Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(12): 9653-9667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37794280

RESUMO

Respiratory diseases continue to be a major global concern, with allergies and asthma often discussed as critical areas of study. While the role of environmental risk factors, such as non-allergenic pollutants and high humidity, in asthma induction is often mentioned, there is still a lack of thorough research on their co-exposure. This study aims to investigate the adjuvant effect of ultrafine carbon black (30-50 nm) and high humidity (70% relative humidity) on the induction of allergic asthma. A mouse model of asthma was established using ovalbumin, and airway hyperresponsiveness, remodeling, and inflammation were measured as the endpoint effects of asthma. The mediating role of the oxidative stress pathway and the transient receptor potential vanilloid 1 pathway in asthma induction was validated using pathway inhibitors vitamin E and capsaicin, respectively. Co-exposure to ultrafine carbon black and high humidity had a significant impact on metabolic pathways in the lung, including aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, and ATP-binding cassette transporters. However, administering vitamin E and capsaicin altered the effects of co-exposure on the lung metabolome. These results offer new insights into the health risk assessment of co-exposure to environmental risk factors and provide an important reference point for the prevention and treatment of allergic asthma.


Assuntos
Asma , Fuligem , Camundongos , Animais , Fuligem/toxicidade , Umidade , Capsaicina/metabolismo , Asma/induzido quimicamente , Pulmão , Vitamina E/farmacologia , Vitamina E/metabolismo
2.
Ecotoxicol Environ Saf ; 264: 115432, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37660530

RESUMO

In the context of global climate change, organisms in their natural habitats usually suffer from unfavorable climatic conditions together with environmental pollution. Temperature and humidity (or moisture) are two central climatic factors, while their relationships with the toxicity of contaminants are not well understood. This review provides a synthesis of existing knowledge on important interactions between contaminant toxicity and climatic conditions of unfavorable temperature, soil moisture, and air humidity. Both high temperature and low moisture can extensively pose severe combined hazards with organic pollutants, heavy metal ions, nanoparticles, or microplastics. There is more information on the combined effects on animalia than on other kingdoms. Prevalent mechanisms underlying their joint effects include the increased bioavailability and bioaccumulation of contaminants, modified biotransformation of contaminants, enhanced induction of oxidative stress, accelerated energy consumption, interference with cell membranes, and depletion of bodily fluids. However, the interactions of contaminants with low temperature or high humidity/moisture, particularly on plants and microorganisms, are relatively vague and need to be further revealed. This work emphasizes that the co-exposure of chemical and physical stressors results in detrimental effects generally greater than those caused by either stressor. It is necessary to take this into consideration in the ecological risk assessment of both environmental contamination and climate change.


Assuntos
Temperatura Baixa , Plásticos , Temperatura , Umidade , Ansiedade
3.
Int J Nanomedicine ; 18: 3489-3508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404851

RESUMO

Asthma is a chronic respiratory disease that is highly sensitive to environmental pollutants, including engineered nanoparticles (NPs). Exposure to NPs has become a growing concern for human health, especially for susceptible populations. Toxicological studies have demonstrated strong associations between ubiquitous NPs and allergic asthma. In this review, we analyze articles that focus on adverse health effects induced by NPs in animal models of allergic asthma to highlight their critical role in asthma. We also integrate potential mechanisms that could stimulate and aggravate asthma by NPs. The toxic effects of NPs are influenced by their physicochemical properties, exposure dose, duration, route, as well as the exposure order between NPs and allergens. The toxic mechanisms involve oxidative stress, various inflammasomes, antigen presenting cells, immune cells, and signaling pathways. We suggest that future research should concentrate on establishing standardized models, exploring mechanistic insights at the molecular level, assessing the combined effects of binary exposures, and determining safe exposure levels of NPs. This work provides concrete evidence of the hazards posed by NPs in animals with compromised respiratory health and supports the modifying role of NPs exposure in allergic asthma.


Assuntos
Asma , Nanopartículas , Animais , Humanos , Asma/induzido quimicamente , Modelos Animais , Estresse Oxidativo , Nanopartículas/toxicidade , Alérgenos/toxicidade
4.
Chemosphere ; 311(Pt 1): 136990, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36309055

RESUMO

Construction dust contributes a significant proportion of airborne particulate matter, affecting the health of its surrounding environment and population. Construction workers are normally exposed to dust at high levels and bear severe health risks. The existing articles concerning the exposure and health impacts of construction dust are limited, but this research field has received more and more attention. This work reviews literature in the field and tries to systematically assess the current research state. Here, we review (1) methods used to monitor or sample construction dust; (2) main characteristics of construction dust, including dust classification, exposed populations, and exposure concentrations; (3) potential health hazards and (4) health risk assessment of construction dust. From existing literature, the exposure concentrations of different types and sources of construction dust are usually the focus of attention, while its particle size distribution and chemical composition are rarely mentioned. The classification and characteristics of populations exposed to construction dust ought to be a key consideration but not clear enough so far. There still lacks in-depth study of health hazards and systematic assessment of risks associated with construction dust. In future, it is valuable to develop utility instruments to precisely monitor construction dust. Besides, control means to reduce the pollution of construction dust deserve more studies. Health hazards of construction dust should be verified by biological experiments. Moreover, emerging algorithm models should be utilized in the risk assessment. The findings will help gain a better understanding of construction dust exposure and associated health risks.


Assuntos
Poeira , Exposição Ocupacional , Humanos , Material Particulado , Poluição Ambiental , Medição de Risco
5.
Environ Sci Pollut Res Int ; 29(43): 65100-65111, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35484453

RESUMO

In respiratory diseases, the induction of allergic asthma has gradually aroused public concerns. Co-exposures of environmental risk factors such as nanoparticles and high humidity could play important roles in the development of allergic asthma. However, the relevant researches are still lacking and the involved mechanisms, especially metabolic changes, remain unclear. We took the lead in studying the combined induction effect and underlying mechanisms of carbon black nanoparticles (CB NPs) and high humidity on allergic asthma. In this work, murine models of allergic asthma were established with ovalbumin under the single and combined exposures of 15 µg/kg CB NPs and 90% relative humidity. The two risk factors, particularly their co-exposure, exhibited adjuvant effect on airway hyperresponsiveness, remodeling, and inflammation in Balb/c mice. Untargeted metabolomics identified the potential biomarkers in lung for asthma occurrence and for asthma exacerbation caused by CB NPs and high humidity. The significantly dysregulated metabolic pathways in asthmatic mice were proposed, and the disturbed metabolic pathways under the exposures of CB NPs and/or high humidity were mainly implicated in asthma symptoms. This work sheds light on the understanding for health risks of NP pollutions and high environmental humidity and contributes to useful biomarker identification and asthma control.


Assuntos
Asma , Nanopartículas , Animais , Asma/induzido quimicamente , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Umidade , Pulmão , Metaboloma , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/farmacologia , Fuligem
6.
ACS Appl Mater Interfaces ; 9(42): 36817-36827, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28975789

RESUMO

Although tremendous efforts have been devoted to the exploration of cost-effective, active, and stable electrochemical catalysts, only few significant breakthroughs have been achieved up to now. Therefore, exploring new catalysts and improving catalyst activity and stability are still major tasks at present. Controllable synthesis of Pt-based alloy nanocrystals with a uniform high-index surface and unique architecture has been regarded as an effective strategy to optimize their catalytic efficiency toward electrochemical reactions. Accordingly, here we present a one-pot facile solvothermal process to synthesize novel unique Cu@CuPt core-shell concave octahedron nanocrystals that exhibit both outstanding activity and long durability. By regulating temperatures during the synthesis process, we were able to control the reduction rate of Cu and Pt ions, which could subsequently lead to the sequential stacking of Cu and Pt atoms. Owing to the concave structure, the as-prepared core-shell nanoparticles hold a high-index surface of {312} and {413}. Such surfaces can provide a high density of atomic steps and terraces, which is suggested to be favorable for electrochemical catalysts. Specifically, the Cu@CuPt core-shell concave octahedron presents 8.6/13.1 times enhanced specific/mass activities toward the methanol oxidation reaction in comparison to those of a commercial Pt/C catalyst, respectively. Meanwhile, the as-prepared catalyst exhibits superior durability and antiaggregation properties under harsh electrochemical conditions. The facile method used here proposes a novel idea to the fabrication of nanocrystals with desired compositional distribution, and the as-prepared product offers exciting opportunities to be applied in direct methanol fuel cells.

7.
Materials (Basel) ; 10(9)2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28925964

RESUMO

Precipitation behavior and the quenching sensitivity of a spray deposited Al-Zn-Mg-Cu-Zr alloy during isothermal heat treatment have been studied systematically. Results demonstrate that both the hardness and the ultimate tensile strength of the studied alloy decreased with the isothermal treatment time at certain temperatures. More notably, the hardness decreases rapidly after the isothermal heat treatment. During isothermal heat treatment processing, precipitates readily nucleated in the medium-temperature zone (250-400 °C), while the precipitation nucleation was scarce in the low-temperature zone (<250 °C) and in the high-temperature zone (>400 °C). Precipitates with sizes of less than ten nanometers would contribute a significant increase in yield strength, while the ones with a larger size than 300 nm would contribute little strengthening effect. Quenching sensitivity is high in the medium-temperature zone (250-400 °C), and corresponding time-temperature-property (TTP) curves of the studied alloy have been established.

8.
Phys Chem Chem Phys ; 13(22): 10648-51, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21472170

RESUMO

Based on the rigorous consideration of the bond broken rule and surface relaxation, a model for the size-dependent surface free energy of face-centered-cubic nanoparticles and nanocavities is presented, where the surface relaxation is calculated by the BOLS relationship. It is found that the surface free energy of nanoparticles and nanocavities represents a reverse size effect-the surface free energy of nanoparticles decreases with the decrease of particle size while it rises with the shrinkage of cavities. The size effect on the surface free energy of nanoparticles and nanocavities is not evident in large size ranges, while it becomes more and more distinct with decreasing size, especially for sizes smaller than 10 nm. The present predictions are in good agreement with the available literature data.

9.
Phys Chem Chem Phys ; 13(22): 10652-60, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21523307

RESUMO

The previous model on surface free energy has been extended to calculate size dependent thermodynamic properties (i.e., melting temperature, melting enthalpy, melting entropy, evaporation temperature, Curie temperature, Debye temperature and specific heat capacity) of nanoparticles. According to the quantitative calculation of size effects on the calculated thermodynamic properties, it is found that most thermodynamic properties of nanoparticles vary linearly with 1/D as a first approximation. In other words, the size dependent thermodynamic properties P(n) have the form of P(n) = P(b)(1 -K/D), in which P(b) is the corresponding bulk value and K is the material constant. This may be regarded as a scaling law for most of the size dependent thermodynamic properties for different materials. The present predictions are consistent literature values.


Assuntos
Nanopartículas Metálicas/química , Tamanho da Partícula , Temperatura , Termodinâmica
10.
Chemphyschem ; 12(7): 1317-24, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21488140

RESUMO

Based on the surface-area-difference model, the formation enthalpies and the formation Gibbs free energies of bimetallic nanoparticles are calculated by considering size and shape effects. Composition-critical size diagrams were graphed for bulk immiscible bimetallic nanoparticles with the developed model. The results reveal that both the formation enthalpy and formation Gibbs free energy decrease with the decrease of particle size. The effect of rising temperature is similar to the diminishing of particle size on reducing the formation Gibbs free energy. Contrary to the positive formation enthalpy of the bulk immiscible system, a negative formation enthalpy is obtained when the particles are smaller than a critical size. With the decrease of size, the alloying process first takes place in the dilute solute regions, then broadens to the dense solute regions and finally, particles with all compositions can be alloyed. The composition-critical size diagram is classified into three regions by the critical size curves with shape factors of 1 and 1.49, that is, the non-alloying region, alloying region and possible alloying region. The model predictions correspond well with experimental evidences and computer simulation results for Cu-Ag, Au-Ni, Ag-Pt and Au-Pt systems.

11.
Nanoscale Res Lett ; 4(3): 269-273, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20596331

RESUMO

A tight binding molecular dynamics calculation has been conducted to study the size and coordination dependence of bond length and bond energy of Pd atomic clusters of 1.2-5.4 nm in diameter. It has been found that the bond contraction associated with bond energy increases in the outermost layer about 0.24 nm in a radial way, yet in the core interior the bond length and the bond energy remain their corresponding bulk values. This surface bond contraction is independent of the particle size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA