Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1430571, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131156

RESUMO

Background: Intermediate-stage (BCLC-B) hepatocellular carcinoma (HCC) beyond the up-to-11 criteria represent a significant therapeutic challenge due to high and heterogeneous tumor burden. This study evaluated the effectiveness and safety of transarterial chemoembolization (TACE) in combination with lenvatinib and tislelizumab for these patients. Methods: In this retrospective cohort study, patients with unresectable intermediate-stage HCC beyond the up-to-11 criteria were enrolled and divided into TACE monotherapy (T), TACE combined with lenvatinib (TL), or TACE plus lenvatinib and tislelizumab (TLT) group based on the first-line treatment, respectively. The primary endpoint was overall survival (OS). The secondary outcomes included progression-free survival (PFS), tumor response according to RESIST1.1 and modified RECIST, and adverse events (AEs). Results: There were 38, 45, and 66 patients in the T, TL, and TLT groups, respectively. The TLT group exhibited significantly higher ORR and DCR than the other two groups, as assessed by either mRECIST or RECIST 1.1 (all P<0.05). Median PFS and OS were significantly longer in the TLT group compared with the T group (PFS: 8.5 vs. 4.4 months; OS: 31.5 vs. 18.5 months; all P<0.001) and TL group (PFS: 8.5 vs. 5.5 months; OS: 31.5 vs. 20.5 months; all P<0.05). The incidence of TRAEs was slightly higher in the TLT and TL groups than in the T group, while all the toxicities were tolerable. No treatment-related death occurred in all groups. Conclusions: TACE combined with lenvatinib and tislelizumab significantly improved the survival benefit compared with TACE monotherapy and TACE plus lenvatinib in patients with intermediate-stage HCC beyond the up-to-11 criteria, with an acceptable safety profile.


Assuntos
Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Compostos de Fenilureia , Quinolinas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/tratamento farmacológico , Quinolinas/uso terapêutico , Quinolinas/administração & dosagem , Quinolinas/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Quimioembolização Terapêutica/métodos , Compostos de Fenilureia/uso terapêutico , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/efeitos adversos , Estudos Retrospectivos , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Adulto , Estadiamento de Neoplasias , Resultado do Tratamento
2.
Artigo em Inglês | MEDLINE | ID: mdl-39115112

RESUMO

We demonstrate that the ß-polymorph of zinc dicyanamide, Zn[N(CN)2]2, can be efficiently used as a negative electrode material for lithium-ion batteries. Zn[N(CN)2]2 exhibits an unconventional increased capacity upon cycling with a maximum capacity of about 650 mAh·g-1 after 250 cycles at 0.5C, an increase of almost 250%, and then maintaining a large reversible capacity of more than 600 mAh·g-1 for 150 cycles. Such an increased capacity is primarily attributed to the increased level of activity in the conversion reaction. A combination of conversion-type and alloy-type mechanisms is revealed in this anode material via advanced characterization studies and theoretical calculations. This mechanism, observed here for the first time in transition-metal dicyanamides, is probably responsible for the outstanding electrochemical performance. We believe that this study guides the development of new high-capacity anode materials.

3.
Adv Sci (Weinh) ; : e2404701, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940403

RESUMO

The development of the electric vehicle industry has spurred demand for secondary batteries capable of rapid-charging and slow-discharging. Among them, sodium-ion batteries (SIBs) with layered oxide as the cathode exhibit competitive advantages due to their comprehensive electrochemical performance. However, to meet the requirements of rapid-charging and slow-discharging scenarios, it is necessary to further enhance the rate performance of the cathode material to achieve symmetrical capacity at different rates. Simultaneously, minimizing lattice strain during asymmetric electrochemical processes is also significant in alleviating strain accumulation. In this study, the ordered distribution of transition metal layers and the diffusion pathway of sodium ions are optimized through targeted K-doping of sodium layers, leading to a reduction of the diffusion barrier and endowment of prominent rate performance. At a 20C rate, the capacity of the cathode can reach 94% of that at a 0.1C rate. Additionally, the rivet effect of the sodium layers resulted in a global volume strain of only 0.03% for the modified cathode during charging at a 10C rate and discharging at a 1C rate. In summary, high-performance SIBs, with promising prospects for rapid-charging and slow-discharging capability, are obtained through the regulation of sodium layers, opening up new avenues for commercial applications.

4.
Adv Mater ; 36(32): e2404640, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38775475

RESUMO

Cathode materials of sodium-based batteries with high specific capacity and fast charge-discharge mode, as well as ultralong reversible cycles at wide applied temperatures, are essential for future development of advanced energy storage system. Developing transition metal selenides with intercalation features provides a new strategy for realizing the above cathode materials. Herein, this work reports a storage mechanism of sodium ion in hexagonal CuSe (h-CuSe) based on the density functional theory (DFT) guidance. This work reveals that the two-dimensional ion intercalation triggers localized redox reaction in the h-CuSe bulk phase, termed intercalation-induced localized conversion (ILC) mechanism, to stabilize the sodium storage structure by forming localized Cu7Se4 transition phase and adjusting the near-edge coordination state of the Cu sites to achieve high reversible capacity and ultra-long cycling life, while allowing rapid charge-discharge cycling over a wide temperature range.

5.
Langmuir ; 40(17): 9255-9264, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38630628

RESUMO

The solid-state lithium sulfur battery (SSLSB) is an attractive next-generation energy storage system by reason of its remarkably high energy density and safety. However, the SSLSB still faces critical challenges, such as sluggish reaction kinetics, mismatched interface, and undesirable reversible capacity. Herein, a high-performance SSLSB is reported using sulfurized polyacrylonitrile with rich selenium-doped sulfur (Se/S-S@pPAN) as a cathode and poly(ethylene oxide)/Li7La3Zr1.4Ta0.6O12 (PEO-LLZTO) as an electrolyte. The sulfur content of the cathode up to 60.9 wt % can be achieved by dispersing selenium sulfide (SeSx) species in the sulfurized polyacrylonitrile (S@pPAN) skeleton at a molecular level. Selenium as a eutectic accelerator can be uniformly distributed in the composite through the Se-S bond and can accelerate the reaction kinetics. The PEO-LLZTO hybrid solid-state electrolyte (SSE) displays an attractive electrochemical performance and provides an intimate contact with electrodes. At 60 °C, Se/S-S@pPAN delivers an impressive discharge capacity of 1042 mAh g-1 at 0.1C and 445 mAh g-1 at 1C. Additionally, the LiFePO4 cathodes combined with PEO-LLZTO deliver a high reversible capacity (158.9 mAh g-1, 1C) and an ultralong lifespan (a capacity retention of 80%, 1000 cycles) at 1C. The synergetic design of the high-performance sulfur cathode and the organic/inorganic hybrid electrolyte is crucial for enabling the high-performance SSLSB.

6.
Small ; 20(30): e2312011, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431933

RESUMO

Recently, coupling the conventional low Pt-group-metal (low-PGM, LP) and emerging PGM-free (PF) moiety to form a composite LP/PF catalyst is proposed to be an advanced strategy to improve the intrinsic activity and stability of oxygen reduction reaction (ORR) catalysts. Milestones in terms of ORR mass activity are created by this type of catalyst. However, the specific synergy between LP and PF moieties has not been well elucidated. Herein, two model catalysts are synthesized, i.e., atomically dispersed Co/N/C supporting Pt single atoms (Co/N/C@Pt-SAs) and PtCo nanoparticles (Co/N/C@PtCo-NPs). Interestingly, the Co/N/C@PtCo-NPs catalyst presents higher ORR mass activity prior to Co/N/C@Pt-SAs. This is theoretically due to the dual "built-in electric field" in Co/N/C@PtCo-NPs: one electric field with a direction from Pt to Co in NPs and another from Pt to Co/N/C; that is, Pt gains higher electron density in Co/N/C@PtCo-NPs than that in Co/N/C@Pt-SAs, thus forming an asymmetric electron cloud, and regulating the adsorption and activation of oxygen-containing species. In addition, the existence of Co significantly decreases the average valence state of PtCo NPs, indicating a stronger affinity between PtCo NPs and Co/N/C substrate, to account for the enhanced stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA