic analysis was conducted using these two specific materials. As a result, a total of 113 flavonoid compounds were detected, a specific anthocyanin, namely, petunidin 3-O-rutinoside was detected for the first time in strawberry. By comparing with the WT fruits, a significant reduction of petunidin 3-O-rutinoside while around 24 times higher of cyanidin 3-O-rutinoside in MT fruits were observed. However, the cyanidin 3-glucoside content did not show obvious changes between MT and WT fruits, the pelargonidin and its derivatives were up-regulated only in partial red (PR) stage, but not in large green (LG) and fully red (FR) stages. Notably, the PAs such as procyanidin B2, procyanidin A1, catechin, gallocatechin gallate, epigallacatechin, and theaflavin were markedly up-regulated in MT. These results revealed a differential flavonoid biosynthesis between the two detected strawberry genotypes. A joint analysis with transcriptome data explained the up-regulation of cyanidin-based anthocyanins and PAs were caused by the down-regulation of F3'5'H, and up-regulation of F3'H and LAR expression, which might be regulated by the upregulation of potential TFs such as C3H, MADS, and AP2/ERF TFs. Metabolite correlation analysis suggested that it was PAs but not anthocyanins strongly correlated with the total phenolic content (TPC), indicated that PAs might contribute more to TPC than anthocyanins in our detected strawberry samples. This study not only potentially provided a new mutant for further breeding program to obtain high flavonoid content strawberry but also gave insights into strawberry flavonoid metabolic regulatory network, laid the foundation for identifying new flavonoid regulators in strawberry.

5.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563593

RESUMO

Studies on many plants have shown that mitogen-activated protein kinases (MAPKs) are key proteins involved in regulating plant responses to biotic and abiotic stresses. However, their involvement in cultivated strawberry development and ripening remains unclear. In this study, 43 FaMAPK gene family members were identified in the genome of cultivated strawberry (Fragaria × ananassa), phylogenetic analysis indicated that FaMAPKs could be classified into four groups. Systematic analysis of the conserved motif, exon-intron structure showed that there were significant varieties between different groups in structure, but in the same group they were similar. Multiple cis-regulatory elements associated with phytohormone response, and abiotic and biotic stresses were predicted in the promoter regions of FaMAPK genes. Transcriptional analysis showed that all FaMAPK genes were expressed at all developmental stages. Meanwhile, the effect of exogenous ABA and sucrose on the expression profile of FaMAPKs was investigated. Exogenous ABA, sucrose, and ABA plus sucrose treatments upregulated the expression of FaMAPK genes and increased the content of endogenous ABA, sucrose, and anthocyanin in strawberry fruits, suggesting that ABA and sucrose might be involved in the FaMAPK-mediated regulation of strawberry fruit ripening. Based on the obtained results, MAPK genes closely related to the ripening of strawberries were screened to provide a theoretical basis and support for future research on strawberries.


Assuntos
Fragaria , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Fragaria/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Sacarose/metabolismo
6.
BMC Plant Biol ; 22(1): 39, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35045827

RESUMO

BACKGROUND: E2 ubiquitin-conjugating (UBC) enzymes are an integral component of the ubiquitin proteasome system that play an important role in plant development, growth, and external stress responses. Several UBC genes have been identified in various plants. However, no studies exploring the functions of UBC genes in regulating fruit of strawberry have been reported. In the present study, a systematic analysis of the entire UBC family members were conducted in the genome of strawberry (Fragaria ×ananassa) based on bioinformatics method, and the gene functioning in strawberry ripening was explored. RESULTS: A total of 191 UBC genes were identified in the genome of cultivated strawberry. These genes were unevenly distributed across the 28 chromosomes from the 4 subgenomes of cultivated strawberry, ranging from 3 to 11 genes per chromosome. Moreover, the expansion of FaUBC genes in strawberry was mainly driven by WGD. All the FaUBC genes were clarified into 13 groups and most of them were included in the group VI. The gene structure analysis showed that the number of exons varied from 1 to 23, and the structure of genes had few differences within the same groups but a distinction in different groups. Identification of the cis-acting elements of the promoter revealed multiple regulatory elements that responded to plant growth and development, phytohormone responsive, and abiotic and biotic stress. Data from functional annotation indicated that FaUBC genes play a role in a variety of biological processes. The RNA-seq data showed that FaUBC genes displayed different expression pattern during the fruit ripening process and clarified into 6 clusters. In particular, cluster 3 exhibiting a sudden expression increase in the turning red stage were speculated to be involved in fruit ripening. Hence, two FaUBC genes (FaUBC76 and FaUBC78) were selected for gene function analysis by transient over-expression method. The results indicated that FaUBC76 has a positive effect on the fruit development and ripening in strawberry by up-regulating accumulation of anthocyanins. Moreover, expression of some maturity-related genes were also significantly increased, further supporting a role for FaUBC76 in the regulation of fruit ripening or softening. On the contrary, the overexpression of FaUBC78 significantly increased the firmness of strawberry fruit, indicating that FaUBC78 had a positive role in inhibiting the decrease of strawberry fruit firmness. CONCLUSION: Our study not only provide comprehensive information on system evolution and function on UBC genes, but also give a new insight into explore the roles of FaUBC genes in the regulation of strawberry ripening.


Assuntos
Fragaria/crescimento & desenvolvimento , Fragaria/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Enzimas de Conjugação de Ubiquitina/genética , Evolução Molecular , Frutas/genética , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Família Multigênica , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Sequências Reguladoras de Ácido Nucleico , Reprodutibilidade dos Testes , Sintenia , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/classificação , Enzimas de Conjugação de Ubiquitina/metabolismo
7.
Planta ; 255(1): 19, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34894292

RESUMO

MAIN CONCLUSION: FaMAPK5 and FaMAPK10 genes were involved in ABA-mediated strawberry fruit ripening and could enhance the antioxidant capacity by increasing non-enzymatic components and enzymatic antioxidants. Mitogen-activated protein kinases (MAPKs) are the key proteins involved in plant stress response by activating an antioxidant defense system, which cooperates with plant hormones. However, the involvement of MAPKs in the regulation of strawberry fruit ripening and resistance is unclear. In this study, two genes, FaMAPK5 and FaMAPK10, were isolated, and their expression pattern and function analysis were conducted. The results showed FaMAPK5 and FaMAPK10 were expressed in all tested tissue/organ types and reached the highest expression level at the white stage during strawberry fruit development and ripening. Transient overexpression of FaMAPK5 and FaMAPK10 increased the fruit anthocyanin, abscisic acid (ABA), total sugar, and glucose contents. ABA and especially hydrogen peroxide (H2O2) treatment induced the production of large amounts of H2O2 and noticeably increased the expression levels of FaMAPK5 and FaMAPK10 in strawberry fruit, while the reduced glutathione (GSH) had the opposite effect. The level of total phenol and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) significantly increased in FaMAPK5 overexpression fruit, and increased activities of SOD and CAT were observed in FaMAPK10 overexpression fruit. In addition, Botrytis cinerea treatment showed that overexpression of FaMAPK5 conferred retarded disease symptom development and enhanced fruit disease resistance. Our research revealed that FaMAPK5 and FaMAPK10 might participate in ABA-mediated H2O2 signaling in regulating strawberry fruit ripening and resistance.


Assuntos
Fragaria , Antioxidantes , Botrytis , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Nat Commun ; 9(1): 818, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483502

RESUMO

Hydrogenation is an effective way to tune the property of metal oxides. It can conventionally be performed by doping hydrogen into solid materials with noble-metal catalysis, high-temperature/pressure annealing treatment, or high-energy proton implantation in vacuum condition. Acid solution naturally provides a rich proton source, but it should cause corrosion rather than hydrogenation to metal oxides. Here we report a facile approach to hydrogenate monoclinic vanadium dioxide (VO2) in acid solution at ambient condition by placing a small piece of low workfunction metal (Al, Cu, Ag, Zn, or Fe) on VO2 surface. It is found that the attachment of a tiny metal particle (~1.0 mm) can lead to the complete hydrogenation of an entire wafer-size VO2 (>2 inch). Moreover, with the right choice of the metal a two-step insulator-metal-insulator phase modulation can even be achieved. An electron-proton co-doping mechanism has been proposed and verified by the first-principles calculations.

9.
Sci Rep ; 6: 23119, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975328

RESUMO

Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA