Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
PeerJ ; 12: e17474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818454

RESUMO

Background: Drought is a critical limiting factor affecting the growth and development of spring maize (Zea mays L.) seedlings in northeastern China. Sodium 5-nitroguaiacol (5-NGS) has been found to enhance plant cell metabolism and promote seedling growth, which may increase drought tolerance. Methods: In the present study, we investigated the response of maize seedlings to foliar application of a 5-NGS solution under osmotic stress induced by polyethylene glycol (PEG-6000). Four treatment groups were established: foliar application of distilled water (CK), foliar application of 5-NGS (NS), osmotic stress + foliar application of distilled water (D), and osmotic stress + foliar application of 5-NGS (DN). Plant characteristics including growth and photosynthetic and antioxidant capacities under the four treatments were evaluated. Results: The results showed that under osmotic stress, the growth of maize seedlings was inhibited, and both the photosynthetic and antioxidant capacities were weakened. Additionally, there were significant increases in the proline and soluble sugar contents and a decrease in seedling relative water content (RWC). However, applying 5-NGS alleviated the impact of osmotic stress on maize seedling growth parameters, particularly the belowground biomass, with a dry mass change of less than 5% and increased relative water content (RWC). Moreover, treatment with 5-NGS mitigated the inhibition of photosynthesis caused by osmotic stress by restoring the net photosynthetic rate (Pn) through an increase in chlorophyll content, photosynthetic electron transport, and intercellular CO2 concentration (Ci). Furthermore, the activity of antioxidant enzymes in the aboveground parts recovered, resulting in an approximately 25% decrease in both malondialdehyde (MDA) and H2O2. Remarkably, the activity of enzymes in the underground parts exhibited more significant changes, with the contents of MDA and H2O2 decreasing by more than 50%. Finally, 5-NGS stimulated the dual roles of soluble sugars as osmoprotectants and energy sources for metabolism under osmotic stress, and the proline content increased by more than 30%. We found that 5-NGS played a role in the accumulation of photosynthates and the effective distribution of resources in maize seedlings. Conclusions: Based on these results, we determined that foliar application of 5-NGS may improve osmotic stress tolerance in maize seedlings. This study serves as a valuable reference for increasing maize yield under drought conditions.


Assuntos
Antioxidantes , Pressão Osmótica , Fotossíntese , Folhas de Planta , Plântula , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia , Fotossíntese/efeitos dos fármacos , Pressão Osmótica/fisiologia , Antioxidantes/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Secas
2.
Nano Lett ; 24(22): 6617-6624, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38717095

RESUMO

The mapping of long-wavelength phonons is important to understand and manipulate the thermal transport in multilayered structures, but it remains a long-standing challenge due to the collective behaviors of phonons. In this study, an experimental demonstration of mapping the long-wavelength phonons in an alloyed Al0.1Ga0.9As/Al0.9Ga0.1As superlattice system is reported. Multiple strategies to filter out the short- to mid-wavelength phonons are used. The phonon mean-free-path-dependent thermal transport properties directly demonstrate both the suppression effect of the ErAs nanoislands and the contribution of long-wavelength phonons. The contribution from phonons with mean free path longer than 1 µm is clearly demonstrated. A model based on the Boltzmann transport equation is proposed to calculate and describe the thermal transport properties, which depicts a clear physical picture of the transport mechanisms. This method can be extended to map different wavelength phonons and become a universal strategy to explore their thermal transport in various application scenarios.

3.
Org Biomol Chem ; 22(22): 4420-4435, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775347

RESUMO

Over past decades, chiral amides and peptides have emerged as powerful and versatile compounds due to their various biological activities and interesting molecular architectures. Although some chiral condensation reagents have been applied successfully for their synthesis, the introduction of racemization-free methods of amino acid activation have shown lots of advantages in terms of their low cost and low toxicity. In this review, advancements in amide and peptide synthesis using racemization-free coupling reagents over the last 10 years are summarized. Various racemization-free coupling reagents have been applied in the synthesis of enantioselective amides and peptides, including ynamides, allenones, HSi[OCH(CF3)2]3, Ta(OMe)5, Nb(OEt)5, Ta(OEt)5, TCFH-NMI, water-removable ynamides, DBAA, DATB, o-NosylOXY, TCBOXY, Boc-Oxyma, NDTP, 9-silafluorenyl dichlorides, the Mukaiyama reagent, EDC and T3P. The racemization-free reagents described in this review provide an alternative greener option for the asymmetric synthesis of chiral amides and peptides. We hope that this review will inspire further studies and developments in this field.


Assuntos
Amidas , Peptídeos , Amidas/química , Amidas/síntese química , Peptídeos/química , Peptídeos/síntese química , Estereoisomerismo , Técnicas de Química Sintética/métodos , Indicadores e Reagentes/química , Estrutura Molecular
4.
iScience ; 27(6): 109941, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38812543

RESUMO

The intact proviral DNA assay (IPDA) based on droplet digital PCR was developed to identify intact proviral DNA and quantify HIV-1 latency reservoirs in patients infected with HIV-1. However, the genetic characteristics of different HIV-1 subtypes are non-consistent due to their high mutation and recombination rates. Here, we identified that the IPDA based on the sequences features of an HIV-1 subtype could not effectively detect different HIV-1 subtypes due to the high diversity of HIV-1. Furthermore, we demonstrated that mutations in env gene outside the probe binding site affect the detection efficiency of IPDA. Since mutations in env gene outside the probe binding site may also lead to the formation of stop codons, thereby preventing the formation of viruses and ultimately overestimating the number of HIV-1 latency reservoirs, it is important to address the effect of mutations on the IPDA.

5.
Structure ; 32(7): 918-929.e4, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38626767

RESUMO

Nectin and nectin-like (Necl) co-receptor axis, comprised of receptors DNAM-1, TIGIT, CD96, PVRIG, and nectin/Necl ligands, is gaining prominence in immuno-oncology. Within this axis, the inhibitory receptor PVRIG recognizes Nectin-2 with high affinity, but the underlying molecular basis remains unknown. By determining the crystal structure of PVRIG in complex with Nectin-2, we identified a unique CC' loop in PVRIG, which complements the double-lock-and-key binding mode and contributes to its high affinity for Nectin-2. The association of the corresponding charged residues in the F-strands explains the ligand selectivity of PVRIG toward Nectin-2 but not for Necl-5. Moreover, comprehensive comparisons of the binding capacities between co-receptors and ligands provide innovative insights into the intra-axis immunoregulatory mechanism. Taken together, these findings broaden our understanding of immune recognition and regulation mediated by nectin/Necl co-receptors and provide a rationale for the development of immunotherapeutic strategies targeting the nectin/Necl axis.


Assuntos
Modelos Moleculares , Nectinas , Ligação Proteica , Nectinas/metabolismo , Nectinas/química , Humanos , Cristalografia por Raios X , Sítios de Ligação , Ligantes , Receptores Imunológicos/metabolismo , Receptores Imunológicos/química , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/imunologia
6.
Midwifery ; 132: 103981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574440

RESUMO

OBJECTIVE: Retention of weight gained over pregnancy increases the risk of long-term obesity and related health concerns. While many risk factors for this postpartum weight retention have been examined, the role of mode of delivery in this relationship remains controversial. We carried out a systematic review and meta-analysis to determine the effect of mode of delivery on postpartum weight retention. METHODS: Ten electronic databases including PubMed, Cochrane Library, EMBASE, Web of Science, MEDLINE, CINAHL, China National Knowledge Infrastructure (CNKI), Wan-Fang database, the VIP database and China Biology Medicine Database (CBM) were searched from inception through November 2022. Review Manager 5.4 was used to pool the study data and calculate effect sizes. For dichotomous data, the odds ratio and 95 % confidence interval were used to report the results. For continuous data, the mean difference (MD) and 95 % confidence interval were used to report the results. The outcomes were the amount of postpartum weight retention and the number or proportion of women who experienced postpartum weight retention. The Newcastle- Ottawa Scale (NOS) and GRADE Guidelines were used to assess the methodological quality of the included studies. FINDINGS: A total of 16 articles were included in the systematic review and 13 articles were included in the meta-analysis. The results showed that the mode of delivery had a significant effect on postpartum weight retention, women who delivered by caesarean section were more likely to experience postpartum weight retention compared to those who delivered vaginally. Sensitivity analysis showed that the results were stable and credible. CONCLUSION: Due to the limitations of this study, the findings need to be treated with caution. And, to better prevent the postpartum weight retention, future practice and research need to further focus on upstream modifiable factors.


Assuntos
Parto Obstétrico , Período Pós-Parto , Humanos , Feminino , Gravidez , Parto Obstétrico/métodos , Parto Obstétrico/estatística & dados numéricos , Adulto , Aumento de Peso/fisiologia , Cesárea/estatística & dados numéricos , Fatores de Risco
7.
ACS Appl Mater Interfaces ; 16(13): 16075-16085, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527926

RESUMO

Single-crystalline cathode materials LiNixCoyMn1-y-zO2 (x ≥ 0.6) are important candidates for obtaining better cyclic stability and achieving high energy densities of Li-ion batteries. However, it is liable to initiate phase transitions inside the grains during electrochemical cycling, and the processes and regions of these phase transitions have remained unknown. In this research, we conducted an intrinsic study, investigating the chemicals and microstructural evolution of single-crystalline LiNi0.83Co0.11Mn0.06O2 using in situ biasing transmission electron microscopy at an atomic scale. We observed that the layered structure on the surface of the single-crystalline material was degraded during the charging process, resulting in continuous phase transitions and the formation of surface oxygen vacancies, which can reduce both the structural and thermal stability of the material. Uneven delithiation led to the formation of high-density defects and discontinuous inactive electrochemical phases, such as local antiphase boundaries and the rock salt phase, in the bulk of the material. The non-uniformity of the structure and the coexistence of active and inactive phases introduce significant tensile stress, which can lead to intragranular cracks inside the grains. As the number of cycles increases, the structural degradation caused by the intragranular phase transition will further increase, ultimately affecting the cycling capacity and stability of the battery. This work has broad implications for creating lithium-ion batteries that are effective and long-lasting.

8.
Environ Sci Technol ; 57(41): 15747-15758, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37788364

RESUMO

Aiming at the development of an efficient NH3 oxidation catalyst to eliminate the harmful NH3 slip from the stationary flue gas denitrification system and diesel exhaust aftertreatment system, a facile ZrO2 doping strategy was proposed to construct Pt1/CexZr1-xO2 catalysts with a tunable Pt-CeO2 interaction strength and Pt-O-Ce coordination environment. According to the results of systematic characterizations, Pt species supported on CexZr1-xO2 were mainly in the form of single atoms when x ≥ 0.7, and the strength of the Pt-CeO2 interaction and the coordination number of Pt-O-Ce bond (CNPt-O-Ce) on Pt1/CexZr1-xO2 showed a volcanic change as a function of the ZrO2 doping amount. It was proposed that the balance between the reasonable concentration of oxygen defects and limited surface Zr-Ox species well accounted for the strongest Pt-CeO2 interaction and the highest CNPt-O-Ce on Pt/Ce0.9Zr0.1O2. It was observed that the Pt/Ce0.9Zr0.1O2 catalyst exhibited much higher NH3 oxidation activity than other Pt/CexZr1-xO2 catalysts. The mechanism study revealed that the Pt1 species with the stronger Pt-CeO2 interaction and higher CNPt-O-Ce within Pt/Ce0.9Zr0.1O2 could better activate NH3 adsorbed on Lewis acid sites to react with O2 thus resulting in superior NH3 oxidation activity. This work provides a new approach for designing highly efficient Pt/CeO2 based catalysts for low-temperature NH3 oxidation.


Assuntos
Amônia , Platina , Amônia/química , Oxirredução , Zircônio/química , Oxigênio , Catálise
9.
Sci Total Environ ; 903: 166607, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37643705

RESUMO

Global climate change has led to significant changes in land surface phenology. At present, research on the factors influencing the start of the growing season (SOS) mainly focuses on single factor effects, such as temperature and precipitation, ignoring the combined action of multiple factors. The impact of multiple factors on the spatial and temporal patterns of the SOS in the Northern Hemisphere is not clear, and it is necessary to combine multiple factors to quantify the degrees of influence of different factors on the SOS. Based on the GIMMS3g NDVI dataset, CRU climate data and other factor data, we used geographic detector model, random forest regression model, multiple linear regression, partial correlation analysis and Sen + Mann-Kendall trend analysis to explore the variation of the SOS in the Northern Hemisphere to reveal the main driving factors and impact threshold of 17 influencing factors on the SOS. The results showed that (1) during the past 34 years (1982-2015), the SOS in Europe and Asia mainly showed an advancing trend, whereas the SOS in North America mainly showed a delaying trend. (2) The SOS was mainly controlled by frost frequency, temperature and humidity. Increasing frost frequency inhibited the advancement of the SOS, and increasing temperature and humidity promoted the advancement of the SOS. (3) There were thresholds for the influences of the driving factors on the SOS. Outside the threshold ranges, the response mechanism of the SOS to driving factors changed. The results are important for understanding the response of the SOS to global climate change.

10.
Environ Sci Technol ; 57(33): 12501-12512, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37563957

RESUMO

Tuning the metal-support interaction and coordination environment of single-atom catalysts can help achieve satisfactory catalytic performance for targeted reactions. Herein, via the facile control of calcination temperatures for Pt catalysts on pre-stabilized Ce0.9Zr0.1O2 (CZO) support, Pt single atoms (Pt1) with different strengths of Pt-CeO2 interaction and coordination environment were successfully constructed. With the increase in calcination temperature from 350 to 750 °C, a stronger Pt-CeO2 interaction and higher Pt-O-Ce coordination number were achieved due to the reaction between PtOx and surface Ce3+ species as well as the migration of Pt1 into the surface lattice of CZO. The Pt/CZO catalyst calcined at 750 °C (Pt/CZO-750) exhibited a surprisingly higher C3H8 oxidation activity than that calcined at 550 °C (Pt/CZO-550). Through systematic characterizations and reaction mechanism study, it was revealed that the higher concentration of surface Ce3+ species/oxygen vacancies and the stronger Pt-CeO2 interaction on Pt/CZO-750 could better facilitate the activation of oxygen to oxidize C3H8 into reactive carbonate/carboxyl species and further promote the transformation of these intermediates into gaseous CO2. The Pt/CZO-750 catalyst can be a potential candidate for the catalytic removal of hydrocarbons from vehicle exhaust.


Assuntos
Oxigênio , Propano , Catálise , Oxirredução
11.
Front Microbiol ; 14: 1206909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577426

RESUMO

Introduction: Every-other-day fasting (EODF) is a classical intermittent fasting (IF) mode with neuroprotective effects that promotes motor function recovery after spinal cord injury (SCI) in rats. However, its dynamic effects on the gut microbiota and spinal cord transcriptome remain unknown. Methods: In this study, 16S rRNA sequencing and RNA-seq analysis were used to investigate the effects of ad libitum (AL) and EODF dietary modes on the structural characteristics of rat gut microbiota in rats and the spinal cord transcriptome at various time points after SCI induction. Results: Our results showed that both dietary modes affected the bacterial community composition in SCI rats, with EODF treatment inducing and suppressing dynamic changes in the abundances of potentially anti-inflammatory and pro-inflammatory bacteria. Furthermore, the differentially expressed genes (DEGs) enriched after EODF intervention in SCI rats were associated with various biological events, including immune inflammatory response, cell differentiation, protein modification, neural growth, and apoptosis. In particular, significant spatiotemporal differences were apparent in the DEGs associated with neuroprotection between the EODF and AL interventions. These DGEs were mainly focused on days 1, 3, and 7 after SCI. The relative abundance of certain genera was significantly correlated with DEGs associated with neuroprotective effects in the EODF-SCI group. Discussion: Our results showed that EODF treatment may exert neuroprotective effects by modulating the transcriptome expression profile following SCI in rats. Furthermore, gut microbiota may be partially involved in mediating these effects.

12.
Int J Mol Sci ; 24(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37373491

RESUMO

GDSL esterases/lipases are a subclass of lipolytic enzymes that play critical roles in plant growth and development, stress response, and pathogen defense. However, the GDSL esterase/lipase genes involved in the pathogen response of apple remain to be identified and characterized. Thus, in this study, we aimed to analyze the phenotypic difference between the resistant variety, Fuji, and susceptible variety, Gala, during infection with C. gloeosporioides, screen for anti-disease-associated proteins in Fuji leaves, and elucidate the underlying mechanisms. The results showed that GDSL esterase/lipase protein GELP1 contributed to C. gloeosporioides infection defense in apple. During C. gloeosporioides infection, GELP1 expression was significantly upregulated in Fuji. Fuji leaves exhibited a highly resistant phenotype compared with Gala leaves. The formation of infection hyphae of C. gloeosporioides was inhibited in Fuji. Moreover, recombinant His:GELP1 protein suppressed hyphal formation during infection in vitro. Transient expression in Nicotiana benthamiana showed that GELP1-eGFP localized to the endoplasmic reticulum and chloroplasts. GELP1 overexpression in GL-3 plants increased resistance to C. gloeosporioides. MdWRKY15 expression was upregulated in the transgenic lines. Notably, GELP1 transcript levels were elevated in GL-3 after salicylic acid treatment. These results suggest that GELP1 increases apple resistance to C. gloeosporioides by indirectly regulating salicylic acid biosynthesis.


Assuntos
Colletotrichum , Malus , Esterases/genética , Esterases/metabolismo , Lipase/metabolismo , Malus/genética , Malus/metabolismo , Colletotrichum/genética , Folhas de Planta/metabolismo , Ácido Salicílico/farmacologia , Doenças das Plantas/genética
13.
J Ethnopharmacol ; 317: 116700, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315652

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA) is a chronic inflammatory disease that is related to the aberrant proliferation of fibroblast-like synoviocytes (FLS). Wasp venom (WV, Vespa magnifica, Smith), an insect secretion, has been used to treat RA in Chinese Jingpo national minority's ancient prescription. However, the potential mechanisms haven't been clarified. AIM OF THE STUDY: The purposes of this paper were two-fold. First, to investigate which was the best anti-RA effective part of WV-I (molecular weight less than 3 kDa), WV-II (molecular weight 3-10 kDa) and WV-III (molecular weight more than 10 kDa) that were separated from WV. Second, to explore the underlying molecular mechanism of WV and WV-II that was best effective part in RA. MATERIALS AND METHODS: The wasps were electrically stimulated and the secretions were collected. WV-I, WV-II and WV-III were acquired by ultracentrifuge method according to molecular weight. Next, WV, WV-I, WV-II and WV-III were identified by HPLC. Functional annotation and pathway analysis of WV used to bioinformatics analysis. RNA-seq analyses were constructed to identify differentially expressed genes (DEGs). GO and KEGG pathway analyses were performed by Metascape database. STRING was used to analyze the PPI network from DEGs. Next, PPI network was visualized using Cytoscape that based on MCODE. The pivotal genes of PPI network and MCODE analysis were verified by qRT-PCR. Subsequently, MH7A cells were performed by MTT assay to evaluate the ability of inhibiting cell proliferation. Luciferase activity assay was conducted in HepG2/STAT1 or HepG2/STAT3 cells to assess STAT1/3 sensitivity of WV, WV-I, WV-II and WV-III. Additionally, interleukin (IL)-1ß and IL-6 expression levels were detected by ELISA kits. Intracellular thioredoxin reductase (TrxR) enzyme was evaluated by TrxR activity assay kit. ROS levels, lipid ROS levels and Mitochondrial membrane potential (MMP) were assessed by fluorescence probe. Cell apoptosis and MMP were measured by using flow cytometry. Furthermore, the key proteins of JAK/STAT signaling pathway, protein levels of TrxR and glutathione peroxidase 4 axis (GPX4) were examined by Western blotting assay. RESULTS: RNA-sequencing analysis of WV displayed be related to oxidation-reduction, inflammation and apoptosis. The data displayed that WV, WV-II and WV-III inhibited significantly cells proliferation in human MH7A cell line compared to WV-I treatment group, but WV-III had no significant suppressive effect on luciferase activity of STAT3 compared with IL-6-induced group. Combined with earlier reports that WV-III contained major allergens, we selected WV and WV-II further to study the mechanism of anti-RA. In addition, WV and WV-II decreased the level of IL-1ß and IL-6 in TNF-α-induced MH7A cells via inactivating of JAK/STAT signaling pathway. On the other hand, WV and WV-II down-regulated the TrxR activity to produce ROS and induce cell apoptosis. Furthermore, WV and WV-II could accumulate lipid ROS to induce GPX4-mediated ferroptosis. CONCLUSIONS: Taken together, the experimental results revealed that WV and WV-II were potential therapeutic agents for RA through modulating JAK/STAT signaling pathways, redox homeostasis and ferroptosis in MH7A cells. Of note, WV-II was an effective part and the predominant active monomer in WV-II will be further explored in the future.


Assuntos
Artrite Reumatoide , Ferroptose , Sinoviócitos , Vespas , Animais , Humanos , Venenos de Vespas/farmacologia , Venenos de Vespas/metabolismo , Venenos de Vespas/uso terapêutico , Interleucina-6/metabolismo , Vespas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proliferação de Células , Antioxidantes/farmacologia , Oxirredução , Fibroblastos , Luciferases , Lipídeos/farmacologia , Células Cultivadas
14.
Front Microbiol ; 14: 1174800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234527

RESUMO

Depression is a common psychological disease, which has become one of the main factors affecting human health. It has a serious impact on individuals, families, and society. With the prevalence of COVID-19, the incidence of depression has further increased worldwide. It has been confirmed that probiotics play a role in preventing and treating depression. Especially, Bifidobacterium is the most widely used probiotic and has positive effects on the treatment of depression. The mechanisms underlying its antidepressant effects might include anti-inflammation and regulation of tryptophan metabolism, 5-hydroxytryptamine synthesis, and the hypothalamus-pituitary-adrenal axis. In this mini-review, the relationship between Bifidobacterium and depression was summarized. It is hoped that Bifidobacterium-related preparations would play a positive role in the prevention and treatment of depression in the future.

15.
Arch Esp Urol ; 76(1): 56-64, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36914420

RESUMO

OBJECTIVE: The main pathological changes of hemorrhagic cystitis (HC) are bladder inflammation, bladder epithelial damage and mast cell infiltration. Tropisetron has been corroborate to conduct a protective role in HC, but its specific etiology remains unclear. The objective of this research was to estimate the mechanism of action of Tropisetron in haemorrhagic cystitis tissue. METHODS: Cyclophosphamide (CTX) was utilized to induce the construction of HC rat model, and rats were handled with different doses of Tropisetron. The impact of Tropisetron on the expression of inflammatory factors and oxidative stress factors in the rats with cystitis were measured by western blot, as well as the related proteins of toll-like receptor 4/nuclear transcription factor-κB (TLR-4/NF-κB) and januskinase 1/signal transducer and activator of transcription 3 (JAK1/STAT3) pathways. RESULTS: CTX-induced cystitis in rats was accompanied by notable pathological tissue damage and increased bladder wet weight ratio, elevated mast cell numbers and collagen fibrosis compared to controls. Tropisetron ameliorated CTX-induced injury in a concentration-dependent manner. Futhermore, CTX induced oxidative stress and inflammatory damage, while Tropisetron can alleviate these injuries. Besides, Tropisetron ameliorated CTX-induced cystitis by restraining TLR-4/NF-κB and JAK1/STAT3 signalling pathways. CONCLUSIONS: Taken together, Tropisetron ameliorates cyclophosphamide-induced haemorrhagic cystitis via modulating TLR-4/NF-κB and JAK1/STAT3 signalling pathways. These findings carry important implication for the study of the molecular mechanisms of pharmacological treatment of hemorrhagic cystitis.


Assuntos
Cistite , Hemorragia , Transdução de Sinais , Tropizetrona , Animais , Ratos , Ciclofosfamida/efeitos adversos , Cistite/induzido quimicamente , Cistite/tratamento farmacológico , Hemorragia/induzido quimicamente , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptor 4 Toll-Like/metabolismo , Tropizetrona/farmacologia
16.
Adv Exp Med Biol ; 1407: 133-151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36920695

RESUMO

Seven coronaviruses have been identified that can infect humans, four of which usually cause mild symptoms, including HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1, three of which are lethal coronaviruses, named severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and severe acute respiratory syndrome coronavirus 2. Pseudotyped virus is an important tool in the field of human coronavirus research because it is safe, easy to prepare, easy to detect, and highly modifiable. In addition to the application of pseudotyped viruses in the study of virus infection mechanism, vaccine, and candidate antiviral drug or antibody evaluation and screening, pseudotyped viruses can also be used as an important platform for further application in the prediction of immunogenicity and antigenicity after virus mutation, cross-species transmission prediction, screening, and preparation of vaccine strains with better broad spectrum and antigenicity. Meanwhile, as clinical trials of various types of vaccines and post-clinical studies are also being carried out one after another, the establishment of a high-throughput and fully automated detection platform based on SARS-CoV-2 pseudotyped virus to further reduce the cost of detection and manual intervention and improve the efficiency of large-scale detection is also a demand for the development of SARS-CoV-2 pseudotyped virus.


Assuntos
COVID-19 , Coronavirus Humano 229E , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Pseudotipagem Viral , SARS-CoV-2/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavirus Humano 229E/genética
17.
ACS Appl Mater Interfaces ; 15(10): 12777-12786, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36854063

RESUMO

Currently, the development of a new therapeutic technology is focused on antisense oligonucleotides (ASOs), where ASOs are used to complementarily pair with DNA, messenger RNA, or long noncoding RNA (lncRNA) to regulate the cell behavior by inhibiting the target gene expression. However, the targeted regulation toward nuclear genes still faces great challenges in ASO delivery for clinical applications, i.e., two essential criteria (high nuclear entry and delivery vehicle safety/simplification) generally compromise each other and are not simultaneously satisfactory. Herein, for the first time, inspired by "intercellular-mass-transport", we report an important discovery that the cell membrane of endothelial cells (ECs) serving as the biointerface enables ASOs to rapidly and completely enter the EC nucleus. Thereby, we innovatively fabricate a nanosystem only by sequential self-assembly of natural/off-the-shelf biomaterials to well overcome the above-mentioned contradiction. The efficacy is strikingly superior to that of the previous delivery vehicles. Furthermore, our technology is applied to successfully silence lncRNA MEG3 in the EC nucleus, significantly augmenting EC morphogenesis. More importantly, this nanosystem is applicable for in vivo intramuscular injection to enhance the therapeutic outcome in a critical limb ischemia mouse model. This work brings a new hope for the technological innovation of ASO nuclear delivery and opens a new avenue to explore natural/off-the-shelf materials for cargo delivery into subcellular compartments.


Assuntos
RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , Células Endoteliais/metabolismo , RNA Mensageiro/metabolismo , Núcleo Celular/metabolismo , Isquemia/terapia
18.
Toxicology ; 486: 153449, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738820

RESUMO

Radon (222Rn) is a naturally occurring radioactive gas. Forty percent of the natural radiation to which the human body is exposed comes from radon gas. Long-term exposure to high concentrations of radon induces systemic damage. However, the effect of such exposure on gut microbiota still remains unclear. We explored the effects of radon exposure on gut microbiota and its metabolites short-chain fatty acids (SCFAs) in BALB/c mice by cumulative inhalation of radon at 30, 60, and 120 working level months (WLM). The radon-exposed mice showed slow body weight gain, decreased serum triglycerides and low-density lipoproteins, decreased diversity, lower community structure, and altered abundance of the gut microbiota. Lachnospiraceae, Amaricoccus, and Enterococcus could differentiate the IR30, 60, and 120 WLM groups, respectively. Meanwhile, radon exposure affected the metabolic functions of the gut microbiota, mainly carbohydrate, amino acid, and lipid metabolic pathways. The altered abundance of microbiota and resulting reduced levels of SCFAs may aggravate the damage caused by radon exposure.


Assuntos
Microbioma Gastrointestinal , Radônio , Humanos , Animais , Camundongos , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Radônio/toxicidade
19.
Zhongguo Zhen Jiu ; 44(1): 94-98, 2023 Jan 12.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38191166

RESUMO

This paper explores the relationship between the standardization studies of acupuncture prescriptions and translational medicine, elucidating the translational medical concepts in the standardization of acupuncture prescriptions. It emphasizes that the standardization of acupuncture prescriptions is a pivotal link in the transformation of foundational acupuncture research. Considering the current clinical status of acupuncture prescriptions, the paper proposes the elements for standardizing prescriptions to promote the translation of foundational acupuncture research into clinical practice. These elements encompass prescription structure, precise acupoint number, orderly techniques of acupuncture, quantification of procedures, and clarity in efficacy. The goal is to provide a new perspective for the development of translational medicine in acupuncture.


Assuntos
Terapia por Acupuntura , Ciência Translacional Biomédica , Pesquisa , Prescrições , Padrões de Referência
20.
Opt Express ; 30(25): 44496-44503, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522873

RESUMO

The optical properties of deep-ultraviolet (DUV) light-emitting diode (LED) with Al nanograting structure are investigated by three-dimensional (3D) finite-difference time-domain (FDTD) simulation. The peak intensity of TE and TM polarization radiation recombination rate of the grating structure is increased by 33.3% and 22.0% as compared to the control structure with Al plane. The light extraction efficiency (LEE) of the emitted light whose propagation direction is in the plane perpendicular to the Al-grating ridge is much higher than that in the plane parallel to the Al-grating ridge due to the scattering of the grating. Without considering the lateral surface extraction and packaging, the total LEE of the grating structure can be improved by 41.4% as compared to the control structure. The peak intensity of the output spectrum of the DUV LED with the grating structure can be increased by 70.3%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA