Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2337677, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38578315

RESUMO

Previously, we reported a cohort of Japanese encephalitis (JE) patients with Guillain-Barré syndrome. However, the evidence linking Japanese encephalitis virus (JEV) infection and peripheral nerve injury (PNI) remains limited, especially the epidemiology, clinical presentation, diagnosis, treatment, and outcome significantly differ from traditional JE. We performed a retrospective and multicenter study of 1626 patients with JE recorded in the surveillance system of the Chinese Center for Disease Control and Prevention, spanning the years 2016-2020. Cases were classified into type 1 and type 2 JE based on whether the JE was combined with PNI or not. A comparative analysis was conducted on demographic characteristics, clinical manifestations, imaging findings, electromyography data, laboratory results, and treatment outcomes. Among 1626 laboratory confirmed JE patients, 230 (14%) were type 2 mainly located along the Yellow River in northwest China. In addition to fever, headache, and disturbance of consciousness, type 2 patients experienced acute flaccid paralysis of the limbs, as well as severe respiratory muscle paralysis. These patients presented a greater mean length of stay in hospital (children, 22 years [range, 1-34]; adults, 25 years [range, 0-183]) and intensive care unit (children, 16 years [range, 1-30]; adults, 17 years [range, 0-102]). The mortality rate was higher in type 2 patients (36/230 [16%]) compared to type 1 (67/1396 [5%]). The clinical classification of the diagnosis of JE may play a crucial role in developing a rational treatment strategy, thereby mitigating the severity of the disease and potentially reducing disability and mortality rates among patients.

2.
Heliyon ; 10(8): e29418, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638970

RESUMO

Background: With the aging population, the incidence of neurodegenerative diseases increases yearly, seriously impacting human health. Various journals have published studies on the pathogenesis of ferroptosis in neurodegenerative diseases. However, bibliometric analysis in this field is still lacking. The study aims to visually analyze global research trends in this field over the past decade. Methods: The articles and reviews regarding ferroptosis in neurodegenerative diseases were retrieved from the Web of Science on September 1, 2023. Citespace [version 6.2. R4 (64-bit)] and VOSviewer (version 1.6.18) were used to conduct the bibliometric and knowledge-map analysis. Results: In total, 370 studies were included in the paper and ranked by their citation frequency. Many articles on ferroptosis in neurodegenerative diseases have been published in the past decade. The country, institution, author, and journal with the highest publications were China, Guangzhou Medical University, Maher, Pamela, and Free Radical Biology And Medicine, respectively. The analysis of keyword co-occurrence indicated that research frontiers were molecular mechanisms of ferroptosis in neurodegenerative diseases, especially a few key pathways that triggered ferroptosis in these diseases, including lipid peroxidation signaling, iron metabolism, and GSH/GPX4 signaling. In addition, ferroptosis inhibitors such as liproxstatins and ferrostatins had protective effects in animal models of neurodegenerative diseases. Therefore, future attention should also be focused on therapeutic drugs that target ferroptosis. Conclusion: This study comprehensively analyzed the publications on ferroptosis in neurodegenerative diseases from a bibliometric perspective. Research on this topic is currently expanding at a rapid pace, and the China holds a leading position in this field by its scientific achievements and productivity. Moreover, the research frontiers were molecular mechanisms of ferroptosis in neurodegenerative diseases and developing targeted therapeutic drugs. In summary, our results showed an all-sided overview of the knowledge atlas and a valuable reference for the future research in this field.

3.
Eur J Pharmacol ; 973: 176600, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38643834

RESUMO

Multiple sclerosis is an autoimmune disease that causes inflammatory damage to the central nervous system. At present, the pathogenesis of the disease is unknown. There is a lack of few effective therapy medications available. Therefore, it is necessary to further explore the pathogenesis of this illness and develop potential therapeutic drugs. Dabrafenib is potential therapeutic medicine for nervous system disease. In this study, we preliminarily studied the possible mechanism of dabrafenib in the treatment of multiple sclerosis from the perspective of ferroptosis. First, we observed that dabrafenib significantly improved symptoms of gait abnormalities, limb weakness or paralysis, and down-regulated levels of spinal cord inflammation in an experimental autoimmune encephalitis (EAE) model. Meanwhile, we also observed that dabrafenib could inhibit the proteins of ferroptosis in spinal cord tissue of EAE mice by Western blot. The results of immunohistochemical analysis showed that the effect of dabrafenib on ferroptosis mainly occurred in microglia. Second, dabrafenib was demonstrated to be able to inhibit the S phase of the cell cycle, reduce ROS levels, and reinstate mitochondrial activity in the LPS-induced BV2 inflammatory cell model. Futhermore, we found that dabrafenib inhibits P-JAK2 and P-STAT3 activation by acting Axl receptor, which in turn prevents neurogenic inflammation in microglia. The co-stimulated BV2 cell model with LPS and Erastin also verified these findings. Ultimately, the Axl knockout mice used to construct the EAE model allowed for the confirmation that dabrafenib prevented ferroptosis in microglia by up-regulating Axl receptor, which reduced the inflammatory demyelination associated with EAE. In summary, our research demonstrates the advantages of dabrafenib in multiple sclerosis treatment, which can prevent ferroptosis in microglia in multiple sclerosis through up-regulating Axl receptor, thus halting the progression of multiple sclerosis.


Assuntos
Receptor Tirosina Quinase Axl , Encefalomielite Autoimune Experimental , Ferroptose , Imidazóis , Oximas , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Regulação para Cima , Animais , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/metabolismo , Ferroptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Camundongos , Oximas/farmacologia , Oximas/uso terapêutico , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Feminino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fator de Transcrição STAT3/metabolismo , Linhagem Celular , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Heliyon ; 10(5): e26173, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434405

RESUMO

Objective: To explore the current status and trends of disease-modifying therapies (DMTs) for multiple sclerosis through bibliometric and visual analyses of the related literature. Methods: Relevant literature from the Web of Science Core Collection from 2017 to 2022 was retrieved, and a bibliometric analysis was performed using CiteSpace 6.1. R2. Thesoftware was used to generate visual graphs of the author, institution, country, keyword co-occurrence, and literature co-citation network. Results: A total of 1719 manuscripts were retrieved, including 1397 original studies and 322 reviews. In the past five years, Patti F and the University of London were the authors and institutions generating the largest number of publications, respectively, and there was active collaboration between authors and institutions. The United States was the largest contributor to the relevant literature, and the high-frequency keywords in the field of multiple sclerosis disease-modifying therapies in the past five years mainly included multiple sclerosis, disease-modifying therapy, double-blind, disability, natalizumab, effectiveness, fingolimod, glatiramer acetate, and dimethyl fumarate. Conclusions: Current research hotspots and trends in DMTs in multiple sclerosis focus on the effectiveness of different DMTs drugs in treating patients with MS and how to optimise treatment strategies. In the context of the COVID-19 pandemic, the correlation between MS and COVID-19 infection and the method to manage and address the adverse effects of DMTs on multiple sclerosis patients is also future research trends.

5.
Mol Neurobiol ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441860

RESUMO

Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.

6.
Eur J Pharmacol ; 969: 176427, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428662

RESUMO

Acute ischemic stroke (AIS) is a leading cause of global incidence and mortality rates. Oxidative stress and inflammation are key factors in the pathogenesis of AIS neuroinjury. Therefore, it is necessary to develop drugs that target neuroinflammation and oxidative stress in AIS. The Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), primarily expressed on microglial cell membranes, plays a critical role in reducing inflammation and oxidative stress in AIS. In this study, we employed a high-throughput screening (HTS) strategy to evaluate 2625 compounds from the (Food and Drug Administration) FDA library in vitro to identify compounds that upregulate the TREM2 receptor on microglia. Through this screening, we identified Baicalin as a potential drug for AIS treatment. Baicalin, a flavonoid compound extracted and isolated from the root of Scutellaria baicalensis, demonstrated promising results. Next, we established an in vivo mouse model of cerebral ischemia-reperfusion injury (MCAO/R) and an in vitro microglia cell of oxygen-glucose deprivation reperfusion (OGD/R) to investigate the role of Baicalin in inflammation injury, oxidative stress, and neuronal apoptosis. Our results showed that baicalin effectively inhibited microglia activation, reactive oxygen species (ROS) production, and inflammatory responses in vitro. Additionally, baicalin suppressed neuronal cell apoptosis. In the in vivo experiments, baicalin not only improved neurological functional deficits and reduced infarct volume but also inhibited microglia activation and inflammatory responses. Overall, our findings demonstrate the efficacy of Baicalin in treating MCAO/R by upregulating TREM2 to reduce inflammatory responses and inhibit neuronal apoptosis.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Camundongos , Animais , AVC Isquêmico/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Inflamação/tratamento farmacológico , Isquemia Encefálica/metabolismo , Microglia , Infarto da Artéria Cerebral Média/metabolismo
7.
Heliyon ; 10(4): e26030, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420408

RESUMO

Curcumin is widely used as a traditional drug in Asia. Interestingly, curcumin and its metabolites have been demonstrated to influence the microbiota. However, the effect of curcumin on the gut microbiota in patients with myasthenia gravis (MG) remains unclear. This study aimed to investigate the effects of curcumin on the gut microbiota community, short-chain fatty acids (SCFAs) levels, intestinal permeability, and Th17/Treg balance in a Torpedo acetylcholine receptor (T-AChR)-induced MG mouse model. The results showed that curcumin significantly alleviated the clinical symptoms of MG mice induced by T-AChR. Curcumin modified the gut microbiota composition, increased microbial diversity, and, in particular, reduced endotoxin-producing Proteobacteria and Desulfovibrio levels in T-AChR-induced gut dysbiosis. Moreover, we found that curcumin significantly increased fecal butyrate levels in mice with T-AChR-induced gut dysbiosis. Butyrate levels increased in conjunction with the increase in butyrate-producing species such as Oscillospira, Akkermansia, and Allobaculum in the curcumin-treated group. In addition, curcumin repressed the increased levels of lipopolysaccharide (LPS), zonulin, and FD4 in plasma. It enhanced Occludin expression in the colons of MG mice induced with T-AChR, indicating dramatically alleviated gut permeability. Furthermore, curcumin treatment corrected T-AChR-induced imbalances in Th17/Treg cells. In summary, curcumin may protect mice against myasthenia gravis by modulating both the gut microbiota and SCFAs, improving gut permeability, and regulating the Th17/Treg balance. This study provides novel insights into curcumin's clinical value in MG therapy.

8.
Neuropeptides ; 104: 102412, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330680

RESUMO

Neuropeptide Y (NPY), an extensively distributed neurotransmitter within the central nervous system (CNS), was initially detected and isolated from the brain of a pig in 1982. By binding to its G protein-coupled receptors, NPY regulates immune responses and contributes to the pathogenesis of numerous inflammatory diseases. The hippocampus contained the maximum concentration in the CNS, with the cerebral cortex, hypothalamus, thalamus, brainstem, and cerebellum following suit. This arrangement suggests that the substance has a specific function within the CNS. More and more studies have shown that NPY is involved in the physiological and pathological mechanism of stroke, and its serum concentration can be one of the specific biomarkers of stroke and related complications because of its high activity, broad and complex effects. By summarizing relevant literature, this article aims to gain a thorough understanding of the potential clinical applications of NPY in the treatment of stroke, identification of stroke and its related complications, and assessment of prognosis.


Assuntos
Neuropeptídeo Y , Receptores de Neuropeptídeo Y , Acidente Vascular Cerebral , Animais , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/uso terapêutico , Prognóstico , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Suínos , Humanos
9.
Exp Ther Med ; 27(1): 6, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223327

RESUMO

The imbalance in immune homeostasis plays a crucial role in the pathogenesis of myasthenia gravis (MG). MicroRNAs (miRs) have been identified as key regulators of immune homeostasis. B-cell lymphoma/leukemia 10 (BCL10) has been implicated in the activation and suppressive function of regulatory T cells (Tregs). This study aimed to investigate the potential role of miR-155-5p in modulating the activation and function of Tregs in MG. To achieve this objective, blood samples were collected from MG patients to assess the expression levels of miR-155-5p and BCL10, as well as the proportion of circulating Tregs, in comparison to healthy controls. The correlation between miR-155-5p and BCL10 levels was evaluated in human samples. The expression levels of miR-155-5p and the numbers of circulating Tregs were also examined in an animal model of experimental autoimmune MG (EAMG). A dual-luciferase reporter assay was used to verify whether miR-155-5p can target BCL10. To determine the regulatory function of BCL10 in Tregs, CD4+ CD25+ Tregs were transfected with either small interfering-BCL10 or miR-155-5p inhibitor, and the expression levels of the anti-inflammatory cytokine IL-10 and transcription factors Foxp3, TGF-ß1, CTLA4, and ICOS were measured. The results demonstrated that the expression level of miR-155-5p was significantly higher in patients with MG compared with that in healthy controls, whereas the expression level of BCL10 was significantly decreased in patients with MG. Furthermore, there was a significant negative correlation between the expression levels of miR-155-5p and BCL10. The number of circulating Tregs was significantly reduced in patients with MG and in the spleen of rats with EAMG compared with that in the corresponding control groups. The dual-luciferase reporter assay demonstrated that miR-155-5p could target BCL10. The Tregs transfected with si-BCL10 demonstrated significant decreases in the protein levels of TGF-ß1 and IL-10, as well as in the mRNA expression levels of Foxp3, TGF-ß1, CTLA-4 and ICOS. Conversely, the Tregs transfected with the miR-155-5p inhibitor exhibited a substantial increase in these protein and mRNA expression levels compared with their respective control groups. Furthermore, the knockdown of BCL10 exhibited a decline in the suppressive efficacy of Tregs on the proliferation of CD4+ T cells. Conversely, the suppression of miR-155-5p expression attenuated the inhibition of the BCL10 gene, potentially causing an indirect influence on the suppressive capability of Tregs on the proliferation of CD4+ T cells. BCL10 was thus found to contribute to the activation and immunosuppressive function of Tregs. In summary, the present study demonstrated that miR-155-5p inhibited the activation and immunosuppressive function of Tregs by targeting BCL10, which may be used as a future potential target for the treatment of MG.

10.
J Psychiatr Res ; 169: 347-354, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091723

RESUMO

Leptin and insulin-like growth factor-1 (IGF-1) may play a role in clinical identification of post-stroke depression (PSD). Here, eight databases (including CNKI, Wanfang, SinoMed, VIP, PubMed, the Cochrane Library, Embase, and the Web of Science) were employed to search for studies on serum leptin and insulin-like growth factor-1 expression levels in patients with PSD. In total, 13 articles were included, of which 6 studies investigated the expression level of serum leptin in patients with PSD, 7 studies explored the serum IGF-1 in PSD patients. Then, the RevMan 5.4 software was used for meta-analysis. The results showed that serum leptin levels were significantly higher in PSD patients than in patients without PSD (SMD = 1.54, 95% CI: 0.84, 2.23; P = 0.006). The result of subgroup analysis showed that the serum leptin levels in PSD patients were significantly higher than those without PSD in acute phase (SMD = 1.38, 95% CI: 0.04, 2.71; P = 0.04), subacute phase (SMD = 2.31, 95% CI: 0.88, 3.73; P = 0.001), and chronic phase (SMD = 1.02, 95% CI: 0.43, 1.60; P = 0.0007); There was no significant difference in serum IGF-1 level between PSD patients and patients without PSD (SMD = 0.49, 95% CI: -0.55, 1.52; P = 0.36). Moreover, the subgroup analysis also showed that there was no statistical difference in acute stage (SMD = 0.36, 95% CI: 0.89, 1.60; P = 0.57). Our study provides evidence to prove that serum leptin level has potential clinical application value as biomarkers for identifying PSD.


Assuntos
Depressão , Acidente Vascular Cerebral , Humanos , Biomarcadores , Depressão/diagnóstico , Depressão/etiologia , Fator de Crescimento Insulin-Like I/análise , Peptídeos Semelhantes à Insulina , Leptina , Acidente Vascular Cerebral/complicações
11.
J Inflamm (Lond) ; 20(1): 37, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924056

RESUMO

Fermented butyrate exhibits an anti-inflammatory response to maintain immune homeostasis within the gut. However, the effect and underlying mechanism of butyrate on myasthenia gravis (MG) remain unclear. The changes in the gut microbiota and fecal contents of SCFAs in MG patients were examined. R97-116 peptide was used to induce the experimental autoimmune myasthenia gravis (EAMG) mice and sodium butyrate (NaB) was gavaged to the EAMG mice. Gut microbiota, the frequency of Th1, Th17, Treg, Tfh, and B cells, the levels of IFN-γ, IL-17 A, IL-10, IL-21, and anti-R97-116 IgG, RNA-seq of total B cells in the spleen were explored by metagenomics, flow cytometry, ELISA, and transcriptomics. A significant reduction in SCFA-producing bacteria including Butyricimonas synergistica and functional modules including butyrate synthesis/production II was observed in MG patients and fecal SCFAs detection confirmed the increase. The EAMG mice were successfully constructed and NaB supplementation has changed the composition and function of the gut microbiota. The numbers of Th1, Th17, Tfh, and B cells were significantly increased while that of Treg cells was obviously decreased in EAMG mice compared with controls. Interestingly, NaB treatment has reduced the amounts of Th17, Tfh, and B cells but increased that of Treg cells. Accordingly, the levels of IL-17 A, IL-21, and IgG were increased while IL-10 was decreased in EAMG mice. However, NaB treatment reduced IL-17 A and IL-21 but increased that of IL-10. RNA-seq of B cells has revealed 4577 deferentially expressed genes (DEGs), in which 1218 DEGs were up-regulated while 3359 DEGs were down-regulated in NaB-treated EAMG mice. GO enrichment and KEGG pathway analysis unveiled that the function of these DEGs was mainly focused on immunoglobulin production, mitochondrial respiratory chain complex, ribosome, oxidative phosphorylation, and CNS diseases including amyotrophic lateral sclerosis. We have found that butyrate was significantly reduced in MG patients and NaB gavage could evidently improve MG symptoms in EAMG mice by changing the gut microbiota, regulating the immune response, and altering the gene expression and function of B cells, suggesting NaB might be a potential immunomodulatory supplement for MG drugs.

12.
Front Pharmacol ; 14: 1220862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654609

RESUMO

Ischemia/reperfusion (I/R) injury is a pathological process wherein reperfusion of an ischemic organ or tissue exacerbates the injury, posing a significant health threat and economic burden to patients and their families. I/R triggers a multitude of physiological and pathological events, such as inflammatory responses, oxidative stress, neuronal cell death, and disruption of the blood-brain barrier (BBB). Hence, the development of effective therapeutic strategies targeting the pathological processes resulting from I/R is crucial for the rehabilitation and long-term enhancement of the quality of life in patients with cerebral ischemia/reperfusion injury (CIRI). Traditional Chinese medicine (TCM) monomers refer to bioactive compounds extracted from Chinese herbal medicine, possessing anti-inflammatory and antioxidative effects, and the ability to modulate programmed cell death (PCD). TCM monomers have emerged as promising candidates for the treatment of CIRI and its subsequent complications. Preclinical studies have demonstrated that TCM monomers can enhance the recovery of neurological function following CIRI by mitigating oxidative stress, suppressing inflammatory responses, reducing neuronal cell death and functional impairment, as well as minimizing cerebral infarction volume. The neuroprotective effects of TCM monomers on CIRI have been extensively investigated, and a comprehensive understanding of their mechanisms can pave the way for novel approaches to I/R treatment. This review aims to update and summarize evidence of the protective effects of TCMs in CIRI, with a focus on their role in modulating oxidative stress, inflammation, PCD, glutamate excitotoxicity, Ca2+ overload, as well as promoting blood-brain barrier repairment and angiogenesis. The main objective is to underscore the significant contribution of TCM monomers in alleviating CIRI.

13.
Mol Immunol ; 159: 15-27, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37263067

RESUMO

Microglia, being the primary immune cells of the central nervous system (CNS), are responsible for pathological inflammatory demyelination in multiple sclerosis (MS). It has been demonstrated that AXL, one of the receptor tyrosine kinases, could alleviate the inflammatory response of microglia. However, the specific mechanism remains unclear. Herein, we explored the role of AXL in the autophagy of microglia and its effect on the experimental autoimmune encephalomyelitis (EAE) model. We revealed that knockout of AXL in BV2 microglia significantly promoted the expression of phosphorylated-PI3K/p-AKT/p-mTOR while significantly inhibiting LC3-Ⅱ/Beclin1. Similarly, autophagy was significantly inhibited in the AXL-/- mice. Knockout of AXL induced serious symptoms, infiltration of inflammatory cells, and demyelination changes, manifesting as the upregulation of pro-inflammatory factors TNF-α and IL-6 and downregulation of anti-inflammatory factors TGF-ß and IL-10. In conclusion, this study substantiated that autophagy induced by AXL inhibited the inflammatory response of microglia and alleviated symptoms of EAE. Autophagy activation was mediated by the PI3K/AKT/mTOR signaling pathway.


Assuntos
Receptor Tirosina Quinase Axl , Encefalomielite Autoimune Experimental , Animais , Camundongos , Autofagia , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Receptor Tirosina Quinase Axl/metabolismo
14.
Clin Exp Pharmacol Physiol ; 50(8): 647-663, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37308175

RESUMO

Ligustilide, a natural phthalide mainly derived from chuanxiong rhizomes and Angelica Sinensis roots, possesses anti-inflammatory activity, particularly in the context of the nervous system. However, its application is limited because of its unstable chemical properties. To overcome this limitation, ligusticum cycloprolactam (LIGc) was synthesized through structural modification of ligustilide. In this study, we combined network pharmacological methods with experimental verification to investigate the anti-neuroinflammatory effects and mechanisms of ligustilide and LIGc. Based on our network pharmacology analysis, we identified four key targets of ligustilide involved in exerting an anti-inflammatory effect, with the nuclear factor (NF)-κB signal pathway suggested as the main signalling pathway. To verify these results, we examined the expression of inflammatory cytokines and inflammation-related proteins, analysed the phosphorylation level of NF-κB, inhibitor of κBα (IκBα) and inhibitor of κB kinase α and ß (IKKα+ß), and evaluated the effect of BV2 cell-conditioned medium on HT22 cells in vitro. Our results, demonstrate for the first time that LIGc can downregulate the activation of the NF-κB signal pathway in BV2 cells induced by lipopolysaccharide, suppress the production of inflammatory cytokines and reduce nerve injury in HT22 cells mediated by BV2 cells. These findings suggest that LIGc inhibits the neuroinflammatory response mediated by BV2 cells, providing strong scientific support for the development of anti-inflammatory drugs based on natural ligustilide or its derivatives. However, there are some limitations to our current study. In the future, further experiments using in vivo models may provide additional evidence to support our findings.


Assuntos
Ligusticum , NF-kappa B , NF-kappa B/metabolismo , Ligusticum/metabolismo , Doenças Neuroinflamatórias , Farmacologia em Rede , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Microglia , Lipopolissacarídeos/farmacologia
15.
J Neuroimmunol ; 381: 578108, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37302170

RESUMO

Ischemic stroke (IS) is a leading cause of morbidity and mortality worldwide. Immunity and inflammation are key factors in the pathophysiology of IS. The inflammatory response is involved in all stages of stroke, and microglia are the predominant cells involved in the post-stroke inflammatory response. Resident microglia are the main immune cells of the brain and the first line of defense of the nervous system. After IS, activated microglia can be both advantageous and detrimental to surrounding tissue; they can be divided into the harmful M1 types or the neuro-protective M2 type. Currently, with the latest progress of transcriptomics analysis, different and more complex phenotypes of microglia activation have been described, such as disease-related microglia (DAM) associated with Alzheimer's disease (AD), white matter associated microglia (WAMs) in aging, and stroke-related microglia (SAM) etc. The triggering receptor expressed on myeloid cell 2 (TREM2) is an immune-related receptor on the surface of microglia. Its expression increases after IS, which is related to microglial inflammation and phagocytosis, however, its relationship with the microglia phenotype is not clear. This paper reviews the following: 1) the phenotypic changes of microglia in various pathological stages after IS and its relationship with inflammatory factors; 2) the relationship between the expression of the TREM2 receptor and inflammatory factors; 3) the relationship between phenotypic changes of microglia and its surface receptor TREM2; 4) the TREM2-related signalling pathway of microglia after IS and treatment for TREM2 receptor; and finally 5) To clarify the relationship among TREM2, inflammation, and microglia phenotype after IS, as well as the mechanism among them and the some possible treatment of IS targeting TREM2. Moreover, the relationship between the new phenotype of microglia such as SAM and TREM2 has also been systematically summarized, but there are no relevant research reports on the relationship between TREM2 and SAM after IS.


Assuntos
Doença de Alzheimer , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Microglia/metabolismo , Encéfalo/metabolismo , Inflamação/metabolismo , Doença de Alzheimer/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
16.
J Neurosci Res ; 101(9): 1393-1408, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37156641

RESUMO

Ischemic stroke (IS) is characterized by high incidence, high recurrence, and high mortality and places a heavy burden on society and families. The pathological mechanisms of IS are complex, among which secondary neurological impairment mediated by neuroinflammation is considered to be the main factor in cerebral ischemic injury. At present, there is still a lack of specific therapies to treat neuroinflammation. The tumor suppressor protein p53 has long been regarded as a key substance in the regulation of the cell cycle and apoptosis in the past. Recently, studies have found that p53 also plays an important role in neuroinflammatory diseases, such as IS. Therefore, p53 may be a crucial target for the regulation of the neuroinflammatory response. Here, we provide a comprehensive review of the potential of targeting p53 in the treatment of neuroinflammation after IS. We describe the function of p53, the major immune cells involved in neuroinflammation, and the role of p53 in inflammatory responses mediated by these cells. Finally, we summarize the therapeutic strategies of targeting p53 in regulating the neuroinflammatory response after IS to provide new directions and ideas for the treatment of ischemic brain injury.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/complicações , Doenças Neuroinflamatórias , Proteína Supressora de Tumor p53/metabolismo , Inflamação/patologia , Apoptose , Acidente Vascular Cerebral/patologia , Isquemia Encefálica/metabolismo
17.
Clin Neurol Neurosurg ; 230: 107773, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172376

RESUMO

The IL-33/ST2 signaling pathway has potential relevance for clinical identification and treatment of Alzheimer's disease (AD). Here, eight databases (including CNKI, Wanfang, SinoMed, VIP, PubMed, Cochrane library, Embase and Web of Science) were employed to search for studies on IL-33/ST2 signaling pathway and its association with AD. Totally, 15 articles were included, of which 5 studies investigated the connection between IL-33 gene polymorphisms and AD, 4 studies explored the serum IL-33 and sST2 levels in patients with AD and Mild cognitive impairment (MCI), and the exact mechanisms underlying IL-33/ST2 signaling pathway in AD were explored in 6 studies. Then, the RevMan 5.4 software was used for meta-analysis, and the related studies were systematically reviewed. The results of the meta-analysis showed that serum IL-33 levels were higher in patients with AD and MCI than in healthy controls (HC), with serum IL-33 levels in AD patients significantly higher than in MCI patients (SMD = 0.26, 95 % CI: 0.02, 0.51; P = 0.04). Compared with HC, the sST2 level was significantly higher in AD patients (SMD = 1.23, 95 % CI: 0.93, 1.53; P < 0.00001) and tended to elevate in patients with MCI. The systematic review indicated that there is a significant relationship between IL-33 gene polymorphisms and susceptibility to AD; The IL-33/ST2 signaling pathway may be one of the future treatment targets for AD. Our study provides evidence to prove that serum IL-33 and sST2 have potential clinical application value as biomarkers for identifying AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/complicações , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Disfunção Cognitiva/complicações , Transdução de Sinais
18.
J Clin Neurol ; 19(4): 381-391, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36929061

RESUMO

BACKGROUND AND PURPOSE: A systematic review and meta-analysis was performed of the outcome of Coronavirus disease 2019 (COVID-19) infection in patients with multiple sclerosis (MS) who received disease-modifying therapies (DMTs). METHODS: Relevant studies published before November 2022 in the PubMed, Cochrane Library, Chinese National Knowledge Infrastructure, and Web of Science databases were retrieved using the following search expression: ("multiple sclerosis" OR "MS") AND ("DMT" OR "disease modifying therapies") AND ("COVID-19"). Two authors independently screened the articles and extracted the data. Qualitative analyses and a meta-analysis constituted 22 of the 794 retrieved articles. Differences in the hospitalization and mortality rates were used as the main measures of efficacy, and the meta-analysis was performed using RevMan software. RESULTS: 22 clinical trials were selected. The hospitalization rate was lower in the 3,216 patients who received DMTs than in the 774 patients who did not receive any treatment, with a moderate effect size of 0.43 (p<0.00001). The mortality rate was also lower among patients with MS treated using DMTs than in controls (odds ratio [OR]=0.19, 95% confidence interval [CI]=0.13-0.27, p<0.00001). The hospitalization rates for COVID-19 infection in patients with MS treated with anti-CD20 therapy also increased markedly (OR=3.32, 95% CI=2.63-4.20, p<0.00001). However, there was no significant difference between patients with MS who did and did not receive DMTs. CONCLUSIONS: In summary, the application of DMTs was found to be valuable for patients with MS infected with COVID-19. However, more clinical studies are needed to determine the use of anti-CD20 drugs in patients with MS during the COVID-19 pandemic.

19.
Front Pharmacol ; 13: 1043397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561337

RESUMO

Inspired by the crucial roles of (hetero)aryl rings in cholinesterase inhibitors and the pyrrole ring in new drug discovery, we synthesized 19 pyrrole derivatives and investigated their cholinesterase inhibitory activity. As a result, compounds 3o, 3p, and 3s with a 1,3-diaryl-pyrrole skeleton showed high selectivity toward BChE over AChE with a best IC50 value of 1.71 ± 0.087 µM, which were comparable to donepezil. The pharmaceutical potential of these structures was further predicted and compounds 3o and 3p were proved to meet well with the Lipinsky's five rules. In combination of the inhibition kinetic studies with the results of molecular docking, we concluded that compound 3p inhibited BChE in a mixed competitive mode. This research has proved the potential of the 1,3-diaryl-pyrrole skeleton as a kind of selective BChE inhibitor.

20.
Allergol Immunopathol (Madr) ; 50(6): 76-83, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36335449

RESUMO

OBJECTIVE: The aim of this study is to summarize studies on statins used to treat multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE) and its underlying mechanisms. METHODS: We searched some representing databases. Some studies were included if the effects of statins were tested on MS and EAE. The methodological quality was evaluated by the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies checklist. RESULTS: Studies have confirmed that statins have immunomodulatory, neuroprotective and anti-inflammatory effects, and can be used in combination with immunomodulators of different mechanisms to treat MS and EAE. Statins have been shown to improve the following symptoms MS, reduce the number of attacks and the number of lesions, through immunomodulatory, neuroprotective and anti-inflammatory effects, and has a good safety profile. CONCLUSIONS: In short, statins represent an attractive new measure for treating MS. Some studies indicate that in addition to immunomodulatory effects, statins may have neuroprotective and neuro-repairing effects. The combination of statins with other immunosuppressive drugs has also produced encouraging results. This can be broadly prospects prospected to treat MS and EAE. It is hoped that in the near future, a combination of statins with less adverse reactions and high efficacy combined with other immunomodulators will bring exact results to patients with MS.


Assuntos
Encefalomielite Autoimune Experimental , Inibidores de Hidroximetilglutaril-CoA Redutases , Esclerose Múltipla , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Esclerose Múltipla/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fatores Imunológicos/uso terapêutico , Adjuvantes Imunológicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA