RESUMO
OBJECTIVE: Remimazolam, a novel benzodiazepine, is widely used as an anesthetic in endoscopic procedures; however, its effects on cognitive function remain unclear, limiting its broader application in general anaesthesia. Neuroinflammation is a well-established key factor in the etiology and progression of cognitive dysfunction, including conditions such as Alzheimer's disease, Parkinson's disease, postoperative delirium, and postoperative cognitive dysfunction. Preclinical studies have demonstrated that remimazolam exerts anti-inflammatory and neuroprotective effects, and clinical reports indicate a reduced incidence of postoperative delirium in patients treated with remimazolam. Nevertheless, whether remimazolam improves cognitive function through its anti-inflammatory properties remains uncertain. This study aimed to investigate the neuroprotective effects of remimazolam and its underlying mechanism in a lipopolysaccharide (LPS)-induced model of neuroinflammation, neuronal injury, and cognitive dysfunction METHODS: C57BL/6â¯J male mice were administered LPS intraperitoneally to establish a model of neuroinflammation-induced cognitive impairment. A subset of mice received remimazolam via intraperitoneal injection 30â¯minutes prior to LPS administration. Cognitive performance was evaluated using behavioural tests, including the Morris Water Maze (MWM), Novel Object Recognition (NOR) test, and Open Field Test (OFT). Hippocampal tissues were analyzed by haematoxylin-eosin (HE) staining to assess structural changes. Inflammatory markers, including Interleukin (IL)-6, IL-1ß, and tumor necrosis factor-α, were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time quantitative PCR. Immunofluorescence was used to detect translocator protein (TSPO) and markers of microglia activation (IBA-1, CD16/32, and CD206). RESULTS: (1) Remimazolam reversed LPS-induced cognitive deficits, as evidenced by shorter spatial exploration latency and increased platform crossings in the MWM, and an elevated recognition index in the NOR test. (2) Remimazolam improved hippocampal morphology, reducing LPS-induced neuronal damage. (3) Remimazolam significantly decreased levels of hippocampal inflammatory cytokines, inhibited microglial activation, promoted M2-type microglia polarization, and increased TSPO expression. CONCLUSION: Remimazolam demonstrated neuroprotective and anti-neuroinflammatory effects in a mouse model of LPS-induced cognitive impairment. These effects are likely mediated through the regulation of TSPO, which inhibits microglial activation and promotes the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype.
Assuntos
Benzodiazepinas , Disfunção Cognitiva , Modelos Animais de Doenças , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Animais , Lipopolissacarídeos/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Benzodiazepinas/farmacologia , Benzodiazepinas/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Microglia/efeitos dos fármacos , Microglia/metabolismo , Citocinas/metabolismo , Comportamento Animal/efeitos dos fármacosRESUMO
Polyetheretherketone (PEEK) has been broadly used in orthopedic implant devices. Nevertheless, the bioinert tended to cause implant loosening and bacterial infection in orthopedic and trauma surgery. In this study, a drug-laden chitosan coating (CS) was constructed and deposited on the porous surface of PEEK (CG-SPEEK) internal fixation plate for multi-functionalization. The physical characterizations of CG-SPEEK were further investigated in the morphology, hydrophilicity, surface energy, roughness, drug release and mechanical properties. CG-SPEEK exhibited excellent antibacterial capabilities in both Staphylococcus aureus and Escherichia coli compared to other groups. Besides, BMSCs cells showed better biocompatibility and certain osteogenic activity on composite coating in vitro. Furthermore, CG-SPEEK promoted bone regeneration to some extent and express certain effect against infections in vivo study. Overall, combining personalized design and modification is an innovative strategy to realized functionalization, which may have a strong potential in clinical application.
RESUMO
GPR119 agonists are being developed to safeguard the function of pancreatic ß-cells, especially in the context of non-alcoholic fatty pancreas disease (NAFPD) that is closely associated with ß-cell dysfunction. This study aims to employ a drug repurposing strategy to screen GPR119 agonists and explore their potential molecular mechanisms for enhancing ß-cell function in the context of NAFPD. MIN6 cells were stimulated with palmitic acid (PA), and a NAFPD model was established in GPR119-/- mice fed with a high-fat diet (HFD). Terazosin, identified through screening, was utilized to assess its impact on enhancing ß-cell function via the MST1-Foxo3a pathway and mitophagy. Terazosin selectively activated GPR119, leading to increased cAMP and ATP synthesis, consequently enhancing insulin secretion. Terazosin administration improved high blood glucose, obesity, and impaired pancreatic ß-cell function in NAFPD mice. It inhibited the upregulation of MST1-Foxo3a expression in pancreatic tissue and enhanced damaged mitophagy clearance, restoring autophagic flux, and improving mitochondrial quantity and structure in ß-cells. Nevertheless, GPR119 deficiency negated the positive impact of terazosin on pancreatic ß-cell function in NAFPD mice and abolished its inhibitory effect on the MST1-Foxo3a pathway. Terazosin activates GPR119 on the surface of pancreatic ß-cells, enhancing mitophagy and alleviating ß-cell dysfunction in the context of NAFPD by suppressing the MST1-Foxo3a signalling pathway. Terazosin could be considered a priority treatment for patients with concomitant NAFPD and hypertension.
RESUMO
Background: This study aimed to explore the distribution of intestinal and pharyngeal microbiota on the first day of life in preterm infants and compare the composition of microbiota in infants delivered by cesarean section or vaginally. Methods: This study included 44 late preterm infants with a gestational age of 34-36 + 6 weeks. Stool and throat swab samples were collected from the preterm infants on the first day of life. The infants were divided into cesarean section and vaginal delivery groups. Illumina NovaSeq high-throughput sequencing technology was used to sequence the V3-V4 hypervariable region of the 16S rRNA gene of all bacteria in the samples. Venn diagram was used to identify shared operational taxonomic units (OTUs) in the intestines and pharynges. Microbial analysis was conducted at the phylum and genus levels, and α and ß diversity comparisons were performed. Results: (1) Gestational age may have significantly affected the microbial colonization of the intestines and pharynges of preterm infants on the first day after birth (p ≤ 0.001). (2) More OTUs were detected in the pharynx than in the intestines, both have a total of 819 shared OTUs. Proteobacteria, Firmicutes, and Bacteroidota were the dominant phyla in both. At the genus level, Streptococcus had a lower relative abundance in stool samples (0.5%) compared to throat samples (0.5% vs. 22.2%, p = 0.003). 3) The relative abundance of Streptococcus in pharyngeal samples was 26.2% in the cesarean section group much higher than the 3.8% in the vaginal delivery group (p = 0.01). Conclusion: The early postnatal period is a critical time for the establishment of an infant's microbiota. Gestational age at birth may influence microbial colonization, while birth weight, gender, and mode of delivery do not. The intestinal and pharyngeal microbiota composition of preterm infants on the first day after birth showed high similarity, but larger samples are needed for further validation.
RESUMO
BACKGROUND: Previous research revealed differences in cerebellar white matter integrity by disease stages, indicating a compensatory role in Parkinson's disease (PD). However, the temporal evolution of cerebellar white matter microstructure in patients with PD (PwPD) remains unclear. OBJECTIVE: To unravel temporal evolution of cerebellar white matter and its dopaminergic correlates in PD. METHODS: We recruited 124 PwPD from the PPMI study. The participants were divided into two subsets: Subset 1 (n = 41) had three MRI scans (baseline, 2 years, and 4 years), and Subset 2 (n = 106) had at least two MRI scans at baseline, 1 year, and/or 2 years. Free water-corrected diffusion metrics were used to measure the microstructural integrity in cerebellar peduncles (CP), the main white matter tracts connecting to and from the cerebellum. The ACAPULCO processing pipeline was used to assess cerebellar lobules volumes. Linear mixed-effect models were used to study longitudinal changes. We also examined the relationships between microstructural integrity in CP, striatal dopamine transporter specific binding ratio (SBR), and clinical symptoms. RESULTS: Microstructural changes in CP showed a non-linear pattern in PwPD. Free water-corrected fractional anisotropy (FAt) increased in the first two years but declined from 2 to 4 years, while free water-corrected mean diffusivity exhibited the opposite trend. The initial increased FAt in CP correlated with cerebellar regional volume atrophy, striatal dopaminergic SBR decline, and worsening clinical symptoms, but this correlation varied across disease stages. CONCLUSIONS: Our findings suggest a non-linear evolution of microstructural integrity in CP throughout the course of PD, indicating the adaptive structural reorganization of the cerebellum simultaneously with progressive striatal dopaminergic degeneration in PD.
RESUMO
Levodopa (L-dopa) therapy is the most effective pharmacological treatment for motor symptoms of Parkinson's disease (PD). However, its effect on brain functional network dynamics is still unclear. Here, we recruited 26 PD patients and 24 healthy controls, and acquired their resting-state functional MRI data before (PD-OFF) and after (PD-ON) receiving 400 mg L-dopa. Using the independent component analysis and the sliding-window approach, we estimated the dynamic functional connectivity (dFC) and examined the effect of L-dopa on the temporal properties of dFC states, the variability of dFC and functional network topological organization. We found that PD-ON showed decreased mean dwell time in sparsely connected State 2 than PD-OFF, the transformation of the dFC state is more frequent and the variability of dFC was decreased within the auditory network and sensorimotor network in PD-ON. Our findings provide new insights to understand the dynamic neural activity induced by L-dopa therapy in PD patients.
RESUMO
KEY MESSAGE: The Arabidopsis RNA helicase LOS4 plays a key role in regulating pre-mRNA splicing of the genes EIN2, CTR1, and ERS2 in ethylene signaling pathway. The plant hormone ethylene plays diverse roles in plant growth, development, and responses to stress. Ethylene is perceived by the membrane-bound ethylene receptors complex, and then triggers downstream components, such as EIN2, to initiate signal transduction into the nucleus, leading to the activation of ethylene-responsive genes. Over the past decades, substantial information has been accumulated regarding gene cloning, protein-protein interactions, and downstream gene expressions in the ethylene pathway. However, our understanding of mRNA post-transcriptional processing and modification of key genes in the ethylene signaling pathway remains limited. This study aims to provide evidence demonstrating the involvement of the Arabidopsis RNA helicase LOS4 in pre-mRNA splicing of the genes EIN2, CTR1, and ERS2 in ethylene signaling pathway. Various genetic approaches including RNAi gene silencing, CRISPR-Cas9 gene editing, and amino acid mutations were employed in this study. When LOS4 was silenced or knocked down, the ethylene sensitivity of etiolated seedlings was significantly enhanced. Further investigation revealed errors in the EIN2 pre-mRNA splicing when LOS4 was knocked down. In addition, aberrant pre-mRNA splicing was observed in the ERS2 and CTR1 genes in the pathway. Biochemical assays indicated that the los4-2 (E94K) mutant protein exhibited increased ATP binding and enhanced ATP hydrolytic activity. Conversely, the los4-1 (G364R) mutant had reduced substrate RNA binding and lower ATP binding activities. These findings significantly advanced our comprehension of the regulatory functions and molecular mechanisms of RNA helicase in ethylene signaling.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Etilenos , Regulação da Expressão Gênica de Plantas , Splicing de RNA , Transdução de Sinais , Etilenos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transdução de Sinais/genética , Splicing de RNA/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Helicases/metabolismo , RNA Helicases/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas QuinasesRESUMO
Smart tags are used for monitoring the freshness of foods. However, they often lack significant color changes, and their accuracy needs to be improved. In this study, a poplar veneer with a natural pore structure was selected as a matrix to prepare a smart tag with high pH sensitivity for tracking the freshness of strawberries. The delignified veneer was modified using 2,3-epoxypropyltrimethylammonium chloride (EPTAC) to be given positive charges to adsorb bromothymol blue (BTB) through electrostatic interactions. The adsorption capacity of the veneer reached 7.0 mg/g at 50 °C for 4 h, and the veneer showed an obvious blue color. The smart tags exhibited distinct color changes at different pHs and showed quick color changes in response to acetic acid. As the freshness of strawberries decreased, the color of the smart tags changed from blue to yellow-green, which indicated that the accuracy was high. In this study, an effective method was fabricated to prepare a highly sensitive tag, promoting popular application to ensure food quality.
RESUMO
RATIONALE: Programmed cell death (PD) -1 inhibitors has significantly improved the prognosis of cancer patients by enhancing antitumor immune responses. However, PD-1 inhibitors are associated with immune-related adverse events, some of which are rare and potentially life-threatening. Thus far, elevated creatine kinase (CK) and creatinine caused by a novel PD-1 inhibitor (sintilimab)-induced hypothyroidism has not yet been reported. PATIENT CONCERNS: A 63-year-old male patient with esophageal cancer who developed hypothyroidism accompanied by unexplained increases in CK and creatinine after sintilimab treatment. DIAGNOSIS: Since the increases in CK and creatinine paralleled the decrease in thyroxine, after excluding other potential conditions, we speculated that the muscular and renal dysfunction might be caused by sintilimab-induced hypothyroidism. INTERVENTIONS AND OUTCOMES: As the patient's thyroid function improved with levothyroxine replacement therapy, the levels of CK and creatinine concomitantly returned to normal. CONCLUSION AND LESSONS: The elevated CK and creatinine levels in this patient were caused by sintilimab-induced hypothyroidism. Our case highlights the importance of keeping PD-1 induced hypothyroidism in mind when patients present with unexplained increased levels of CK and creatinine. Hypothyroidism-related muscular and renal dysfunctions, which can be restored with thyroid hormone replacement, need to be identified early and treated promptly so that unnecessary examinations and treatments can be avoided in these patients.
Assuntos
Anticorpos Monoclonais Humanizados , Creatina Quinase , Creatinina , Hipotireoidismo , Humanos , Masculino , Pessoa de Meia-Idade , Hipotireoidismo/induzido quimicamente , Creatina Quinase/sangue , Creatinina/sangue , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Tiroxina/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversosRESUMO
Poplar trees are significant for both economic and ecological purposes, and the fall webworm (Hyphantria cunea Drury) poses a major threat to their plantation in China. The preliminary resistance assessment in the previous research indicated that there were differences in resistance to the insect among these varieties, with '2KEN8' being more resistant and 'Nankang' being more susceptible. The present study analyzed the dynamic changes in the defensive enzymes and metabolic profiles of '2KEN8' and 'Nankang' at 24 hours post-infestation (hpi), 48 hpi, and 96 hpi. The results demonstrated that at the same time points, compared to susceptible 'Nankang', the leaf consumption by H. cunea in '2KEN8' was smaller, and the larval weight gain was slower, exhibiting clear resistance to the insect. Biochemical analysis revealed that the increased activity of the defensive enzymes in '2KEN8' triggered by the feeding of H. cunea was significantly higher than that of 'Nankang'. Metabolomics analysis indicated that '2KEN8' initiated an earlier and more intense reprogramming of the metabolic profile post-infestation. In the early stages of infestation, the differential metabolites induced in '2KEN8' primarily included phenolic compounds, flavonoids, and unsaturated fatty acids, which are related to the biosynthesis pathways of phenylpropanoids, flavonoids, unsaturated fatty acids, and jasmonates. The present study is helpful for identifying the metabolic biomarkers for inductive resistance to H. cunea and lays a foundation for the further elucidation of the chemical resistance mechanism of poplar trees against this insect.
RESUMO
Objective: Patients with rheumatoid arthritis (RA) have an increased risk of developing pulp and periapical disease (PAP), but the causal relationship and shared genetic factors between these conditions have not been explored. This study aimed to investigate the bidirectional causal relationship between RA and PAP and to analyze shared genes and pathogenic pathways. Methods: We utilized GWAS data from the IEU Open GWAS Project and employed five Mendelian randomization methods (MR Egger, weighted median, inverse variance weighted, simple mode, and weighted mode) to investigate the bidirectional causal relationship between RA and PAP. Transcriptome data for RA and irreversible pulpitis (IRP) were obtained from the GEO database. Hub genes were identified through differential analysis, CytoHubba, machine learning (ML), and other methods. The immune infiltration of both diseases was analyzed using the ssGSEA method. Finally, we constructed a regulatory network for miRNAs, transcription factors, chemicals, diseases, and RNA-binding proteins based on the identified hub genes. Results: RA was significantly associated with an increased risk of PAP (OR = 1.1284, 95% CI 1.0674-1.1929, p < 0.001). However, there was insufficient evidence to support the hypothesis that PAP increased the risk of RA. Integrating datasets and differential analysis identified 84 shared genes primarily involved in immune and inflammatory pathways, including the IL-17 signaling pathway, Th17 cell differentiation, and TNF signaling pathway. Using CytoHubba and three ML methods, we identified three hub genes (HLA-DRA, ITGAX, and PTPRC) that are significantly correlated and valuable for diagnosing RA and IRP. We then constructed a comprehensive regulatory network using the miRDB, miRWalk, ChipBase, hTFtarget, CTD, MalaCards, DisGeNET, and ENCORI databases. Conclusion: RA may increase the risk of PAP. The three key genes, HLA-DRA, ITGAX, and PTPRC, have significant diagnostic value for both RA and IRP.
Assuntos
Artrite Reumatoide , Redes Reguladoras de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Transcriptoma , Humanos , Artrite Reumatoide/genética , Pulpite/genética , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único , Análise da Randomização Mendeliana , Bases de Dados GenéticasRESUMO
Bacillus anthracis is a Gram-positive bacterium that can cause acute infection and anthracnose, which is a serious concern for human health. Determining Bacillus anthracis through its spore biomarker dipicolinic acid (DPA) is crucial, and there is a strong need for a method that is rapid, sensitive, and selective. Here, we created Eu(III)-coordination polymers (Eu-CPs) with surfaces that have abundant carboxyl and hydroxyl groups. This was achieved by using citric acid and europium nitrate hexahydrate as precursors in a straightforward one-pot hydrothermal process. These Eu-CPs were then successfully utilized for highly sensitive DPA determination. The fluorescence (FL) emission of Eu-CPs, which is typically weak due to the coordination of Eu(III) with water molecules, was significantly enhanced in the presence of DPA. This enhancement is attributed to the competitive binding between DPA's carboxyl or hydroxyl groups and water molecules. As a result, the absorbed energy of DPA, when excited by 280 nm ultraviolet light, is transferred to Eu-CPs through an antenna effect. This leads to the emission of the characteristic red fluorescence of Eu3+ at 618 nm. A strong linear relationship was observed between the enhanced FL intensity and DPA concentration in the range of 0.5-80 µM. This relationship allowed for a limit of detection (LOD) of 15.23 nM. Furthermore, the Eu-CPs we constructed can effectively monitor the release of DPA from Bacillus subtilis spores, thereby further demonstrating the potential significance of this strategy in the monitoring and management of anthrax risk. This highlights the novelty of this approach in practical applications, provides a valuable determination technique for Bacillus anthracis, and offers insights into the development cycle of microorganisms.
Assuntos
Bacillus anthracis , Európio , Ácidos Picolínicos , Polímeros , Ácidos Picolínicos/química , Európio/química , Polímeros/química , Espectrometria de Fluorescência/métodos , Complexos de Coordenação/químicaRESUMO
The aim of this study was to elucidate the therapeutic effect of simvastatin on experimental autoimmune encephalomyelitis (EAE) by regulating the balance between Th17 and Treg cells in mice. C57BL/6 mice were randomly divided into four groups: normal group, EAE group, simvastatin (2 and 10 mg/kg) group, and AG490 group (with AG490 serving as the positive control). Neurological function scores of mice were assessed daily. The four groups received treatments of normal saline, normal saline, and simvastatin (2 and 10 mg/kg), respectively. In the AG490 group, mice were injected intraperitoneally with AG490 (1 mg) every other day, and treatment was halted after 3 weeks. The spinal cord was stained with hematoxylin and eosin (H&E), and immunohistochemical staining for retinoic acid receptor-related orphan receptor γ(RORγ) and Foxp3 (Foxp3) was performed. Spleen samples were taken for Th17 and Treg analysis using flow cytometry. The levels of interleukin-17 and transforming growth factor-ß (TGF-ß) were detected using enzyme-linked immunosorbent assay (ELISA). In the simvastatin and AG490 groups, recovery from neurological impairment was earlier compared to the EAE group, and the symptoms were notably improved. Both simvastatin and AG490 reduced focal inflammation, decreased RORγ-positive cell infiltration, and significantly increased the number of FOXP3-positive cells. The number of Th17 cells and the level of IL-17 in the spleen were decreased in the simvastatin and AG490 treatment groups, while the number of Treg cells and TGF-ß levels were significantly increased across all treatment groups. Simvastatin exhibits anti-inflammatory and immunomodulatory effects, potentially alleviating symptoms of neurological dysfunction of EAE. Regulating the balance between Th17 and Treg may represent a therapeutic mechanism for simvastatin in treating EAE.
Assuntos
Encefalomielite Autoimune Experimental , Camundongos Endogâmicos C57BL , Sinvastatina , Linfócitos T Reguladores , Células Th17 , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Células Th17/imunologia , Células Th17/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Sinvastatina/farmacologia , Sinvastatina/administração & dosagem , Camundongos , Feminino , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Interleucina-17/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Medula Espinal/imunologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Humanos , Fator de Crescimento Transformador beta/metabolismo , Modelos Animais de DoençasRESUMO
BACKGROUND: Obesity-related hypertension is a major cardiovascular risk factor. Apigenin, a natural flavonoid in celery, induces vascular dilation via endothelial transient receptor potential channel vanilla 4 (TRPV4) channels. This study aimed to explore apigenin's potential to alleviate obesity-related hypertension in mice and its underlying mechanisms. METHODS: The C57BL/6 and TRPV4 knockout mice were fed a high-fat diet and subjected to dietary intervention with apigenin. Body weight and tail blood pressure of the mice were measured during the feeding. Vascular reactivity was assessed through a DMT wire myograph systems in vitro. The distribution and expression of adiponectin and pro-inflammatory markers in brown fat were detected. Injecting adeno-associated eight (AAV8) viruses into brown adipose tissue (BAT) to determine whether adiponectin is indispensable for the therapeutic effect of apigenin. Palmitic acid (PA) was used in mouse brown adipocytes to examine the detailed mechanisms regulating adiponectin secretion. RESULTS: Apigenin improved vasodilation and reduced blood pressure in obese mice, effects partly blocked in TRPV4 knockout. It also reduced weight gain independently of TRPV4. Apigenin increased adiponectin secretion from BAT; knockdown of adiponectin weakened its benefits. Apigenin downregulated Cluster of differentiation 38 (CD38), restoring Nicotinamide adenine dinucleotide+ (NAD+) levels and activating the NAD+/Sirtuin 1 (SIRT1) pathway, enhancing adiponectin expression. CONCLUSIONS: Our study indicates that dietary apigenin is suitable as a nonpharmaceutical intervention for obesity-related hypertension. In mechanism, in addition to improving vascular relaxation through the activation of endothelial TRPV4 channels, apigenin also directly alleviated adipose inflammation and increased adiponectin levels by inhibiting CD38.
Assuntos
Adiponectina , Apigenina , Dieta Hiperlipídica , Hipertensão , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade , Canais de Cátion TRPV , Vasodilatação , Animais , Adiponectina/metabolismo , Adiponectina/genética , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Obesidade/patologia , Apigenina/farmacologia , Camundongos , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Vasodilatação/efeitos dos fármacos , Masculino , Dieta Hiperlipídica/efeitos adversos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacosRESUMO
Intestinal microbiota imbalance plays an important role in the progression of obstructive sleep apnea (OSA), and is considered to be the main mediator that triggers metabolic comorbidities. Here, we analyzed the changes in intestinal microbiota in patients with different severities of OSA based on apnea hypopnea index (AHI) classification, and explored the role of intestinal microbiota in the severity of OSA. This study included 19 healthy volunteers and 45 patients with OSA [5 ≤ AHI < 15 (n = 14), 15 ≤ AHI < 30 (n = 13), AHI ≥ 30 (n = 18)]. Relevant sleep monitoring data and medical history data were collected, and microbial composition was analyzed using 16S rRNA high-throughput sequencing technology. The diversity analysis of intestinal microbiota among different groups of people was conducted, including alpha diversity, beta diversity, species diversity, and marker species as well as differential functional metabolic pathway prediction analysis. With the increase of AHI classification, the alpha diversity in patients with OSA significantly decreased. The results revealed that the severity of OSA is associated with differences in the structure and composition of the intestinal microbiota. The abundance of bacteria producing short-chain fatty acids (such as Bacteroides, Ruminococcacea, and Faecalibacterium) in severe OSA is significantly reduced and a higher ratio of Firmicutes to Bacteroidetes. Random forest analysis showed that Parabacteroides was a biomarker genus with important discriminatory significance. The differential metabolic pathway prediction function shows that the main function of maintaining intestinal microbiota homeostasis is biosynthetic function. Our results show that the differences in the composition of intestinal microbiota in patients with different severities of OSA are mainly related to short-chain fatty acid-producing bacteria. These changes may play a pathological role in OSA combined with metabolic comorbidities.
Assuntos
Microbioma Gastrointestinal , RNA Ribossômico 16S , Apneia Obstrutiva do Sono , Humanos , Microbioma Gastrointestinal/genética , Apneia Obstrutiva do Sono/microbiologia , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , RNA Ribossômico 16S/genética , Índice de Gravidade de Doença , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Casos e Controles , Fezes/microbiologiaRESUMO
With the use of advanced technology, metabolomics allows for a thorough examination of metabolites and other small molecules found in biological specimens, blood, and tissues. In recent years, metabolomics has been recognized that is closely related to the development of malignancies in the hematological system. Alterations in metabolomic pathways and networks are important in the pathogenesis of hematologic malignancies and can also provide a theoretical basis for early diagnosis, efficacy evaluation, accurate staging, and individualized targeted therapy. In this review, we summarize the progress of metabolomics, including glucose metabolism, amino acid metabolism, and lipid metabolism in lymphoma, myeloma, and leukemia through specific mechanisms and pathways. The research of metabolomics gives a new insight and provides therapeutic targets for the treatment of patients with hematologic malignancies.
Assuntos
Neoplasias Hematológicas , Metabolômica , Humanos , Metabolômica/métodos , Neoplasias Hematológicas/metabolismo , Metabolismo dos Lipídeos , Aminoácidos/metabolismo , Glucose/metabolismoRESUMO
Background: Numerous studies examining 24-h movement behaviours have been exponentially published globally. However, no comprehensive reviews summarized and synthesized the evidence on the Chinese population. This review aimed to map the most recent research state and fill the gaps related to 24-h movement behaviours in the Chinese population. Methods: Five electronic databases (Web of Science, PubMed, Scopus, EBSCOhost, and CNKI (Chinese database)) were searched from their inceptions through October 2023. Quantitative studies published in English and/or Chinese were included if they were related to 24-h movement behaviours in the Chinese population. Results: From 9431 documents screened, 53 met the inclusion criteria. All the included studies were published between 2019 and 2023, showing a notable increasing trend over the years. Most studies used cross-sectional designs (96.2 %) and self-reported measures (56.6 %). Nearly all the studies targeted general healthy population (96.2 %), especially children and adolescents (64.2 %). The main three research topics observed were health outcomes (81.1 %), prevalence (66.0 %), and correlates (15.1 %) of 24-h movement behaviours. Conclusion: 24-h movement behaviours in the Chinese population has been an increasingly important research topic in the literature, with predominant focus on children and adolescents (study population), self-report measure (measurement), cross-sectional design (study design), guidelines adherence (study topic), and health outcomes examination (study topic). These findings delineate a research landscape in the Chinese population, and highlight the research gaps needed to be addressed. Future studies are suggested to target these research gaps, expanding evidence base for the Chinese populations. For instance, more studies using device-based measures, longitudinal or interventional designs, as well as qualitative and mixed-methods approaches are required.
RESUMO
BACKGROUND: The establishment and validation of methods for testing biological samples are crucial steps in pharmacokinetic studies. Currently, several methodological reports have been published on the detection of rapamycin plasma concentrations. OBJECTIVE: The objective of this study was to explore an effective method for detecting rapamycin in rat whole blood biological samples. METHOD: In this study, we designed a rapid, sensitive, and specific liquid chromatograph-mass spectrometer/mass spectrometer (LC-MS/MS) methodology for detecting rapamycin in rat whole blood biological samples. We comprehensively validated the specificity, linear range, lower limit of quantification (LLOQ), precision, accuracy, recovery, and stability of this method. RESULTS: The findings of this study confirmed the successful implementation of LC-MS/MS for the detection of rapamycin, demonstrating its sensitivity, specificity, and reliability in quantitative analysis. This method ensures the accuracy and reliability of subsequent study data through our validated LC-MS/MS approach. CONCLUSION: The results demonstrated the successful implementation of an LC-MS/MS method for sensitive, specific, and reliable quantitative analysis of rapamycin in rat whole blood samples. This method ensures the accuracy and reliability of subsequent study data. SIGNIFICANCE: The importance of this study lies in the successful establishment of a rapid, sensitive, and specific LC-MS/MS method for detecting rapamycin concentration in rat whole blood, ensuring the accuracy and reliability of subsequent research data. This provides a crucial tool and foundation for further understanding the metabolism and pharmacological effects of rapamycin in vivo, aiding in the advancement of drug research and clinical applications in related fields.