Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 885, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304826

RESUMO

MicroRNAs (miRNAs) have been demonstrated to be closely related to human diseases. Studying the potential associations between miRNAs and diseases contributes to our understanding of disease pathogenic mechanisms. As traditional biological experiments are costly and time-consuming, computational models can be considered as effective complementary tools. In this study, we propose a novel model of robust orthogonal non-negative matrix tri-factorization (NMTF) with self-paced learning and dual hypergraph regularization, named SPLHRNMTF, to predict miRNA-disease associations. More specifically, SPLHRNMTF first uses a non-linear fusion method to obtain miRNA and disease comprehensive similarity. Subsequently, the improved miRNA-disease association matrix is reformulated based on weighted k-nearest neighbor profiles to correct false-negative associations. In addition, we utilize L 2 , 1 norm to replace Frobenius norm to calculate residual error, alleviating the impact of noise and outliers on prediction performance. Then, we integrate self-paced learning into NMTF to alleviate the model from falling into bad local optimal solutions by gradually including samples from easy to complex. Finally, hypergraph regularization is introduced to capture high-order complex relations from hypergraphs related to miRNAs and diseases. In 5-fold cross-validation five times experiments, SPLHRNMTF obtains higher average AUC values than other baseline models. Moreover, the case studies on breast neoplasms and lung neoplasms further demonstrate the accuracy of SPLHRNMTF. Meanwhile, the potential associations discovered are of biological significance.


Assuntos
Biologia Computacional , MicroRNAs , MicroRNAs/genética , Humanos , Biologia Computacional/métodos , Algoritmos , Predisposição Genética para Doença , Aprendizado de Máquina , Neoplasias Pulmonares/genética
2.
J Neural Eng ; 20(6)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37972395

RESUMO

Objective. The OSort algorithm, a pivotal unsupervised spike sorting method, has been implemented in dedicated hardware devices for real-time spike sorting. However, due to the inherent complexity of neural recording environments, OSort still grapples with numerous transient cluster occurrences during the practical sorting process. This leads to substantial memory usage, heavy computational load, and complex hardware architectures, especially in noisy recordings and multi-channel systems.Approach. This study introduces an optimized OSort algorithm (opt-OSort) which utilizes correlation coefficient (CC), instead of Euclidean distance as classification criterion. TheCCmethod not only bolsters the robustness of spike classification amidst the diverse and ever-changing conditions of physiological and recording noise environments, but also can finish the entire sorting procedure within a fixed number of cluster slots, thus preventing a large number of transient clusters. Moreover, the opt-OSort incorporates two configurable validation loops to efficiently reject cluster outliers and track recording variations caused by electrode drifting in real-time.Main results. The opt-OSort significantly reduces transient cluster occurrences by two orders of magnitude and decreases memory usage by 2.5-80 times in the number of pre-allocated transient clusters compared with other hardware implementations of OSort. The opt-OSort maintains an accuracy comparable to offline OSort and other commonly-used algorithms, with a sorting time of 0.68µs as measured by the hardware-implemented system in both simulated datasets and experimental data. The opt-OSort's ability to handle variations in neural activity caused by electrode drifting is also demonstrated.Significance. These results present a rapid, precise, and robust spike sorting solution suitable for integration into low-power, portable, closed-loop neural control systems and brain-computer interfaces.


Assuntos
Neurônios , Processamento de Sinais Assistido por Computador , Neurônios/fisiologia , Algoritmos , Eletrodos , Sistemas Computacionais , Potenciais de Ação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA