Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Adv ; 9(14): eadc9446, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018402

RESUMO

The mechanisms underlying ETS-driven prostate cancer initiation and progression remain poorly understood due to a lack of model systems that recapitulate this phenotype. We generated a genetically engineered mouse with prostate-specific expression of the ETS factor, ETV4, at lower and higher protein dosage through mutation of its degron. Lower-level expression of ETV4 caused mild luminal cell expansion without histologic abnormalities, and higher-level expression of stabilized ETV4 caused prostatic intraepithelial neoplasia (mPIN) with 100% penetrance within 1 week. Tumor progression was limited by p53-mediated senescence and Trp53 deletion cooperated with stabilized ETV4. The neoplastic cells expressed differentiation markers such as Nkx3.1 recapitulating luminal gene expression features of untreated human prostate cancer. Single-cell and bulk RNA sequencing showed that stabilized ETV4 induced a previously unidentified luminal-derived expression cluster with signatures of cell cycle, senescence, and epithelial-to-mesenchymal transition. These data suggest that ETS overexpression alone, at sufficient dosage, can initiate prostate neoplasia.


Assuntos
Neoplasia Prostática Intraepitelial , Neoplasias da Próstata , Masculino , Camundongos , Animais , Humanos , Próstata/metabolismo , Próstata/patologia , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Próstata/genética , Fatores de Transcrição/metabolismo , Neoplasia Prostática Intraepitelial/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-ets/genética
2.
Clin Cancer Res ; 28(21): 4600-4602, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35984355

RESUMO

Through analysis of the cancer dependency map of CRISPR and short hairpin RNA datasets, the antiapoptotic BCL-XL was found to be a selective dependency in kidney cancer. Among kidney cancers, BCL-XL inhibition is most active in those with a mesenchymal gene signature, which portends a poor prognosis and response to current therapies. See related article by Grubb et al., p. 4689.


Assuntos
Apoptose , Neoplasias Renais , Humanos , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Apoptose/genética , RNA Interferente Pequeno/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética
3.
Cancer Discov ; 12(9): 2120-2139, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35789380

RESUMO

Polycomb repressive complex 2 (PRC2) has oncogenic and tumor-suppressive roles in cancer. There is clinical success of targeting this complex in PRC2-dependent cancers, but an unmet therapeutic need exists in PRC2-loss cancer. PRC2-inactivating mutations are a hallmark feature of high-grade malignant peripheral nerve sheath tumor (MPNST), an aggressive sarcoma with poor prognosis and no effective targeted therapy. Through RNAi screening in MPNST, we found that PRC2 inactivation increases sensitivity to genetic or small-molecule inhibition of DNA methyltransferase 1 (DNMT1), which results in enhanced cytotoxicity and antitumor response. Mechanistically, PRC2 inactivation amplifies DNMT inhibitor-mediated expression of retrotransposons, subsequent viral mimicry response, and robust cell death in part through a protein kinase R (PKR)-dependent double-stranded RNA sensor. Collectively, our observations posit DNA methylation as a safeguard against antitumorigenic cell-fate decisions in PRC2-loss cancer to promote cancer pathogenesis, which can be therapeutically exploited by DNMT1-targeted therapy. SIGNIFICANCE: PRC2 inactivation drives oncogenesis in various cancers, but therapeutically targeting PRC2 loss has remained challenging. Here we show that PRC2-inactivating mutations set up a tumor context-specific liability for therapeutic intervention via DNMT1 inhibitors, which leads to innate immune signaling mediated by sensing of derepressed retrotransposons and accompanied by enhanced cytotoxicity. See related commentary by Guil and Esteller, p. 2020. This article is highlighted in the In This Issue feature, p. 2007.


Assuntos
Antineoplásicos , Neoplasias , Neurofibrossarcoma , Carcinogênese/genética , Humanos , Mutação , Neoplasias/genética , Neurofibrossarcoma/diagnóstico , Neurofibrossarcoma/genética , Neurofibrossarcoma/patologia , Complexo Repressor Polycomb 2/genética , Retroelementos
4.
Clin Cancer Res ; 27(5): 1476-1490, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33229459

RESUMO

PURPOSE: All uveal melanoma and a fraction of other melanoma subtypes are driven by activation of the G-protein alpha-q (Gαq) pathway. Targeting these melanomas has proven difficult despite advances in the molecular understanding of key driver signaling pathways in the disease pathogenesis. Inhibitors of Gαq have shown promising preclinical results, but their therapeutic activity in distinct Gαq mutational contexts and in vivo have remained elusive. EXPERIMENTAL DESIGN: We used an isogenic melanocytic cellular system to systematically examine hotspot mutations in GNAQ (e.g., G48V, R183Q, Q209L) and CYSLTR2 (L129Q) found in human uveal melanoma. This cellular system and human uveal melanoma cell lines were used in vitro and in in vivo xenograft studies to assess the efficacy of Gαq inhibition as a single agent and in combination with MEK inhibition. RESULTS: We demonstrate that the Gαq inhibitor YM-254890 inhibited downstream signaling and in vitro growth in all mutants. In vivo, YM-254890 slowed tumor growth but did not cause regression in human uveal melanoma xenografts. Through comprehensive transcriptome analysis, we observed that YM-254890 caused inhibition of the MAPK signaling with evidence of rebound by 24 hours and combination treatment of YM-254890 and a MEK inhibitor led to sustained MAPK inhibition. We further demonstrated that the combination caused synergistic growth inhibition in vitro and tumor shrinkage in vivo. CONCLUSIONS: These data suggest that the combination of Gαq and MEK inhibition provides a promising therapeutic strategy and improved therapeutic window of broadly targeting Gαq in uveal melanoma.See related commentary by Neelature Sriramareddy and Smalley, p. 1217.


Assuntos
Melanoma , Neoplasias Uveais , Linhagem Celular Tumoral , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/genética
5.
Biochem Biophys Res Commun ; 527(1): 242-249, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32446375

RESUMO

Intratumoral heterogeneity remains as a major challenge in the treatment resistance of prostate cancer. Understanding the mechanism of prostate cancer heterogeneity is essential for developing effective therapies. In this study, we reported the heterogeneous activation of Wnt/ß-catenin signaling in prostate cancer. We developed a Wnt/ß-catenin signaling reporting system to directly characterize the differences between Wnt/ß-catenin signaling active (GFP+) and inactive (GFP-) cells. Compared to GFP- cells, GFP+ cells demonstrated cancer stem cell properties with higher colony formation efficiency, slower cell cycle, higher resistance to docetaxel and higher expression of cancer stem cell markers. In addition, we found that Wnt/ß-catenin signaling is negatively correlated with H3K27me3 levels. Further studies demonstrated that Wnt/ß-catenin signaling affected H3K27me3 levels by regulating the expression of KDM6A, one of the H3K27me3 demethylases. H3K27me3 suppressed Wnt/ß-catenin signaling by directly silencing LEF1 promoter. Together, our studies suggest that Wnt/ß-catenin signaling makes a major contribution to prostate cancer heterogeneity and targeting both Wnt/ß-catenin signaling active and inactive populations is essential for developing more effective therapies.


Assuntos
Neoplasias da Próstata/metabolismo , Via de Sinalização Wnt , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Docetaxel/farmacologia , Relação Dose-Resposta a Droga , Humanos , Masculino , Metilação/efeitos dos fármacos , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Relação Estrutura-Atividade , Via de Sinalização Wnt/efeitos dos fármacos
6.
Stem Cell Reports ; 9(1): 231-246, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28669599

RESUMO

Although STAT3 signaling is demonstrated to regulate sensory cell differentiation and regeneration in the zebrafish, its exact role is still unclear in mammalian cochleae. Here, we report that STAT3 and its activated form are specifically expressed in hair cells during mouse cochlear development. Importantly, conditional cochlear deletion of Stat3 leads to an inhibition on hair cell differentiation in mice in vivo and in vitro. By cell fate analysis, inactivation of STAT3 signaling shifts the cell division modes from asymmetric to symmetric divisions from supporting cells. Moreover, inhibition of Notch signaling stimulates STAT3 phosphorylation, and inactivation of STAT3 signaling attenuates production of supernumerary hair cells induced by a Notch pathway inhibitor. Our findings highlight an important role of the STAT3 signaling during mouse cochlear hair cell differentiation and may have clinical implications for the recovery of hair cell loss-induced hearing impairment.


Assuntos
Diferenciação Celular , Cóclea/crescimento & desenvolvimento , Células Ciliadas Auditivas/citologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Animais , Divisão Celular , Células Cultivadas , Cóclea/citologia , Cóclea/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/metabolismo , Camundongos , Receptores Notch/metabolismo , Fator de Transcrição STAT3/genética
7.
Stem Cell Reports ; 6(5): 668-678, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27167157

RESUMO

Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS) in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3) was upregulated in a large subset of benign prostatic hyperplasia (BPH) tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH.


Assuntos
Células Epiteliais/metabolismo , Hiperplasia Prostática/genética , Receptor Muscarínico M3/genética , Células-Tronco/metabolismo , Animais , Comunicação Autócrina/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Proliferação de Células/genética , Células Epiteliais/patologia , Humanos , Masculino , Camundongos , Próstata/metabolismo , Próstata/patologia , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Células-Tronco/patologia
8.
Oncotarget ; 6(28): 26494-507, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26317998

RESUMO

SIRT3 is involved in aging-related diseases including cancer, but its role in prostate cancer and detailed regulatory function are not known. We found that SIRT3 was moderately down-regulated in prostate carcinomas. Overexpression of SIRT3 by lentiviral transfection inhibited prostate cancer growth both in vitro and in vivo, whereas knockdown of SIRT3 increased prostate tumor growth. Mechanistically, the tumor suppression effect of SIRT3 was achieved via its inhibition of the PI3K/Akt pathway. Notably, upregulation of SIRT3 suppressed the phosphorylation of Akt, leading to the ubiquitination and degradation of oncoprotein c-MYC; this could be attenuated by constitutive activation of PI3K/Akt signaling. Collectively, our results unveiled SIRT3's tumor suppressive function and the underlying mechanism in prostate cancer, which might provide therapeutic implications for the disease.


Assuntos
Fosfatidilinositol 3-Quinase/metabolismo , Neoplasias da Próstata/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sirtuína 3/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , Transdução de Sinais , Sirtuína 3/genética , Fatores de Tempo , Transfecção , Ubiquitinação
9.
Clin Cancer Res ; 21(20): 4676-85, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26071486

RESUMO

PURPOSE: Although a previous study reported nerve ending-derived acetylcholine promoted prostate cancer invasion and metastasis by regulating the microenvironment of cancer cells, the present study aims to determine whether there is autocrine cholinergic signaling in prostate epithelial cells that promotes prostate cancer growth and castration resistance. EXPERIMENTAL DESIGN: In this study, IHC was performed to detect protein expression in mouse prostate tissue sections and human prostate cancer tissue sections. Subcutaneously and orthotopically xenografted tumor models were established to evaluate the functions of autocrine cholinergic signaling in regulating prostate cancer growth and castration resistance. Western blotting analysis was performed to assess the autocrine cholinergic signaling-induced signaling pathway. RESULTS: We found the expression of choline acetyltransferase (ChAT), the secretion of acetylcholine and the expression of CHRM3 in prostate epithelial cells, supporting the presence of autocrine cholinergic signaling in the prostate epithelium. In addition, we found that CHRM3 was upregulated in clinical prostate cancer tissues compared with adjacent non-cancer tissues. Overexpression of CHRM3 or activation of CHRM3 by carbachol promoted cell proliferation, migration, and castration resistance. On the contrary, blockading CHRM3 by shRNA or treatment with darifenacin inhibited prostate cancer growth and castration resistance both in vitro and in vivo. Furthermore, we found that autocrine cholinergic signaling caused calmodulin/calmodulin-dependent protein kinase kinase (CaM/CaMKK)-mediated phosphorylation of Akt. CONCLUSIONS: These findings suggest that blockade of CHRM3 may represent a novel adjuvant therapy for castration-resistant prostate cancer.


Assuntos
Comunicação Autócrina/fisiologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Fosforilação/fisiologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Muscarínicos/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Próstata/metabolismo , Próstata/patologia , Receptor Muscarínico M3 , Transdução de Sinais/fisiologia , Regulação para Cima/genética
10.
PLoS One ; 10(4): e0116197, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25860954

RESUMO

Prostate cancer (PCa) is the most frequently diagnosed cancer for men in the developed world. Androgen receptor signaling pathway plays an important role in prostate cancer progression. Recent studies show that microRNA miR-124 exerts a tumor suppressive function in prostate cancer. However, the relationship between AR and miR-124 is unclear. In the present study, we found a negative feedback loop between AR and miR-124 expression. On one hand, miR-124 was a positively regulated target gene of the AR, on the other hand, overexpression of miR-124 inhibited the expression of AR. In addition, we found that miR-124-2 and miR-124-3 promoters were hypermethylated in AR-negative PCa cells. Furthermore, overexpression of miR-124 inhibited proliferation rates and invasiveness capacity of PCa cells in vitro, and suppressed xenograft tumor growth in vivo. Taken together, our results support a negative feedback loop between AR and miR-124 expression. Methylation of miR-124-2 and miR-124-3 may serve as a biomarker for AR-negative PCa cells, and overexpression of miR-124 might be of potential therapeutic value for the treatment of PCa.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ilhas de CpG , Metilação de DNA , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/terapia , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
11.
Exp Biol Med (Maywood) ; 239(7): 823-828, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24764242

RESUMO

Prostate cancer is the most common type of cancer for men in the developed world. Androgen receptor (AR) is very important in prostate cancer progression. TMPRSS2 is an AR signaling downstream gene and closely related to prostate carcinogenesis. DNA methylation is a key mechanism to influence gene expression. Though previous reports have shown that AR signaling plays a critical role in the regulation of TMPRSS2 in prostate cancer, hardly any studies have examined whether the DNA methylation has been involved in the regulation of TMPRSS2. In the present study, we demonstrated that AR-negative prostate cancer (PCa) cells showed low expression levels and hypermethylation of TMPRSS2. In contrast, AR-positive PCa cells displayed high levels and hypomethylation of TMPRSS2. Treatment with the DNA methylation inhibitor 5-Aza-2'-deoxycytidine reversed the low expression levels of TMPRSS2 in the AR-negative PCa cells. Additionally, we found that the level of DNA methyltransferases 1 (DNMT1) was high in AR-negative PCa cells, in which hypermethylation of TMPRSS2 and low expression level of TMPRSS2 were observed. Collectively, these data suggest that the high level of DNMT1 might be the mechanism for the hypermethylation-mediated transcriptional repression of TMPRSS2 in AR-negative PCa cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA